Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Cell wall hydrolysis promotes a second wave of transpeptidation to achieve cell separation following septation in Bacillus subtilis
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 February 2026

Cell wall hydrolysis promotes a second wave of transpeptidation to achieve cell separation following septation in Bacillus subtilis

  • Vaidehi Patel1 na1,
  • Yen-Pang Hsu2 na1 nAff6,
  • Maharshi Debnath3,
  • Daniel B. Kearns  ORCID: orcid.org/0000-0002-3460-83784,
  • Michael S. VanNieuwenhze  ORCID: orcid.org/0000-0001-6093-59495 &
  • …
  • Yves V. Brun  ORCID: orcid.org/0000-0002-9289-19091 

Nature Communications , Article number:  (2026) Cite this article

  • 915 Accesses

  • 8 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Bacteria
  • Bacterial genetics
  • Bacteriology
  • Cell division
  • Cellular microbiology

Abstract

Septation and cell separation occur as distinct events during cell division in many Gram-positive bacteria. The process first involves synthesis of a complete, multilayered peptidoglycan (PG) septum dividing the cell, which is subsequently hydrolyzed to facilitate physical separation. Using fluorescent D-amino acids and high-resolution microscopy, we identify a previously unrecognized, post-septational wave of transpeptidation that crosslinks septal PG during cell separation in Bacillus subtilis. Notably, this activity does not involve new PG synthesis, but instead remodels pre-existing septal PG. The transpeptidase PBPH plays a key role in this process, and its activity and localization at the separating septum depend on PG hydrolysis by the endopeptidase LytF. Disruption of this interplay impairs cell separation. Our findings reveal a mechanism whereby the coordinated activities of PG hydrolysis and transpeptidation ensure successful cytokinesis. This work expands the current model of cell division by identifying post-septational transpeptidation as a key step in septal resolution and pole formation.

Similar content being viewed by others

Cell wall synthesis and remodelling dynamics determine division site architecture and cell shape in Escherichia coli

Article Open access 12 September 2022

Peptidoglycan synthesis drives a single population of septal cell wall synthases during division in Bacillus subtilis

Article Open access 13 March 2024

Allosteric activation of cell wall synthesis during bacterial growth

Article Open access 10 June 2023

Data availability

Data supporting the findings of this study are included in the manuscript and its supplementary information. Source data are available in the figshare repository https://doi.org/10.6084/m9.figshare.30723914.

References

  1. Lutkenhaus, J., Pichoff, S. & Du, S. Bacterial cytokinesis: From Z ring to divisome. Cytoskeleton (Hoboken) 69, 778–790 (2012).

    Google Scholar 

  2. Cameron, T. A. & Margolin, W. Insights into the assembly and regulation of the bacterial divisome. Nat. Rev. Microbiol. 22, 33–45 (2024).

    Google Scholar 

  3. Egan, A. J. F., Errington, J. & Vollmer, W. Regulation of peptidoglycan synthesis and remodelling. Nat. Rev. Microbiol. 18, 446–460 (2020).

    Google Scholar 

  4. Uehara, T., Parzych, K. R., Dinh, T. & Bernhardt, T. G. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J. 29, 1412–1422 (2010).

    Google Scholar 

  5. Chen, R., Guttenplan, S. B., Blair, K. M. & Kearns, D. B. Role of the sigmaD-dependent autolysins in Bacillus subtilis population heterogeneity. J. Bacteriol. 191, 5775–5784 (2009).

    Google Scholar 

  6. Du, S., Pichoff, S. & Lutkenhaus, J. Roles of ATP hydrolysis by FtsEX and interaction with FtsA in regulation of septal peptidoglycan synthesis and hydrolysis. mBio 11. https://doi.org/10.1128/mBio.01247-20 (2020)

  7. Chai, Y., Norman, T., Kolter, R. & Losick, R. An epigenetic switch governing daughter cell separation in Bacillus subtilis. Genes Dev. 24, 754–765 (2010).

    Google Scholar 

  8. Kearns, D. B. & Losick, R. Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev. 19, 3083–3094 (2005).

    Google Scholar 

  9. Rivas, B. D. L., García, J. L., López, R. & García, P. Purification and polar localization of pneumococcal LytB, a putative endo-beta-N-acetylglucosaminidase: The chain-dispersing murein hydrolase. J. Bacteriol. 184, 4988–5000 (2002).

    Google Scholar 

  10. Heidrich, C. et al. Involvement of N-acetylmuramyl-l-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol. Microbiol. 41, 167–178 (2001).

    Google Scholar 

  11. Bisson-Filho, A. W. et al. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355, 739–743 (2017).

    Google Scholar 

  12. Morales Angeles, D. et al. Pentapeptide-rich peptidoglycan at the Bacillus subtilis cell-division site. Mol. Microbiol 104, 319–333 (2017).

