Abstract
Septation and cell separation occur as distinct events during cell division in many Gram-positive bacteria. The process first involves synthesis of a complete, multilayered peptidoglycan (PG) septum dividing the cell, which is subsequently hydrolyzed to facilitate physical separation. Using fluorescent D-amino acids and high-resolution microscopy, we identify a previously unrecognized, post-septational wave of transpeptidation that crosslinks septal PG during cell separation in Bacillus subtilis. Notably, this activity does not involve new PG synthesis, but instead remodels pre-existing septal PG. The transpeptidase PBPH plays a key role in this process, and its activity and localization at the separating septum depend on PG hydrolysis by the endopeptidase LytF. Disruption of this interplay impairs cell separation. Our findings reveal a mechanism whereby the coordinated activities of PG hydrolysis and transpeptidation ensure successful cytokinesis. This work expands the current model of cell division by identifying post-septational transpeptidation as a key step in septal resolution and pole formation.
Similar content being viewed by others
Data availability
Data supporting the findings of this study are included in the manuscript and its supplementary information. Source data are available in the figshare repository https://doi.org/10.6084/m9.figshare.30723914.
References
Lutkenhaus, J., Pichoff, S. & Du, S. Bacterial cytokinesis: From Z ring to divisome. Cytoskeleton (Hoboken) 69, 778–790 (2012).
Cameron, T. A. & Margolin, W. Insights into the assembly and regulation of the bacterial divisome. Nat. Rev. Microbiol. 22, 33–45 (2024).
Egan, A. J. F., Errington, J. & Vollmer, W. Regulation of peptidoglycan synthesis and remodelling. Nat. Rev. Microbiol. 18, 446–460 (2020).
Uehara, T., Parzych, K. R., Dinh, T. & Bernhardt, T. G. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J. 29, 1412–1422 (2010).
Chen, R., Guttenplan, S. B., Blair, K. M. & Kearns, D. B. Role of the sigmaD-dependent autolysins in Bacillus subtilis population heterogeneity. J. Bacteriol. 191, 5775–5784 (2009).
Du, S., Pichoff, S. & Lutkenhaus, J. Roles of ATP hydrolysis by FtsEX and interaction with FtsA in regulation of septal peptidoglycan synthesis and hydrolysis. mBio 11. https://doi.org/10.1128/mBio.01247-20 (2020)
Chai, Y., Norman, T., Kolter, R. & Losick, R. An epigenetic switch governing daughter cell separation in Bacillus subtilis. Genes Dev. 24, 754–765 (2010).
Kearns, D. B. & Losick, R. Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev. 19, 3083–3094 (2005).
Rivas, B. D. L., García, J. L., López, R. & García, P. Purification and polar localization of pneumococcal LytB, a putative endo-beta-N-acetylglucosaminidase: The chain-dispersing murein hydrolase. J. Bacteriol. 184, 4988–5000 (2002).
Heidrich, C. et al. Involvement of N-acetylmuramyl-l-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol. Microbiol. 41, 167–178 (2001).
Bisson-Filho, A. W. et al. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355, 739–743 (2017).
Morales Angeles, D. et al. Pentapeptide-rich peptidoglycan at the Bacillus subtilis cell-division site. Mol. Microbiol 104, 319–333 (2017).
Hsu, Y.-P. et al. Full color palette of fluorescent d-amino acids for in situ labeling of bacterial cell walls. Chem. Sci. 8, 6313–6321 (2017).
Radkov, A. D., Hsu, Y.-P., Booher, G. & VanNieuwenhze, M. S. Imaging Bacterial Cell Wall Biosynthesis. Annu. Rev. Biochem. 87, 991–1014 (2018).
Hsu, Y.-P., Meng, X. & VanNieuwenhze, M. S. Methods for visualization of peptidoglycan biosynthesis. Methods Microbiol. 43, 3–48 (2016).
Kuru, E. et al. In Situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angew. Chem. Int Ed. Engl. 51, 12519–12523 (2012).
Liechti, G. W. et al. A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 506, 507–510 (2014).
Liechti, G. et al. Pathogenic chlamydia lack a classical sacculus but synthesize a narrow, mid-cell peptidoglycan ring, regulated by MreB, for cell division. PLoS Pathog. 12, e1005590 (2016).
van Teeseling, M. C. F. et al. Anammox Planctomycetes have a peptidoglycan cell wall. Nat. Commun. 6, 6878 (2015).
Vollmer, W., Joris, B., Charlier, P. & Foster, S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32, 259–286 (2008).
Blackman, S. A., Smith, T. J. & Foster, S. J. The role of autolysins during vegetative growth of Bacillus subtilis 168. Microbiol. (Read.) 144, 73–82 (1998).