    Google Scholar 

  13. Hsu, Y.-P. et al. Full color palette of fluorescent d-amino acids for in situ labeling of bacterial cell walls. Chem. Sci. 8, 6313–6321 (2017).

    Google Scholar 

  14. Radkov, A. D., Hsu, Y.-P., Booher, G. & VanNieuwenhze, M. S. Imaging Bacterial Cell Wall Biosynthesis. Annu. Rev. Biochem. 87, 991–1014 (2018).

    Google Scholar 

  15. Hsu, Y.-P., Meng, X. & VanNieuwenhze, M. S. Methods for visualization of peptidoglycan biosynthesis. Methods Microbiol. 43, 3–48 (2016).

    Google Scholar 

  16. Kuru, E. et al. In Situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angew. Chem. Int Ed. Engl. 51, 12519–12523 (2012).

    Google Scholar 

  17. Liechti, G. W. et al. A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 506, 507–510 (2014).

    Google Scholar 

  18. Liechti, G. et al. Pathogenic chlamydia lack a classical sacculus but synthesize a narrow, mid-cell peptidoglycan ring, regulated by MreB, for cell division. PLoS Pathog. 12, e1005590 (2016).

    Google Scholar 

  19. van Teeseling, M. C. F. et al. Anammox Planctomycetes have a peptidoglycan cell wall. Nat. Commun. 6, 6878 (2015).

    Google Scholar 

  20. Vollmer, W., Joris, B., Charlier, P. & Foster, S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32, 259–286 (2008).

    Google Scholar 

  21. Blackman, S. A., Smith, T. J. & Foster, S. J. The role of autolysins during vegetative growth of Bacillus subtilis 168. Microbiol. (Read.) 144, 73–82 (1998).

    Google Scholar 

  22. Smith, T. J., Blackman, S. A. & Foster, S. J. Autolysins of Bacillus subtilis: Multiple enzymes with multiple functions. Microbiol. (Read.) 146, 249–262 (2000).

    Google Scholar 

  23. Wilson, S. A., Tank, R. K. J., Hobbs, J. K., Foster, S. J. & Garner, E. C. An exhaustive multiple knockout approach to understanding cell wall hydrolase function in Bacillus subtilis. mBio 14, e0176023 (2023).

    Google Scholar 

  24. Yamamoto, H., Kurosawa, S. & Sekiguchi, J. Localization of the vegetative cell wall hydrolases LytC, LytE, and LytF on the Bacillus subtilis cell surface and stability of these enzymes to cell wall-bound or extracellular proteases. J. Bacteriol. 185, 6666–6677 (2003).

    Google Scholar 

  25. Tandukar, S., Kwon, E. & Kim, D. Y. Structural insights into the regulation of peptidoglycan DL-endopeptidases by inhibitory protein IseA. Structure 31, 619–628.e614 (2023).

    Google Scholar 

  26. Kuru, E. et al. Mechanisms of incorporation for D-amino acid probes that target peptidoglycan biosynthesis. ACS Chem. Biol. 14, 2745–2756 (2019).

    Google Scholar 

  27. Sauvage, E., Kerff, F., Terrak, M., Ayala, J. A. & Charlier, P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev. 32, 234–258 (2008).

    Google Scholar 

  28. Egan, A. J., Biboy, J., van’t Veer, I., Breukink, E. & Vollmer, W. Activities and regulation of peptidoglycan synthases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370 https://doi.org/10.1098/rstb.2015.0031 (2015).

  29. Scheffers, D.-J. Dynamic localization of penicillin-binding proteins during spore development in Bacillus subtilis. Microbiology 151, 999–1012 (2005).

    Google Scholar 

  30. Bukowska-Faniband, E. & Hederstedt, L. Cortex synthesis during Bacillus subtilis sporulation depends on the transpeptidase activity of SpoVD. FEMS Microbiol. Lett. 346, 65–72 (2013).

    Google Scholar 

  31. Gamba, P., Veening, J. W., Saunders, N. J., Hamoen, L. W. & Daniel, R. A. Two-step assembly dynamics of the Bacillus subtilis divisome. J. Bacteriol. 191, 4186–4194 (2009).

    Google Scholar 

  32. Scheffers, D. J. & Errington, J. PBP1 is a component of the Bacillus subtilis cell division machinery. J. Bacteriol. 186, 5153–5156 (2004).

    Google Scholar 

  33. Tocheva, E. I. et al. Peptidoglycan transformations during Bacillus subtilis sporulation. Mol. Microbiol. 88, 673–686 (2013).

    Google Scholar 

  34. Wei, Y., Havasy, T., McPherson, D. C. & Popham, D. L. Rod shape determination by the Bacillus subtilis class B penicillin-binding proteins encoded by pbpA and pbpH. J. Bacteriol. 185, 4717–4726 (2003).

    Google Scholar 

  35. Yang, D. C. et al. An ATP-binding cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring. Proc. Natl. Acad. Sci. USA 108, E1052–E1060 (2011).

    Google Scholar 

  36. Navarro, P. P. et al. Cell wall synthesis and remodelling dynamics determine division site architecture and cell shape in Escherichia coli. Nat. Microbiol. 7, 1621–1634 (2022).

    Google Scholar 

  37. Koyano, Y., Okajima, K., Mihara, M. & Yamamoto, H. Visualization of Wall Teichoic Acid Decoration in Bacillus subtilis. J. Bacteriol. 205, e00066–00023 (2023).

    Google Scholar 

  38. Kiriyama, Y. et al. Localization and expression of the Bacillus subtilisdl-endopeptidase LytF are influenced by mutations in LTA synthases and glycolipid anchor synthetic enzymes. Microbiology 160, 2639–2649 (2014).

    Google Scholar 

  39. Yamamoto, H., Miyake, Y., Hisaoka, M., Kurosawa, S.-I. & Sekiguchi, J. The major and minor wall teichoic acids prevent the sidewall localization of vegetative dl-endopeptidase LytF in Bacillus subtilis. Mol. Microbiol. 70, 297–310 (2008).

    Google Scholar 

  40. Arai, R., Fukui, S., Kobayashi, N. & Sekiguchi, J. Solution structure of IseA, an inhibitor protein of DL-endopeptidases from Bacillus subtilis, reveals a novel fold with a characteristic inhibitory loop. J. Biol. Chem. 287, 44736–44748 (2012).

    Google Scholar 

  41. Hao, A., Suo, Y. & Lee, S.-Y. Structural insights into the FtsEX-EnvC complex regulation on septal peptidoglycan hydrolysis in Vibrio cholerae. Structure 32, 188–199.e185 (2024).

    Google Scholar 

  42. Meisner, J. et al. FtsEX is required for CwlO peptidoglycan hydrolase activity during cell wall elongation in Bacillus subtilis. Mol. Microbiol 89, 1069–1083 (2013).

    Google Scholar 

  43. Meier, E. L. et al. FtsEX-mediated regulation of the final stages of cell division reveals morphogenetic plasticity in Caulobacter crescentus. PLoS Genet 13, e1006999 (2017).

    Google Scholar 

  44. Scheffers, D. J., Jones, L. J. & Errington, J. Several distinct localization patterns for penicillin-binding proteins in Bacillus subtilis. Mol. Microbiol 51, 749–764 (2004).

    Google Scholar 

  45. Claessen, D. et al. Control of the cell elongation–division cycle by shuttling of PBP1 protein in Bacillus subtilis. Mol. Microbiol. 68, 1029–1046 (2008).

    Google Scholar 

  46. Lages, M. C., Beilharz, K., Morales Angeles, D., Veening, J. W. & Scheffers, D. J. The localization of key Bacillus subtilis penicillin binding proteins during cell growth is determined by substrate availability. Environ. Microbiol 15, 3272–3281 (2013).

    Google Scholar 

  47. Mamou, G. et al. Peptidoglycan maturation controls outer membrane protein assembly. Nature 606, 953–959 (2022).

    Google Scholar 

  48. Whatmore, A. M. & Reed, R. H. Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. Microbiology 136, 2521–2526 (1990).

    Google Scholar 

  49. Zhou, X., Halladin, D. K. & Theriot, J. A. Fast mechanically driven daughter cell separation is widespread in actinobacteria. mBio 7, https://doi.org/10.1128/mbio.00952-00916 (2016).

  50. Zhou, X. et al. Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus. Science 348, 574–578 (2015).

    Google Scholar 

  51. Matias, V. R. F. & Beveridge, T. J. Cryo-electron microscopy of cell division in Staphylococcus aureus reveals a mid-zone between nascent cross walls. Mol. Microbiol. 64, 195–206 (2007).

    Google Scholar 

  52. Umeda, A. & Amako, K. Growth of the surface of Corynebacterium diphtheriae. Microbiol Immunol. 27, 663–671 (1983).

    Google Scholar 

  53. Berry, K. A., Verhoef, M. T. A., Leonard, A. C. & Cox, G. Staphylococcus aureus adhesion to the host. Ann. N. Y. Acad. Sci. 1515, 75–96 (2022).