Smith, T. J., Blackman, S. A. & Foster, S. J. Autolysins of Bacillus subtilis: Multiple enzymes with multiple functions. Microbiol. (Read.) 146, 249–262 (2000).
Wilson, S. A., Tank, R. K. J., Hobbs, J. K., Foster, S. J. & Garner, E. C. An exhaustive multiple knockout approach to understanding cell wall hydrolase function in Bacillus subtilis. mBio 14, e0176023 (2023).
Yamamoto, H., Kurosawa, S. & Sekiguchi, J. Localization of the vegetative cell wall hydrolases LytC, LytE, and LytF on the Bacillus subtilis cell surface and stability of these enzymes to cell wall-bound or extracellular proteases. J. Bacteriol. 185, 6666–6677 (2003).
Tandukar, S., Kwon, E. & Kim, D. Y. Structural insights into the regulation of peptidoglycan DL-endopeptidases by inhibitory protein IseA. Structure 31, 619–628.e614 (2023).
Kuru, E. et al. Mechanisms of incorporation for D-amino acid probes that target peptidoglycan biosynthesis. ACS Chem. Biol. 14, 2745–2756 (2019).
Sauvage, E., Kerff, F., Terrak, M., Ayala, J. A. & Charlier, P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev. 32, 234–258 (2008).
Egan, A. J., Biboy, J., van’t Veer, I., Breukink, E. & Vollmer, W. Activities and regulation of peptidoglycan synthases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370 https://doi.org/10.1098/rstb.2015.0031 (2015).
Scheffers, D.-J. Dynamic localization of penicillin-binding proteins during spore development in Bacillus subtilis. Microbiology 151, 999–1012 (2005).
Bukowska-Faniband, E. & Hederstedt, L. Cortex synthesis during Bacillus subtilis sporulation depends on the transpeptidase activity of SpoVD. FEMS Microbiol. Lett. 346, 65–72 (2013).
Gamba, P., Veening, J. W., Saunders, N. J., Hamoen, L. W. & Daniel, R. A. Two-step assembly dynamics of the Bacillus subtilis divisome. J. Bacteriol. 191, 4186–4194 (2009).
Scheffers, D. J. & Errington, J. PBP1 is a component of the Bacillus subtilis cell division machinery. J. Bacteriol. 186, 5153–5156 (2004).
Tocheva, E. I. et al. Peptidoglycan transformations during Bacillus subtilis sporulation. Mol. Microbiol. 88, 673–686 (2013).
Wei, Y., Havasy, T., McPherson, D. C. & Popham, D. L. Rod shape determination by the Bacillus subtilis class B penicillin-binding proteins encoded by pbpA and pbpH. J. Bacteriol. 185, 4717–4726 (2003).
Yang, D. C. et al. An ATP-binding cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring. Proc. Natl. Acad. Sci. USA 108, E1052–E1060 (2011).
Navarro, P. P. et al. Cell wall synthesis and remodelling dynamics determine division site architecture and cell shape in Escherichia coli. Nat. Microbiol. 7, 1621–1634 (2022).
Koyano, Y., Okajima, K., Mihara, M. & Yamamoto, H. Visualization of Wall Teichoic Acid Decoration in Bacillus subtilis. J. Bacteriol. 205, e00066–00023 (2023).
Kiriyama, Y. et al. Localization and expression of the Bacillus subtilisdl-endopeptidase LytF are influenced by mutations in LTA synthases and glycolipid anchor synthetic enzymes. Microbiology 160, 2639–2649 (2014).
Yamamoto, H., Miyake, Y., Hisaoka, M., Kurosawa, S.-I. & Sekiguchi, J. The major and minor wall teichoic acids prevent the sidewall localization of vegetative dl-endopeptidase LytF in Bacillus subtilis. Mol. Microbiol. 70, 297–310 (2008).
Arai, R., Fukui, S., Kobayashi, N. & Sekiguchi, J. Solution structure of IseA, an inhibitor protein of DL-endopeptidases from Bacillus subtilis, reveals a novel fold with a characteristic inhibitory loop. J. Biol. Chem. 287, 44736–44748 (2012).
Hao, A., Suo, Y. & Lee, S.-Y. Structural insights into the FtsEX-EnvC complex regulation on septal peptidoglycan hydrolysis in Vibrio cholerae. Structure 32, 188–199.e185 (2024).
Meisner, J. et al. FtsEX is required for CwlO peptidoglycan hydrolase activity during cell wall elongation in Bacillus subtilis. Mol. Microbiol 89, 1069–1083 (2013).
Meier, E. L. et al. FtsEX-mediated regulation of the final stages of cell division reveals morphogenetic plasticity in Caulobacter crescentus. PLoS Genet 13, e1006999 (2017).
Scheffers, D. J., Jones, L. J. & Errington, J. Several distinct localization patterns for penicillin-binding proteins in Bacillus subtilis. Mol. Microbiol 51, 749–764 (2004).
Claessen, D. et al. Control of the cell elongation–division cycle by shuttling of PBP1 protein in Bacillus subtilis. Mol. Microbiol. 68, 1029–1046 (2008).
Lages, M. C., Beilharz, K., Morales Angeles, D., Veening, J. W. & Scheffers, D. J. The localization of key Bacillus subtilis penicillin binding proteins during cell growth is determined by substrate availability. Environ. Microbiol 15, 3272–3281 (2013).
Mamou, G. et al. Peptidoglycan maturation controls outer membrane protein assembly. Nature 606, 953–959 (2022).
Whatmore, A. M. & Reed, R. H. Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. Microbiology 136, 2521–2526 (1990).
Zhou, X., Halladin, D. K. & Theriot, J. A. Fast mechanically driven daughter cell separation is widespread in actinobacteria. mBio 7, https://doi.org/10.1128/mbio.00952-00916 (2016).
Zhou, X. et al. Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus. Science 348, 574–578 (2015).
Matias, V. R. F. & Beveridge, T. J. Cryo-electron microscopy of cell division in Staphylococcus aureus reveals a mid-zone between nascent cross walls. Mol. Microbiol. 64, 195–206 (2007).
Umeda, A. & Amako, K. Growth of the surface of Corynebacterium diphtheriae. Microbiol Immunol. 27, 663–671 (1983).
Berry, K. A., Verhoef, M. T. A., Leonard, A. C. & Cox, G. Staphylococcus aureus adhesion to the host. Ann. N. Y. Acad. Sci. 1515, 75–96 (2022).
Leonard, A. C. et al. Autolysin-mediated peptidoglycan hydrolysis is required for the surface display of Staphylococcus aureus cell wall-anchored proteins. Proc. Natl. Acad. Sci. 120, e2301414120 (2023).
Healy, C., Gouzy, A. & Ehrt, S. Peptidoglycan hydrolases RipA and Ami1 are critical for replication and persistence of mycobacterium tuberculosis in the host. mBio 11, https://doi.org/10.1128/mbio.03315-03319 (2020).
Gaday, Q. et al. FtsEX-independent control of RipA-mediated cell separation in Corynebacteriales. Proc. Natl. Acad. Sci. 119, e2214599119 (2022).
Pereira, S. F. F., Henriques, A. O., Pinho, M. G., De Lencastre, H. & Tomasz, A. Evidence for a dual role of PBP1 in the cell division and cell separation of Staphylococcus aureus. Mol. Microbiol. 72, 895–904 (2009).
Altenbuchner, J. Editing of the bacillus subtilis genome by the CRISPR-Cas9 system. Appl Environ. Microbiol 82, 5421–5427 (2016).
Wagner, J. K., Marquis, K. A. & Rudner, D. Z. SirA enforces diploidy by inhibiting the replication initiator DnaA during spore formation in Bacillus subtilis. Mol. Microbiol 73, 963–974 (2009).
Ducret, A., Quardokus, E. M. & Brun, Y. V. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nat. Microbiol. 1, 16077 (2016).
Acknowledgements
We thank past and present members of the Brun lab including Maxime Jacq, Kelley Gallagher, Gregory Whitfield, David Kysela, and Amelia Randich for their careful reading of the manuscript and valuable feedback. We also thank Velocity Hughes (Synthesis by Velocity, Malmö, Sweden) for critical reading of the manuscript and editorial assistance. We are grateful to Sven VanTeeffelen for thoughtful review of the manuscript and insightful comments. We thank the Garner lab (Harvard University), the Helmann lab (Cornell University), and the VanTeeffelen lab (University of Montreal) for generously providing strains and plasmids. We also thank Georgia Squyres for the MATLAB script used in data analysis. This research was supported by NIH grants 5R01GM113172 to M.S.V.; R35GM122556 to Y.V.B. and R35GM131783 to D.B.K. Y.V.B. is also supported by the Canada 150 Research Chairs Program in Bacterial Cell Biology.
Author information
Authors and Affiliations
Contributions
V.P., Y.P.H, D.B.K., M.S.V., and Y.V.B. designed the project. V.P. and Y.P.H. performed all the experiments. V.P., Y.P.H., and M.D. carried out data analysis and interpretation, supervised by M.S.V. and Y.V.B. The manuscript was written by V.P., Y.P.H., and Y.V.B. Funding was obtained by D.B.K., M.S.V., and Y.V.B.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interest.
Peer review
Peer review information
Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Patel, V., Hsu, YP., Debnath, M. et al. Cell wall hydrolysis promotes a second wave of transpeptidation to achieve cell separation following septation in Bacillus subtilis. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69404-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69404-1