    Google Scholar 

  54. Leonard, A. C. et al. Autolysin-mediated peptidoglycan hydrolysis is required for the surface display of Staphylococcus aureus cell wall-anchored proteins. Proc. Natl. Acad. Sci. 120, e2301414120 (2023).

    Google Scholar 

  55. Healy, C., Gouzy, A. & Ehrt, S. Peptidoglycan hydrolases RipA and Ami1 are critical for replication and persistence of mycobacterium tuberculosis in the host. mBio 11, https://doi.org/10.1128/mbio.03315-03319 (2020).

  56. Gaday, Q. et al. FtsEX-independent control of RipA-mediated cell separation in Corynebacteriales. Proc. Natl. Acad. Sci. 119, e2214599119 (2022).

    Google Scholar 

  57. Pereira, S. F. F., Henriques, A. O., Pinho, M. G., De Lencastre, H. & Tomasz, A. Evidence for a dual role of PBP1 in the cell division and cell separation of Staphylococcus aureus. Mol. Microbiol. 72, 895–904 (2009).

    Google Scholar 

  58. Altenbuchner, J. Editing of the bacillus subtilis genome by the CRISPR-Cas9 system. Appl Environ. Microbiol 82, 5421–5427 (2016).

    Google Scholar 

  59. Wagner, J. K., Marquis, K. A. & Rudner, D. Z. SirA enforces diploidy by inhibiting the replication initiator DnaA during spore formation in Bacillus subtilis. Mol. Microbiol 73, 963–974 (2009).

    Google Scholar 

  60. Ducret, A., Quardokus, E. M. & Brun, Y. V. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nat. Microbiol. 1, 16077 (2016).

    Google Scholar 

Download references

Acknowledgements

We thank past and present members of the Brun lab including Maxime Jacq, Kelley Gallagher, Gregory Whitfield, David Kysela, and Amelia Randich for their careful reading of the manuscript and valuable feedback. We also thank Velocity Hughes (Synthesis by Velocity, Malmö, Sweden) for critical reading of the manuscript and editorial assistance. We are grateful to Sven VanTeeffelen for thoughtful review of the manuscript and insightful comments. We thank the Garner lab (Harvard University), the Helmann lab (Cornell University), and the VanTeeffelen lab (University of Montreal) for generously providing strains and plasmids. We also thank Georgia Squyres for the MATLAB script used in data analysis. This research was supported by NIH grants 5R01GM113172 to M.S.V.; R35GM122556 to Y.V.B. and R35GM131783 to D.B.K. Y.V.B. is also supported by the Canada 150 Research Chairs Program in Bacterial Cell Biology.

Author information

Author notes
  1. Yen-Pang Hsu

    Present address: Merck & Co., MRL Discovery Biologics, Cambridge, MA, USA

  2. These authors contributed equally: Vaidehi Patel, Yen-Pang Hsu.

Authors and Affiliations

  1. Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada

    Vaidehi Patel & Yves V. Brun

  2. Department of Cellular and Molecular Biochemistry, Indiana University, Bloomington, IN, USA

    Yen-Pang Hsu

  3. Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA

    Maharshi Debnath

  4. Department of Biology, Indiana University, Bloomington, IN, USA

    Daniel B. Kearns

  5. Department of Biology, Baylor University, Waco, TX, USA

    Michael S. VanNieuwenhze

Authors
  1. Vaidehi Patel
    View author publications

    Search author on:PubMed Google Scholar

  2. Yen-Pang Hsu
    View author publications

    Search author on:PubMed Google Scholar

  3. Maharshi Debnath
    View author publications

    Search author on:PubMed Google Scholar

  4. Daniel B. Kearns
    View author publications

    Search author on:PubMed Google Scholar

  5. Michael S. VanNieuwenhze
    View author publications

    Search author on:PubMed Google Scholar

  6. Yves V. Brun
    View author publications

    Search author on:PubMed Google Scholar

Contributions

V.P., Y.P.H, D.B.K., M.S.V., and Y.V.B. designed the project. V.P. and Y.P.H. performed all the experiments. V.P., Y.P.H., and M.D. carried out data analysis and interpretation, supervised by M.S.V. and Y.V.B. The manuscript was written by V.P., Y.P.H., and Y.V.B. Funding was obtained by D.B.K., M.S.V., and Y.V.B.

Corresponding authors

Correspondence to Michael S. VanNieuwenhze or Yves V. Brun.

Ethics declarations

Competing interests

The authors declare no competing interest.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Dataset 1

Reporting Summary

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, V., Hsu, YP., Debnath, M. et al. Cell wall hydrolysis promotes a second wave of transpeptidation to achieve cell separation following septation in Bacillus subtilis. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69404-1

Download citation

  • Received: 15 August 2025

  • Accepted: 28 January 2026

  • Published: 12 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69404-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology