N atu re co m m u n i cati o n S https://doi.org/10.1038/541467-026-69465-2
Article in Press

Accelerating hybrid XOR-CNF Boolean satisfiability
problems natively with in-memory computing

Received: 10 April 2025 Haesol Im, Fabian Bohm, Giacomo Pedretti, Noriyuki Kushida, Moslem Noori, Elisabetta
Accepted: 2 February 2026 Valiante, Xiangyi Zhang, Chan-Woo Yang, Tinish Bhattacharya, Xia Sheng, Jim Ignowski,

5 Arne Heittmann, John Paul Strachan, Masoud Mohseni, Raymond Beausoleil, Thomas
Van Vaerenbergh & Ignacio Rozada

Cite this article as: Im, H., Bohm, F.,
Pedretti, G. et al. Accelerating hybrid

XOR-CNF Boolean satisfiability We are providing an unedited version of this manuscript to give early access to its
problems natively with in-memory findings. Before final publication, the manuscript will undergo further editing. Please
computing. Nat Commun (2026). note there may be errors present which affect the content, and all legal disclaimers
https://doi.org/10.1038/ apply.

$41467-026-69465-2 .) . .
If this paper is publishing under a Transparent Peer Review model then Peer

Review reports will publish with the final article.

© The Author(s) 2026. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative
Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Accelerating Hybrid XOR—CNF SAT Problems Natively with In-Memory Computing

Haesol Im, >t Fabian Bohm,?" Giacomo Pedretti,® Noriyuki Kushida,® Moslem Noori,! Elisabetta Valiante,! Xiangyi
Zhang,! Chan-Woo Yang,' Tinish Bhattacharya,* Xia Sheng,® Jim Ignowski,> Arne Heittmann,” John Paul
Strachan,®® Masoud Mohseni,> Raymond Beausoleil,> Thomas Van Vaerenbergh,? and Ignacio Rozadal*
11QB Information Technologies (1QBit), Vancouver, BC, Canada
?HPE Labs, Hewlett Packard Enterprise, Brussels, Belgium
SHPE Labs, Hewlett Packard Enterprise, Milpitas, CA, USA
4 University of California, Santa Barbara, CA, USA
®Peter Griinberg Institute (PGI-14),

Forschungszentrum Jilich GmbH, Jilich, Germany
SRWTH Aachen University, Aachen, Germany
Y These authors contributed equally to this work.

(Dated: February 2, 2026)

The Boolean satisfiability (SAT) problem is a computationally challenging decision problem cen-
tral to many industrial applications. For SAT problems in cryptanalysis, circuit design, and telecom-
munication, solutions can often be found more efficiently by representing them with a combination of
exclusive OR (XOR) and conjunctive normal form (CNF) clauses. We propose a hardware accelera-
tor architecture that natively embeds and solves such hybrid XOR-CNF problems using in-memory
computing hardware. To achieve this, we introduce an algorithm and demonstrate, both experi-
mentally and through simulations, how it can be efficiently implemented with memristor crossbar
arrays. Compared to the conventional approaches that translate XOR—-CNF problems to pure CNF
problems, our simulations show that the accelerator improves computation speed, energy efficiency,
and chip area utilization of in-memory accelerators by ~10x for a set of hard cryptographic bench-
marking problems. Moreover, the accelerator achieves a ~10x speedup and a ~1000X gain in energy
efficiency over state-of-the-art SAT solvers running on CPUs.

1. INTRODUCTION

The Boolean satisfiability (SAT) problem is a fundamental decision problem that was the first problem to be
proven NP-complete [1, 2]. Solving a SAT problem involves determining whether there is an assignment of Boolean
variables satisfying a given propositional logic formula. Many problems in engineering and computer science reduce to
SAT problems with a polynomial-time overhead, which then can be tackled with SAT solvers employing local search
heuristics or exhaustive search. SAT solvers are thus widely employed in many industry-relevant applications, such
as scheduling, planning, cryptanalysis, and integrated circuit design [3, 4], as well as being used as the engine for
more-general constrained optimization solvers [5]. Yet, due to the computational complexity of SAT problems, the
cost of finding solutions could, in the worst case, scale exponentially with the number of variables.

Due to the ubiquity of SAT problems in industrial optimization applications, there is an ongoing effort to improve
algorithms for SAT solvers, as well as to develop dedicated hardware accelerators [6-14] that can find solutions faster
and more energy efficiently. A promising line of research has been the study of SAT solvers in hybrid problem
formulations [15-17]. SAT problems are typically formulated in conjunctive normal form (CNF), where a set of
clauses containing Boolean variables are connected by logical OR operations. However, many applications naturally
involve clauses linked by exclusive-OR (XOR) operations, such as channel decoding in wireless receivers [18], model
counting [15], circuit fault testing [3], and cryptographic decoding attacks [19]. These problems can be formulated
natively as hybrid XOR-CNF SAT problems containing both CNF and XOR clauses. Although XOR clauses can be
reduced to CNF clauses using Tseitin transformations [20], doing so introduces a significant performance overhead as
it increases the number of variables and clauses in the problem. Hybrid XOR-CNF SAT solvers that support both
CNF and XOR clauses have therefore been found to considerably outperform pure CNF SAT solvers [17, 21].

While hybrid XOR-CNF solvers have predominantly been implemented as software solutions running on digital
computers [16, 22], there is potential in harnessing the benefits of native XOR-CNF problem formulations using
in-memory hardware accelerators. In-memory computing (IMC), leveraging analog crossbar arrays for low latency
and parallel linear algebra computations, is a promising technology for building hardware accelerators [23]. IMC
accelerators have already demonstrated their ability to enhance both speed and energy efficiency for SAT solvers in

* Corresponding author: ignacio.rozada@1gbit.com

the case of pure CNF SAT problems, outperforming conventional CPUs [8, 9, 24]. Combining the advantages of a
hybrid XOR-CNF formulation with IMC hardware could offer considerable advantages in tackling computationally
challenging SAT problems with inherent XOR clauses. However, compared to pure CNF problems, evaluating XOR
clauses requires more complex and energy-intensive circuits that can potentially offset the efficiency and latency
advantages of IMC hardware. Moreover, XOR clauses can contain many literals, whereas SAT hardware accelerators
can often support only a few literals per clause. For IMC hardware, a large number of literals can also make it more
challenging to retain low error rates during computation, as the corresponding analog signals exhibit an increased
dynamic range.

Therefore, in this work, we set to address the open question of whether IMC is suitable for accelerating the solving
of hybrid XOR-CNF problems efficiently. We present an IMC accelerator architecture that can be used to na-
tively implement and solve hybrid XOR-CNF problems. As part of this architecture, we propose WalkSAT-XNF,
an XOR-native implementation of the WalkSAT stochastic local search (SLS) heuristic, where all variables within
unsatisfied clauses are candidates for being flipped. We propose an efficient method for XOR-CNF clause evaluation
and gradient computation using analog crossbar arrays. To demonstrate feasibility on hardware, we experimentally
implement WalkSAT-XNF on crossbar arrays based on TaQO, memristors for a small-scale minimal disagreement
parity (MDP) problem. Additionally, we simulate a memristor-based accelerator architecture in a 28 nm complemen-
tary metal-oxide-semiconductor (CMOS) process and evaluate the computation speed and energy consumption on
benchmarking problems from cryptographic applications including the McEliece—Niederreiter cryptosystem [25, 26]
and the Advanced Encryption Standard (AES) [27, 28]. Compared to solving problems in their CNF representation
with an IMC accelerator, our approach achieves an order-of-magnitude improvement in computation speed and energy
consumption, within a 10x smaller chip area, by employing hybrid XOR—-CNF representations. Furthermore, com-
pared to state-of-the-art SAT solvers running on CPUs, our accelerator solves benchmarking problems with up to 300
variables and 1016 clauses ~10x faster while consuming ~1000x less energy. Our results highlight the potential of
IMC accelerators for efficiently implementing hybrid XOR-CNF SAT solvers, enabling native problem representations
for solving a variety of complex industry-relevant problems.

2. RESULTS
2.1. Mapping and Benchmarking Advantages of Hybrid XOR-CNF SAT Problems over CNF

A SAT problem for a set of Boolean variables z; € {0,1} and clauses C; is given by the conjunction (A)
]:(xl,...,xn)201/\02/\"'/\01‘. (1)

The problem is said to be satisfiable if an assignment of the Boolean variables exists where all clauses C; are true. In
a CNF representation, each C; is a clause formed from a disjunction (V) of literals Iy as Conej = Ik V- - - V by, where
the literals l;, are either propositions (xj) or their negations (Zj) of the Boolean variables. XORSAT problems, on
the other hand, are SAT problems where clauses are formed using XOR, operations () between literals:

CxoRr,j =l ® - B .

Problems formulated in XOR-and-OR normal form (XNF) are then hybrid XOR-CNF SAT problems, where the
propositional logic formula (1) contains both CNF and XOR clauses. Figure la illustrates an XNF instance with
three CNF and two XOR clauses. Here, the variable assignment 1 = 1, o = 0, x3 = 0, x4 = 1 guarantees
satisfiability. In general, an XOR clause with k literals x1,...,x) can be equivalently represented using 2¥~! CNF
clauses, each containing k literals. These clauses represent all possible combinations of an even number of negated
variables

CXOR,j = /\ +x V- Vo, (2)

even number of —

where £ denotes the possible permutations for propositions (4) of literals or their negations (—). For instance, the first
XOR clause in Fig. 1a has the equivalent CNF representation (1 VZzVas)A(T1Vaa VI3)A(x1 VI VE3)A (21 Vaa Ves).
Translating XOR clauses into CNF clauses incurs an exponential increase in the number of additional clauses, hence
making clause evaluation computationally more expensive.

In practice, this exponential overhead can partly be mitigated by employing the Tseitin transformation [20], yet this
method provides a clear trade-off between the reduction of overall clauses and the number of additional variables that
need to be considered [16]. Conversely, translating a SAT problem in CNF representation into an XORSAT problem

is generally impossible, though many key SAT applications, such as integer factorization, circuit fault testing [4], and
cryptographic decoding attacks [19], originate from XOR-based logic. In these cases, XOR clauses can be reconstructed
from the CNF clauses by reversing the transformation in Eq. (2), typically reducing both clause and variable counts.

We demonstrate the differences between CNF and XNF formulations in Fig. 1 for SAT problems from cryptographic
attacks on the McEliece-Niederreiter and AES cryptosystems, as well as instances generated from the minimal dis-
agreement parity (MDP) problem (details of the instances are provided in the Methods section). All instances inherit
native XOR clauses but are initially provided with CNF clauses only. We explore two methods of generating hybrid
XOR-CNF instances from these original problems. First, we convert directly the CNF instances to the XNF repre-
sentation employing the cnf2xnf tool within the xnfSAT solver [16]. The final representation of this process is denoted
by XNF in Fig. 1b. After this conversion, the resulting problems contain 2%-43% XOR. clauses. Additionally, we
employ a SAT preprocessing (PP) tool [29] to the CNF instances (generating new instance denoted by CNF-PP in
Fig. 1b) before applying the conversion tool to generate XNF instances. The final representation of this process is
denoted by XNF-PP in Fig. 1b. Such preprocessing techniques are widely used to compress CNF problem size and to
enhance solver performance. Details of the preprocessing procedure and the per-instance preprocessing runtime are
reported in Section 4.

Figure 1c shows the compression ratio for the number of variables in relation to the original CNF representation.
Direct XNF conversion reduces the number of variables by (2.0 & 0.5)x on average. When applying preprocessing,
the average number of variables initially remains almost unchanged ((1.1 & 0.1)x) but is considerably reduced once
the problem has been converted to an XNF representation. The preprocessing followed by XNF conversion achieves
a compression ratio of (4.6 & 1.0)x, on average. We also analyze the compression ratio for the number of clauses
in relation to the CNF representation. With direct XNF conversion, we find that the number of clauses is reduced
by (3.7 £ 1.2)x, on average. When applying preprocessing to the CNF representation, we again observe a small
initial reduction in the number of clauses by (2.0 4= 0.9)x, while conversion of the preprocessed instances to an XNF
representation reduces the number of clauses by (5.4 + 1.8)x, on average, compared to the CNF representation.

These results show the advantages of mapping problems to an XNF representation, with the greatest benefits
often observed when combining preprocessing with XNF conversion. Compared to using a pure CNF representation,
the resulting reduction in the problem size can enhance SAT solver performance and significantly lowers compute
resource requirements [17, 21]. Moreover, for SAT hardware accelerators, the comparatively smaller XNF instances
enable reduced chip sizes and energy consumption. Therefore, these results serve as a strong motivation to develop
hardware accelerators capable of supporting both CNF and XOR clauses simultaneously.

2.2. WalkSAT-XNF: An XNF-Native SAT Heuristic Compatible with In-Memory Computing Hardware

To leverage the described mapping advantages, we propose a heuristic called WalkSAT-XNF, designed to solve XNF
problems in their native form. We then show how this algorithm can be realized efficiently in an accelerator using
IMC. WalkSAT-XNF employs a local search heuristic and is inspired by prior work on IMC accelerators for CNF
SAT problems [8]. Similar to the widely used WalkSAT solvers [30, 31], WalkSAT-XNF computes gradients based
on ‘make’ and ‘break’ values. The make value counts the number of violated clauses that become satisfied, while the
break value counts the number of satisfied clauses that become violated when flipping a variable. WalkSAT-XNF
then flips a variable found in violated clauses that maximizes the value obtained by subtracting the break value
from the make value. In contrast to the standard WalkSAT heuristic, WalkSAT-XNF performs a full-neighbourhood
evaluation, where gradients for all variables present in unsatisfied clauses are considered, as opposed to evaluating
only the variables in a randomly chosen violated clause.

Table 1 shows the pseudocode of the WalkSAT-XNF heuristic. The algorithm starts with an initial variable
configuration and iteratively searches the space until it finds a solution or reaches the iteration limit. Each iteration
computes gradients based on make and break values for all variables by evaluating the clauses in which they appear.
A CNF clause is satisfied if at least one literal is true. Hence, the make value is the number of violated clauses
containing the variable, as flipping it would satisfy them. The break value, on the other hand, corresponds to the
number of satisfied clauses, where the variable is the only true literal, as flipping it would break clause satisfaction.
For an XOR clause to be satisfied, an odd number of true literals is required. Thus, the make value corresponds to
the number of violated clauses containing the variable, as flipping it would satisfy them. Similarly, break values are
equal to the number of satisfied clauses containing the variable. The break value subtracted from the make value
yields the gain value, or gradient. After computing the full gradient, Gaussian noise with a standard deviation o is
added to help escape local minima or avoid cycles. The variable with the highest noise-adjusted gain value is then
flipped, and the process repeats.

Figure 1d shows the algorithmic efficiency of WalkSAT-XNF when solving the McEliece, MDP, and AES benchmark-
ing instances using CNF-PP, XNF, and XNF-PP compared to the CNF formulation. We quantify the performance

with the iterations-to-solution (ITSgg) metric [32], defined as

iter - log 0.01
ITSgg(iter) := ————— 3
a9 iter) log(1 — O(iter)) ’ 3)

where 6(iter) is the success probability of solving the problem as a function of iterations. The ITSgg metric estimates
the iterations required to observe at least one successful trial with a probability of 99%. Since WalkSAT-XNF stops
once a solution is found, an optimized ITSgg op¢ metric can be obtained by evaluating ITSgg at solution-finding trial
lengths within reasonable error bounds. Compared to the CNF formulation, WalkSAT-XNF solves problems using
fewer iterations, achieving a median improvement of ~23x (CNF-PP), ~10x (XNF), and ~68x (XNF-PP). The
greatest performance gains are observed for preprocessed instances.

In what follows, we thus solely focus on the preprocessed instances for CNF and XNF problems, referring to them
simply as CNF and XNF for brevity. Complete benchmarking results for all problem representations are available in
Supplementary Note 1.

2.3. An In-Memory Computing Accelerator Architecture for WalkSAT-XNF

To realize WalkSAT-XNF with IMC hardware, we propose the accelerator architecture depicted in Fig. 2, which
shows the steps performed in each iteration of the heuristic (i.e., clause evaluation, make and break value computations,
and a variable update) using seven distinct hardware blocks.

The Boolean variable configuration is initially stored in a register ((1) in Fig. 2). The variables and their respective
conjugates are then provided as an input signal to a crossbar array to evaluate violation of the individual CNF and
XOR clauses (2). For problems with N variables and C' clauses, the crossbar has 2N columns and C rows. The input
to the crossbar is applied as binary voltage signals at the columns. Each variable z; and its negation Z; are mapped
to the column pairs {27,25 + 1}, while clauses correspond to the rows of the crossbar. Each literal is represented by
a binary-valued crossbar connection b;; € {0,1} that allows current to flow from a column to a row. Here, positive
literals x; connect rows to columns with even indices 2j, while negative literals Z; connect to columns with odd indices
2j + 1. These connections are facilitated by memory devices at each crossbar that can be switched between an ON
and an OFF state, such as resistive random-access memory (RRAM) [8], static random-access memory (SRAM), or
embedded Flash memory cells [33]. This crossbar array functions as a C-by-2N matrix, with entries of 1 where literals
appear and 0 elsewhere. The output current at each row is then equivalent to a matrix—vector multiplication between
the input signal and the array. Using the matrix encoding of the clauses described above, the output signals of the
crossbar rows are proportional to the number of true literals in the clause for the current assignment of variables.

Depending on the clause type, the output signals from the crossbar array are evaluated by the circuits (3) of Fig. 2.
These circuits indicate whether a clause is violated and provide the input signals for the subsequent make and break
value computations. For XOR clauses, a low-resolution analog-to-digital converter (ADC) with log, (k) bits, where k
is the maximum number of literals, performs a parity check using the least-significant bit (LSB). The LSB is provided
as input for the break value computation, as it indicates whether the clause is currently satisfied and can be broken
by flipping one of its member variables. Conversely, an inversion of the LSB is given as input for the make value
computation. For CNF clause evaluations, two comparators [8] determine if the number of true literals is 0 (for the
make value) or 1 (for the break value). The outputs of these comparators are used as input for make and break
computations.

The make and break values are computed via a crossbar array (4) that is the transpose of (2). After applying
the input signals to the rows, the output signals from related pairs of columns are added to derive the make and
break values for each variable. To calculate the break values for CNF clauses, the column outputs are additionally
multiplied with the variable configuration using pass transistors to identify true literals. Adding the make and break
values from XOR and CNF clauses provides the input signals for the subsequent gradient computation (5). Here,
a Gaussian white noise signal o generated by a pseudo-random number generator (PRNG) in conjunction with an
array of digital-to-analog converters (DAC) is added to the make value, and the break values are subtracted from the
make values using differential amplifiers to calculate the gradient for each variable. Finally, a winner-takes-all (WTA)
circuit identifies the variable with the highest gradient (6) and the output signal is used to update the register state
using XOR gates (7).

Crucially, the relative simplicity of WalkSAT-XNF enables us to map every computational step to an equivalent
analog circuit, enabling rapid continuous computation. As with other IMC concepts [8, 34|, the crossbar arrays
in Fig. 2 enable parallel gradient computations for both the CNF and XOR clauses within a single clock cycle.
Performing an entire operation of WalkSAT-XNF is achieved within just three clock cycles, without the need for a
complex control system, while also circumventing frequent time-intensive communication with external co-processors
or memory systems. Both XOR and CNF clauses can be evaluated using the same array, allowing for an area-efficient

design. Moreover, the crossbar array can implement a number of literals per clause that is equal to the number of
variables, hence supporting highly complex clauses common in industry workloads.

2.4. Experimental Demonstration Using RRAM Crossbar Arrays

As with other mixed-signal computing systems, realizing WalkSAT-XNF' in hardware requires it to be sufficiently
resilient against hardware non-idealities in the analog circuits. Studies have identified variations in the RRAM cells
and noise in the crossbar array’s analog readout circuit as the dominant non-idealities that can result in a deterioration
in performance [35]. To evaluate the feasibility of realizing WalkSAT-XNF in hardware, we implement a hybrid version
of the architecture in Fig. 2 on an RRAM crossbar array chip. We experimentally validate the analog computation
of clause evaluation and make/break value computation using an RRAM crossbar array chip, while the register,
the circuits for checking clause satisfaction, the WTA circuit, and the Gaussian noise injection are emulated on a
digital computer. The RRAM chip is a custom CMOS circuit in a 180 nm technology node with back-end-of-the-line
(BEOL) monolithically integrated TaO, 1T1M RRAM cells [36, 37]. For the experiment, we use the XNF instance
derived from the par-8-1-c MDP problem [38], consisting of 13 variables and 42 clauses, including one XOR clause.
To implement the crossbar’s ON and OFF states b;;, the RRAM cells are programmed to either a high-resistance
state (HRS, or OFF state) or a low-resistance state (LRS, or ON state). Figure 3a shows the conductance values of
the RRAM cells after programming. Here, the LRS is set to 100 uS and the HRS is set to 1 pS. Two separate arrays
are used for the clause evaluation (array 1) and the make and break value computations (array 2). Figure 3b shows
a histogram of the memristor conductances of array 1. The memristors exhibit typical device-to-device variations
during programming [39], where the LRS and HRS are programmed to have a tolerance of £10pnS. While further
optimization is possible [40], we find that this accuracy is sufficient for our purposes.

To evaluate the capability of this crossbar array to perform clause evaluation (array 1 in Fig. 3a), we supply
400 random variable configurations as input signals and record the output current from the array. Fig. 3c shows a
histogram of the results, with distributions colour-coded by the expected number of satisfied literals (H), showing a
clear separation. It is thus possible to infer the number of satisfied literals directly from the array’s analog output
signal using the threshold levels indicated by the dotted lines in Fig. 3¢ with an average error of approximately 1%.
The second array can be used similarly to evaluate the make and break values. We perform the make and break value
computations sequentially here, but a parallel, pipelined evaluation is possible by employing two separate crossbar
arrays. We then employ the gradient computation as part of the full WalkSAT-XNF heuristic. Figure 3d shows the
cumulative success rate for solving par-8-1-¢ problem instance. We have performed 500 repeats at a noise level of
o = 2.5, where the solver runs for a maximum of 2000 iterations per repeat. The solver consistently finds a satisfying
solution within this limit and experimental results align well with ideal (i.e., variation-free and noiseless) simulations
despite hardware non-idealities.

We also compare experiments and simulations by varying the noise level o. To quantify differences in the cumulative
success rate, we analyze the iterations-to-solution (ITSgg opt). In Fig. 3e, we show ITSgg opt, for different noise levels
and compare it against simulation-based results. Our results agree well with the experimental results, within the
margin of error of the simulations. Overall, our results demonstrate that WalkSAT-XNF can be implemented using
RRAM-based analog IMC hardware. The agreement between experiments and simulations highlights the robustness
of the WalkSAT-XNF heuristic to hardware non-idealities, making it well-suited for implementation in custom CMOS
circuits. This observation is also supported by a simulation-based sensitivity study, the results of which are presented
in Supplementary Note 5. We believe this robustness to be due to the fact that the weights and the input states in our
architecture are binary. The results of the crossbar array’s operations are discrete integer values, thereby providing
additional robustness against noise, compared to, for example, floating point operations.

2.5. Simulation-Based Benchmarking for a 28 nm RRAM Architecture

To evaluate our accelerator architecture illustrated in Fig. 2, we designed and simulated an architecture implemen-
tation using TaO, RRAM crossbar arrays realized in a 28 nm CMOS process. For the simulations, we have derived
latency and energy models from detailed circuit simulations and have evaluated them using activity simulations for
the different SAT instances in Fig. 1. As our architecture supports both XOR and CNF clauses, we compare the CNF
and XNF representations for the same problems on the same accelerator architecture to highlight the advantages for
IMC accelerators of converting CNF instances to XNF instances. Figure 4a shows the average area advantage of XNF
representations over CNF representations. We define the area advantage as Axnr/Acnr, where A is the number of
memory cells in the crossbar arrays required for a given benchmarking instance. We find that XNF representations
provide a (12.2+4.7) X average area advantage for the crossbar arrays due to there being a reduced number of variables

and clauses. This significantly reduces the footprint, thereby enhancing the cost-effectiveness, scalability, and energy
efficiency of the accelerator.

Figure 4b shows the average energy per iteration of the WalkSAT-XNF heuristic. The median energy uptake for
the XNF representation is 36 pJ (interquartile range (IQR): 47 pJ) compared to 107 pJ (IQR: 119 pJ) for the CNF
representation, thereby achieving a ~3x improvement in energy efficiency. Figure 4c provides a breakdown of energy
consumption across hardware components for a McEliece instance. For the CNF representation with 174 variables
and 623 clauses, the average energy per iteration is ~90 pJ. Here, the majority of energy is consumed by the circuits
responsible for generating the Gaussian noise signal (PRNG, ~80%), while the second-largest contributor (the clause
evaluation array) accounts for only ~9% of the energy uptake. The make and break computation array, the evaluation
circuits, and the WTA circuit combined contribute to ~10% of the energy consumption. For the XNF representation
with 32 variables and 96 clauses (13 of which are XOR clauses), energy consumption drops to ~33 pJ, that is, only a
third of the CNF instance. Moreover, we find that the relative energy contributions between the two representations
are notably different as approximately a third of the energy consumption of the XNF representation is dedicated to
the clause evaluation circuits. The XOR clause evaluation is energetically more expensive, which accounts for 93% of
the energy uptake of the evaluation circuits.

Figure 4d shows a comparison of this breakdown for a 16-bit MDP instance. The XNF representation shows lower
relative energy consumption by the evaluation circuits compared to Fig. 4c, due to a lower XOR-to-CNF clause ratio
(7% in the MDP instance versus 23% in the McEliece instance). Overall, while an XNF representation significantly
reduces energy consumption, it introduces a trade-off: problem size reduction increases the number of XOR clauses
which are more energy-intensive to evaluate.

Figure 5a shows the relative advantage of the time-to-solution (TTS) for the CNF and XNF representations. Here,
the T'T'S is attained by multiplying ITSgg opt With the latency of performing one iteration. We find that, in all instances,
the TTS for the XNF instances is improved over the CNF representation with a median advantage of 3.7x (IQR:
22.2). Separated by instance classes, MDP instances show the greatest improvement (546x, IQR: 27,496.2), followed
by McEliece (3.7x, IQR: 0.8) and AES (1.7x, IQR: 0.2). A further comparison between the CPU and hardware
implementations of WalkSAT-XNF is provided in Supplementary Note 1, highlighting the additional speedups gained
through IMC hardware acceleration.

To analyze the energy consumption of the accelerator architecture for the different problem representations, we con-
sider the energy-to-solution (ETS). The ETS is calculated by multiplying IT'Sgg opt With the average energy consumed
per iteration. Figure 5b shows the relative ETS advantage of the XNF representation over the CNF representation.
We find that energy consumption is improved over CNF with a median of 11.4x (IQR: 65.4). Separated by instance
classes, we again observe that the MDP instances benefit most (1644.1x, IQR: 83540.7), followed by McEliece (11.4x,
IQR: 3.4) and AES (3.9x, IQR: 0.6).

Beyond this comparison of different problem representations for IMC hardware accelerators, we benchmark our
accelerator against SAT solvers running on a CPU. For our benchmarking, the ETS and TTS were measured when
running solvers on a 2.6 GHz Xeon CPU, and compared to the results for the XNF instances in Fig. 5. The TTS of
the benchmarking solvers is directly derived from the CPU runtime. For the SAT solvers, we consider the SLS-solvers
xnfSAT [16] and WalkSAT-SKC [30], alongside the conflict-driven clause learning (CDCL) solvers CryptoMiniSat [22]
and Kissat [41]. The xnfSAT and CryptoMiniSat solvers are capable of solving problems in XNF representation
and are therefore evaluated with XNF instances (see Supplementary Note 2 for more details). For xnfSAT, we
initially noted that performance for preprocessed XNF instances is considerably worse compared to unprocessed XNF
instances. To provide the fairest comparison, we therefore decided to evaluate the performance of xnfSAT using the
unprocessed XNF instances, while WalkSAT-XNF and CryptoMiniSat were evaluated using the XNF-PP instances.
WalkSAT-SKC and Kissat on the other hand support only CNF clauses and were therefore evaluated using the CNF
representation of the benchmarking instances.

Figure 6 presents correlation plots comparing TTS and ETS for XNF-native solvers (a) and CNF-native solvers
(b) against our WalkSAT-XNF accelerator. Table 2 summarizes the median relative performance. Compared to the
best-performing software solver CryptoMiniSat, WalkSAT-XNF improves the median TTS by 9.1x and the ETS by
2.3 -103x. Notably, while our accelerator outperforms CryptoMiniSat for the McEliece instances, most MDP and
AES problems are solved faster by CryptoMiniSat. This indicates that the structure of such problems may be more
favourable to CDCL-type solvers compared to the SLS heuristic employed in WalkSAT-XNF. However, WalkSAT-
XNF demonstrates a smaller ETS in most instances compared to the CDCL-type solvers. We also note that, while
WalkSAT-XNF is always able to find a solution, the SLS solvers xnfSAT and WalkSAT-SKC are unable to solve
a portion of the MDP instances. Moreover, xnfSAT exhibits a large variance, while WalkSAT-XNF forms distinct
clusters for similar class and size instances. This clustering pattern allows for a more stable prediction of performance
of similar instances and can likely be attributed to the full-neighbourhood evaluation, compared to xnfSAT’s individual
clause evaluation.

3. DISCUSSION

Our results show that IMC hardware accelerators for SAT problems can be enhanced to solve problems in a
hybrid XOR-CNF representation, which is the native representation of several industrial optimization problems. By
performing parallel gradient computation of XOR and CNF clauses on the same crossbar arrays, our approach enables
a fast and energy-efficient hardware implementation of our WalkSAT-XNF heuristic. This allows us to combine the
algorithmic advantages of mapping problems to a hybrid XOR-CNF representation with the inherent parallelism and
efficiency of IMC hardware.

For SAT problems that can be natively expressed as hybrid XOR-CNF problems, we find that this can reduce
the chip area and energy consumption, while also improving the computation speed compared to mapping them to
a pure CNF representation. This presents an advantage over existing SAT hardware accelerators, which can solve
problems only in pure CNF formulation. When tackling pure CNF problems, the IMC architecture in Fig. 2 has
previously demonstrated that it can outperform comparable SAT accelerators (see Supplementary Note 3). As shown
in our comparison in Fig. 4, the ability to implement XOR clauses can provide an additional order-of-magnitude
improvement in computation speed and energy efficiency.

Moreover, the crossbar array embedding depicted in Fig. 2 can, in principle, support dense XOR and CNF clauses
with as many literals as there are variables. Our experimental proof of concept successfully demonstrates this for a
hybrid XOR-CNF problem with up to five literals per clause, which can be extended to even more complex clauses.
This allows our architecture to additionally leverage the advantages of SAT preprocessing techniques, which tend to
trade increased algorithmic efficiency with a higher density of literals per clause (see Table 3). By combining these
advantages, we find that our proposed accelerator can outperform state-of-the-art SAT solvers running on digital
computers in terms of computation speed and energy consumption.

As energy efficiency becomes an increasing concern in high-performance computing systems for resource-intensive
applications such as optimization and artificial intelligence, hybrid XOR-CNF IMC accelerators can reduce operational
costs and mitigate environmental impacts. In edge-computing applications, such as channel decoding in wireless
receivers or Al route planning in autonomous vehicles, constraints on energy consumption and latency for computing
hardware can benefit from fast and energy-efficient SAT accelerators to improve performance while enabling new use
cases. Because XOR clauses are native to a wide variety of industry-relevant applications, such as hardware design,
cryptanalysis, and telecommunications, we expect that a hybrid XOR-CNF SAT accelerator can provide considerable
advantages when solving hard SAT problems.

While CNF and hybrid XOR-CNF instances have been identified as promising use cases for the IMC accelerator,
there are also important industrial applications that rely on pure XORSAT problems. Although finding satisfying
assignments to XORSAT problems is polynomial in problem complexity and thereby performed efficiently with linear
system solvers on digital computers [6], there is a variety of hard industry-relevant XORSAT problems where the state-
of-the-art heuristics rely on XORSAT evaluations, such as error correction [18] or efficiently attacking the McEliece
cryptosystem [42]. For such problems, spin glass hardware accelerators have previously been demonstrated that scale
exponentially in compute time [6, 7] and it is likely that a native XOR-CNF accelerator can improve performance
over existing techniques [43].

An interesting outcome of our research has been the insight that our proposed WalkSAT-XNF heuristic can benefit
considerably from fast preprocessing techniques present in common SAT software libraries. By applying preprocessing
to CNF instances before converting them to XNF instances, we have observed significant overall improvements in
the number of iterations required to find a solution compared to XNF instances without preprocessing. While the
hybrid XOR-CNF solver xnfSAT does not appear to benefit from preprocessing for the benchmarking instances we
have studied, WalkSAT-XNF can improve the median TTS and ETS by an order of magnitude.

Although our results show there are clear advantages in using hybrid IMC XOR~-CNF SAT accelerators, we envision
possible improvements that could further enhance computational performance and relevance to industrial use cases.
Our analysis of their energy consumption has identified the generation of noise signals and the evaluation of XOR
clauses as targets for improvements. Enhancing the energy efficiency of noise signal generation would be possible by
optimizing the PRNG design or by using analog noise sources [44]. Similarly, the circuit used for conducting parity
checks could likely be improved, given that only the LSB is needed or that, alternatively, trees of XOR gates can
be employed. As we show in Supplementary Note 4, additional energy savings can also be achieved by reducing the
resolution of the ADC.

One challenge in realizing performance enhancements for industrial applications pertains to the scalability of IMC
hardware. Crossbar arrays are limited in size, for example, by parasitic effects, signal drop-off, and non-idealities, to
a few hundred rows and columns. Current IMC hardware capable of dense matrix—vector operations could support
the computations in our architecture for SAT problems with up to ~250 variables and ~500 clauses within a single
array [45]. To overcome this limitation and increase the capacity for solving larger and more-complex SAT problems,
one potential strategy would be to distribute the computational load by partitioning the variables and clauses across

multiple crossbar arrays [33]. Exploring the implementation of such a multi-array architecture is an essential step in
enhancing the scalability and applicability of our solver, opening up the possibility of solving larger and more-complex
SAT instances.

The WalkSAT-XNF heuristic is an evolution of the CNF-specific WalkSAT heuristic and does not differentiate
between XOR and CNF clauses for the purpose of variable selection. Based on the insights from this work, it could be
possible to use IMC hardware for accelerating algorithmically efficient heuristics that include more sophisticated clause
differentiation (e.g., by pre-solving the XOR clauses using Gauss—Jordan elimination [46]). Further enhancements
can be achieved by combining it with the parallel tempering framework, which has recently been shown to provide
performance improvements for IMC architectures with minimal overhead [47]. Finally, high-performance SAT solvers
often combine CDCL and SLS heuristics, including XOR subroutines [48, 49]; our IMC approach could similarly be
adapted to accelerate other types of heuristics, including CDCL SAT solvers [50].

4. METHODS
4.1. Benchmarking Instances

McEliece-Niederreiter Cryptosystem The McEliece instances are derived from cryptographic attacks [25, 51] on
the McEliece—Niederreiter cryptosystem [52, 53]. This cryptosystem was proposed as the first code-based public-key
cryptosystem in the 1970s and has been elected by the National Institute of Standards and Technology (NIST) as a
quantum-resistant public-key cryptographic algorithm for evaluating post-quantum cybersecurity [54].

For the encryption and decryption of a cipher, the receiver generates three matrices: the n-by-k generator matrix G
typically using Goppa codes; an n-by-n permutation matrix P; and a random k-by-k invertible matrix S. The receiver
publishes a public key G’ := SGP. The message sender prepares a plaintext message m and creates the ciphertext
y = mTG’ + e, where e is an error vector with a Hamming weight of t. The receiver then uses an error-correction
algorithm [55] to identify the error vector e and obtains m via G, P, and S. A potential attack on the McEliece
cryptosystem involves identifying the error vector e. In particular, the authors in Ref. [25] interpret the problem as
finding the minimum-weight codeword. Let H be an (n — k) x n matrix, with H; ; being the (4, j)-th element of the
matrix H. The linear system Hc¢ = 0 is then written over the binary field with the XOR logical operator &. For
instance, the i-th equality of Hec =0 is

Hiijci @ Hisco @ -+ @ Hjpep, = 0. (4)

A decoding attack on the system involves finding a solution ¢ to Hc = 0 having the desired Hamming weight.

Based on this attack, the McEliece instances are generated via the PySA package [56] (further details can be found
in Refs. [26, 57]). Each instance is first generated as a set of XOR equations as shown in Eq. (4). The XOR equations
are then translated to CNF clauses, and the Hamming weight of the desired solution ¢ is incorporated using additional
CNF clauses. We use 10 CNF instances with a code length equal to 16. We label these instances from McE-i, where
i €{0,...,9}. The numbers of variables and clauses range from 171 to 183, and 611 to 659, respectively.

Minimal Disagreement Parity Problem The MDP instances are generated from the minimal disagreement parity
problem described in Ref. [38]. Given an m-by-n binary matrix X, a binary vector y of length m, and an integer k,
the MDP problem seeks to find a binary vector a € {0,1}" satisfying

m

Z ZXi’jaj by | <k. (5)

i=1 =1

The difficulty in solving the MDP problem has been explored in the literature, and an algorithm for solving the
inequality (5), relying on XOR clauses only, was suggested in Ref. [58]. A total of 15 MDP instances were proposed
by Crawford [38] and added to the DIMACS library [59], with the instances translated to a CNF representation. We
selected 10 instances, par-8-i-c and par-16-i-c, i € {1,...,5}, from the DIMACS library [59], and they can be accessed
from Ref. [57]. We labelled these instances p-8-i, p-16-i, where i € {1,...,5}. The numbers of variables and clauses
lie in the ranges [64, 74] and [254, 298] for the par-8-i-c family, and [317,349] and [1264, 1392] for the par-16-i-c family.

Advanced Encryption Standard The Advanced Encryption Standard (AES) [27, 28] is a symmetric key encryption
algorithm selected by the National Institute of Standards and Technology (NIST). It was developed to replace an
older data encryption standard (DES) that was shown to be vulnerable to decryption attacks, particularly with the
advent of stronger computational resources. Applications of AES include securing communications for online financial
transactions and encrypting data in a database [60]. XOR operations are one of the key components of the encryption
process that utilizes the so-called round keys, which are inherent to AES and finding them is indicative of a successful

cryptographic attack. Instances pertaining to AES are available in the dataset from the 2012 SAT competition [61],
and they can be accessed from Ref. [57]. Solving these problem instances is viewed as a successful cryptographic
attack to AES. As mentioned in Ref. [61], these instances inherit XOR operations, but are translated into a CNF
representation, making it possible to utilize SAT solvers that operate only CNF clauses. We use instances called
aes_32_1 keyfind_i, where i = 1,2 and label them AES-1 and AES-2 in the benchmarking experiment below. The
numbers of variables and clauses are 300 and 1056, respectively.

4.2. XNF Problem Conversion

We provide the details on the conversion process for generating the formulation classes CNF-PP, XNF, and XNF-
PP, which illustrated in Fig. 1b. We incorporated CNF preprocessing using PySAT [62], a Python library designed
to work with SAT instances with CNF clauses only. We use PySAT to access the CaDiCaL solver’s preprocessor [29)].
To produce preprocessed CNF instances (denoted by CNF-PP in the figure), the parameter named ‘rounds’ was
set to 3, indicating the number of preprocessing rounds. PySAT supports a variety of preprocessing techniques,
including blocked clause elimination, covered clause elimination, globally blocked clause elimination, equivalent literal
substitution, bounded variable elimination, failed literal probing, hyper binary resolution, clause subsumption, and
clause vivification. Details on each technique can be found in Ref. [29]. All available preprocessing techniques
supported by the package were employed, provided by the following parameters: block, cover, condition, decompose,
elim, probe, probehbr, subsume, and vivify. The time to process a CNF instance to its preprocessed counterpart
CNF-PP ranges approximately from 2 - 1073 to 1 - 1072 seconds, with an average time of around 7 - 10~2 seconds.

To convert an instance in CNF representation into XNF form, we employed the cnf2xnf tool, which is a utility
present in the xnfSAT solver [16]. The cnf2xnf tool is designed to transform CNF instances by identifying and
extracting XOR clauses from given CNF clauses. The resulting hybrid representation retains the structure of the
original CNF instance while introducing XOR clauses, making the clauses more compact. The processing time to
convert a CNF instance to an XNF instance ranges from approximately 3 - 1072 to 3 - 1072 seconds, with an average
time of around 4-1073 seconds. For converting a CNF instance to XNF form, the processing time ranges from 21073
to 4 - 1073 seconds, with an average time of around 3 - 1073 seconds.

Table 3 presents the average of clause densities of each instance class, where the density is calculated by summing
the number of literals in each clause and dividing by the total number of variables. We present further observations re-
garding the literals per clause densities dong and dxor of the XNF and XNF-PP formulation classes in Supplementary
Note 1.

4.3. Benchmarking of SAT Solvers on CPUs

The TTS and ETS of xnfSAT, CryptoMiniSat, WalkSAT-SKC, and Kissat were calculated using an Intel Xeon
CPU running at 2.60 GHz with 512 GB of system memory and 128 virtual cores. For the ITS and TTS estimations,
the number of trials was set to 1000 by all algorithms and instances in order to obtain a reliable success probability
6 [63]. For CryptoMiniSat, the parameter named ‘maxsol’ was set to 1, quantifying the number of targeted solutions
found by the algorithm. The maximum allowed runtime for Kissat was set to 300 seconds. For WalkSAT-XNF,
WalkSAT-SKC, and xnfSAT, each trial was capped at 10° maximum allowed bit flips. The noise parameters used
for WalkSAT-XNF were optimized in a grid search for the different problem classes. The optimized parameters are
displayed in Table 4a. The computation of the ETS for each solver is outlined in Table 4b.

To estimate the energy consumption of solvers that solely depend on software, 1.5 joules per second (i.e., 1.5 watts)
was used. We benchmarked several instances using CryptoMiniSat on an AMD Epyc server while tracking the energy
usage using the Powertop package [64]. In all cases, we observed 1.5 watts, which we used as the baseline energy
usage for all CPU-based solvers. Of note, the full benchmarking experiments were performed on Intel Xeon CPUs
running at 2.80 GHz with 90 GB of RAM and 64 logical cores on the Google Cloud Platform (GCP), on which it
is not possible to measure the energy directly. We believe our estimate of 1.5 watts is conservative, as the per-core
thermal design can have a higher power ceiling.

4.4. Hardware Accelerator Energy Modelling

The components of the hardware architecture in Fig. 2 have been designed, validated, and modelled in a TSMC 28
nm technology node. The crossbar array is modelled for a BEOL integrated RRAM device using TaO, memristors
based on data from previously fabricated test chips [37]. The output currents at the bit lines are detected and

processed using transimpedance amplifiers with active common-drain feedback. For CNF clauses, output signals are
evaluated with comparators based on a StrongARM latch architecture. For the XOR clause evaluation, we model the
energy consumption of the ADCs based on a regression analysis of the ADC survey data in Refs. [65, 66]. Based on
the maximum number of literals for the benchmarking problems (see Table 3), we assume an ADC bit resolution of
4 bits, which can support clauses with up to 15 literals. For an ADC with a sampling rate of 900 million samples per
second and a bit resolution of 4 bits, we estimate an energy consumption per operation of 0.718 pJ and an area of
3.9-1072 mm?.

The Gaussian noise signal is generated from an XORSHIFT-64 PRNG using the Alias method. The normal-
distributed random number sequence generated by the PRNG is converted to analog signals using R2R ladder DACs
at each bit line of the gradient evaluation crossbar ((4) in Fig. 2). The WTA circuit is realized using voltage-controlled
delay lines, whose output is evaluated using merger trees and arbiters. The one-hot encoded output of the WTA circuit
is fed into an array of XOR gates, whose other input is the current variable configuration stored in the register. The
output is used to set the new state of the register.

The circuit is driven and synchronized by a central clock signal, where the signal provided by the register sequentially
progresses through the individual circuit blocks shown in Fig. 2. A single iteration of WalkSAT-XNF is performed
in three clock cycles. During the first clock cycle, the signals are applied to the first crossbar array and the output
signals are analyzed using the readout circuit. During the second clock cycle, the second crossbar array is operated
in the same way. During the third clock cycle, the WTA operation is performed, and the register state is updated.
The combined latency of these components per iteration of WalkSAT-XNF was modelled as taking ¢z, = 6 ns. Once
the register is initialized, the entire circuit will continuously repeat this flow until a predefined number of iterations is
reached or until a satisfying solution has been identified. Additional details about the circuit designs and the hardware
parameters can be found in Ref. [8].

From these modelling results, a semi-analytical model has been derived, which evaluates the energy consumption of
the individual components based on average signal levels and activity patterns. For the benchmarking, we have built
a custom cycle-accurate simulator that derives instance-specific activity patterns and signal levels when running the
WalkSAT-XNF heuristic. Using the semi-analytical model, we derive the mean energy consumption for each instance
without the need for extensive SPICE-like simulations, which would be intractable. We derived the mean energy
consumption per iteration of the WalkSAT-XNF heuristic Epcan/iter for each instance and calculated the energy to
solution as ETS = Epcan/iter - ITS.

4.5. Experimental Validation of the WalkSAT-XNF Heuristic on Memristor Crossbar Arrays

The experimental setup used to realize our IMC architecture comprises a custom chip fabricated in a TSMC 180
nm technology node and houses three 64-by-64 memristor crossbar arrays. The 1T1M cells are based on Ta/TaO, /Pt
RRAM that was monolithically integrated in-house in a BEOL process. To perform in-memory computations, the
chip contains digital control and analog sensing circuits. Input signals to each array’s word line are applied digitally
and the analog output is reconstructed using the ‘shift and add’ method [67]. To convert and measure the signals
from the array’s bit lines, transimpedance amplifiers and sample-and-hold circuits are employed that rapidly convert
the output currents to voltage signals and sample them. The signals are then converted to digital signals using ADCs.
The chip is hosted on a custom-printed circuit board, which facilitates the voltage supply to the chip and provides a
digital interface to access, control, and program the individual crossbar arrays. Additional details about the layout
and the fabrication of the chip may be found in Ref. [36]. For the implementation of the WalkSAT-XNF heuristic, a
custom Python program was written that performs the matrix operations in Fig. 2 on the crossbar arrays. Here, the
matrices in Fig. 3a were programmed into two of the chip’s arrays. During the matrix operations, the binary input
signals are communicated to the chip and the output signals are measured and returned via the digital interface. For
the clause evaluation, the number of true literals is inferred from the output signal using equidistant quantization
levels. These levels have been optimized to yield the lowest error rate.

DATA AVAILABILITY

The benchmarking instances used in this study are available in Ref. [57].

CODE AVAILABILITY

The simulator used for the heuristic simulation and energy modelling is open-sourced and available at https:
//github.com/HewlettPackard/CountryCrab.

REFERENCES

[1] S. A. Cook, The complexity of theorem proving procedures, in Proceedings of the Third Annual ACM Symposium (New
York, 1971) pp. 151-158.

[2] L. A. Levin, Universal sequential search problems, Probl. Peredachi Inf. (in Russian) 9, 115-116 (1973).

[3] T. Larrabee, Test pattern generation using boolean satisfiability, IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 11, 4 (1992).

[4] D. E. Knuth, The art of computer programming, Volume 4, Fascicle 6: Satisfiability (Addison-Wesley Professional, 2015).

5] L. Perron and F. Didier, CP-SAT, https://developers.google.com/optimization/cp/cp_solver.

6] M. Kowalsky, T. Albash, I. Hen, and D. A. Lidar, 3-regular three-xorsat planted solutions benchmark of classical and

quantum heuristic optimizers, Quantum Science and Technology 7, 025008 (2022).

[7] S. Nikhar, S. Kannan, N. A. Aadit, S. Chowdhury, and K. Y. Camsari, All-to-all reconfigurability with sparse and higher-
order ising machines, Nature Communications 15, 8977 (2024).

[8] G. Pedretti, F. Bohm, T. Bhattacharya, A. Heittman, X. Zhang, M. Hizzani, G. Hutchinson, D. Kwon, J. Moon, E. Valiante,
I. Rozada, C. E. Graves, J. Ignowski, M. Mohseni, J. P. Strachan, D. Strukov, R. Beausoleil, and T. V. Vaerenbergh, Solving
boolean satisfiability problems with resistive content addressable memories, npj Unconventional Computing 2, 7 (2025).

[9] A. Sharma, M. Burns, A. Hahn, and M. Huang, Augmenting an electronic ising machine to effectively solve boolean
satisfiability, Scientific Reports 13, 22858 (2023).

[10] Q. Zhang, S. Su, Z. Liu, H.-C. Cheng, Z. Qiu, M. Palaria, J. Ye, D. Meng, B. Chen, S. Hossain, W. Wu, and M. S.-W.
Chen, A stochastic analog sat solver in 65nm CMOS achieving 6.6us average solution time with 100% solvability for hard
3-sat problems, in 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (2024).

[11] C. Shim, J. Bae, and B. Kim, 30.3 VIP-Sat: A Boolean Satisfiability Solver Featuring 5x12 Variable In-Memory Processing
Elements with 98% Solvability for 50-Variables 218-Clauses 3-SAT Problems, in 2024 IEEE International Solid-State
Circuits Conference (ISSCC) (IEEE, 2024) pp. 486—488.

[12] S. Xie, M. Yang, S. A. Lanham, Y. Wang, M. Wang, S. Oruganti, and J. P. Kulkarni, 29.2 Snap-SAT: A One-Shot Energy-
Performance-Aware All-Digital Compute-in-Memory Solver for Large-Scale Hard Boolean Satisfiability Problems, in 2028
IEEE International Solid- State Circuits Conference (ISSCC) (IEEE, 2023) pp. 420-422.

[13] D. Kim, N. M. Rahman, and S. Mukhopadhyay, PRESTO: A Processing-in-Memory-Based k -SAT Solver Using Recurrent
Stochastic Neural Network With Unsupervised Learning, IEEE Journal of Solid-State Circuits 59, 2310 (2024).

[14] T. Bhattacharya, D. Kwon, G. Hutchinson, X. Zhang, I. Rozada, and D. Strukov, A Fully Integrated Mixed-Signal
Compute-In-Memory Accelerator for Solving Arbitrary Order Boolean Satisfiability Problems, in 2024 IEEE Symposium
on VLSI Technology and Circuits (VLSI Technology and Circuits) (2025).

[15] M. Soos, S. Gocht, and K. S. Meel, Tinted, detached, and lazy cnf-xor solving and its applications to counting and sampling,
in International Conference on Computer Aided Verification (Springer, 2020) pp. 463-484.

[16] W. Nawrocki, Z. Liu, A. Frohlich, M. J. H. Heule, and A. Biere, Xor local search for boolean brent equations., in SAT,
Lecture Notes in Computer Science, Vol. 12831, edited by C.-M. Li and F. Manya (Springer, 2021) pp. 417-435.

[17] B. Andraschko, J. Danner, and M. Kreuzer, Sat solving using xor-or-and normal forms, Mathematics in Computer Science
18, 1 (2024).

[18] A. Nandi, S. Chakrabartty, and C. S. Thakur, Margin propagation based xor-sat solvers for decoding of ldpc codes, IEEE
Transactions on Communications (2024).

[19] E. Bellini, A. D. Piccoli, R. Makarim, S. Polese, L. Riva, and A. Visconti, New records of pre-image search of reduced
sha-1 using sat solvers, in Proceedings of the Seventh International Conference on Mathematics and Computing: ICMC
2021 (Springer, 2022) pp. 141-151.

[20] G. S. Tseitin, On the complexity of derivation in propositional calculus, in Automation of Reasoning: 2: Classical Papers
on Computational Logic 1967-1970 (Springer Berlin Heidelberg, Berlin, Heidelberg, 1983) pp. 466-483.

[21] W. Nawrocki, Z. Liu, A. Frohlich, M. J. Heule, and A. Biere, XOR local search for boolean brent equations, in Theory
and Applications of Satisfiability Testing—SAT 2021: 24th International Conference, Barcelona, Spain, July 5-9, 2021,
Proceedings 24 (Springer, 2021) pp. 417-435.

[22] M. Soos, K. Nohl, and C. Castelluccia, Extending SAT solvers to cryptographic problems, in Theory and Applications
of Satisfiability Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009.
Proceedings, Lecture Notes in Computer Science, Vol. 5584, edited by O. Kullmann (Springer, 2009) pp. 244-257.

[23] A. Sebastian, M. Le Gallo, K.-A. Riduan, and E. Evangelos, Memroy devices and applications for in-memory computing,
Nature Nanotechnology 15, 529 (2020).

[24] C. Zhu, A. C. Rucker, Y. Wang, and W. J. Dally, SatIn: Hardware for boolean satisfiability inference, arXiv preprint
arXiv:2303.02588 (2023).

[25] A. Canteaut and F. Chabaud, A new algorithm for finding minimum-weight words in a linear code: application to mceliece’s
cryptosystem and to narrow-sense bch codes of length 511, IEEE Transactions on Information Theory 44, 367 (1998).

[26] S. Mandra, H. Munoz-Bauza, G. Mossi, and E. G. Rieffel, Generating hard ising instances with planted solutions using
post-quantum cryptographic protocols, Future Generation Computer Systems , 107721 (2025).

[27] J. Daemen and V. Rijmen, The Design of Rijndael : AES - The Advanced Encryption Standard, lst ed., Information
Security and Cryptography (Springer Berlin Heidelberg, Berlin, Heidelberg, 2002).

[28] A. A. Kamal and A. M. Youssef, Applications of sat solvers to aes key recovery from decayed key schedule images, in 2010
Fourth International Conference on Emerging Security Information, Systems and Technologies (2010) pp. 216-220.

[29] A. Biere, T. Faller, K. Fazekas, M. Fleury, N. Froleyks, and F. Pollitt, CaDiCaL 2.0, in Computer Aided Verification -
36th International Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024, Proceedings, Part I, Lecture Notes
in Computer Science, Vol. 14681, edited by A. Gurfinkel and V. Ganesh (Springer, 2024) pp. 133-152.

[30] B. Selman, H. Kautz, and B. Cohen, Noise strategies for improving local search, Proceedings of the National Conference
on Artificial Intelligence 1 (1999).

[31] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. (Prentice Hall, 2010).

[32] M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura, and H. G. Katzgraber, Physics-inspired optimization
for quadratic unconstrained problems using a digital annealer, Frontiers in Physics 7, 48 (2019).

[33] T. Bhattacharya, G. H. Hutchinson, G. Pedretti, and D. Strukov, Ho-fpia: High-order field-programmable ising arrays with
in-memory computing, in 2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (IEEE, 2024) pp. 252-259.

[34] T. Bhattacharya, G. H. Hutchinson, G. Pedretti, X. Sheng, J. Ignowski, T. Van Vaerenbergh, R. Beausoleil, J. P. Strachan,
and D. B. Strukov, Computing high-degree polynomial gradients in memory, Nature Communications 15, 8211 (2024).

[35] A. Heittmann, M. Hizzani, and J. P. Strachan, Impact of variability compensation on the performance of an rram-based
3-sat solver, in 2025 IEEE International Symposium on Clircuits and Systems (ISCAS) (2025) pp. 1-5.

[36] C. Li, J. Ignowski, X. Sheng, R. Wessel, B. Jaffe, J. Ingemi, C. Graves, and J. P. Strachan, Cmos-integrated nanoscale
memristive crossbars for cnn and optimization acceleration, in 2020 IEEE International Memory Workshop (IMW) (IEEE,
2020) pp. 1-4.

[37] X. Sheng, C. E. Graves, S. Kumar, X. Li, B. Buchanan, L. Zheng, S. Lam, C. Li, and J. P. Strachan, Low-conductance
and multilevel cmos-integrated nanoscale oxide memristors, Advanced electronic materials 5, 1800876 (2019).

[38] J. M. Crawford, M. J. Kearns, and R. E. Schapire, The minimal disagreement parity problem as a hard satisfiability
problem, Computational Intell. Research Lab and AT&T Bell Labs TR (1994).

[39] G. Pedretti, E. Ambrosi, and D. Ielmini, Conductance variations and their impact on the precision of in-memory computing
with resistive switching memory (rram), in 2021 IEEE International Reliability Physics Symposium (IRPS) (2021) pp. 1-8.

[40] M. Rao, H. Tang, J. Wu, W. Song, M. Zhang, W. Yin, Y. Zhuo, F. Kiani, B. Chen, X. Jiang, et al., Thousands of
conductance levels in memristors integrated on cmos, Nature 615, 823 (2023).

[41] A. Biere, arminbiere/kissat: Release 4.0.0 (2024), https://github.com/arminbiere/kissat.

[42] J. Stern, A new identification scheme based on syndrome decoding, in Lecture Notes in Computer Science (Springer Berlin
Heidelberg, 1994) p. 13-21.

[43] D. Dobrynin, A. Renaudineau, M. Hizzani, D. Strukov, M. Mohseni, and J. P. Strachan, Energy landscapes of combinatorial
optimization in Ising machines, Phys. Rev. E 110, 045308 (2024).

[44] F. Cai, S. Kumar, T. Van Vaerenbergh, X. Sheng, R. Liu, C. Li, Z. Liu, M. Foltin, S. Yu, Q. Xia, J. J. Yang, R. Beausoleil,
W. D. Lu, and J. P. Strachan, Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural
networks, Nature Electronics 3, 409 (2020).

[45] S. Ambrogio, P. Narayanan, A. Okazaki, A. Fasoli, C. Mackin, K. Hosokawa, A. Nomura, T. Yasuda, A. Chen, A. Friz,
M. Ishii, J. Luquin, Y. Kohda, N. Saulnier, K. Brew, S. Choi, I. Ok, T. Philip, V. Chan, C. Silvestre, I. Ahsan, V. Narayanan,
H. Tsai, and G. W. Burr, An analog-ai chip for energy-efficient speech recognition and transcription, Nature 620, 768.

[46] M. Soos and K. S. Meel, Gaussian Elimination Meets Maximum Satisfiability, in Proceedings of the 18th International
Conference on Principles of Knowledge Representation and Reasoning (2025).

[47] X. Zhang, 1. Rozada, F. Bohm, E. Valiante, M. Noori, T. Van Vaerenbergh, C.-W. Yang, G. Pedretti, M. Mohseni, and
R. Beausoleil, Distributed binary optimization with in-memory computing: An application for the sat problem, arXiv
preprint arXiv:2409.09152 (2024).

[48] M. Soos, J. Devriendt, S. Gocht, A. Shaw, and K. S. Meel, Cryptominisat with CCAnr at the sat competition 2020, SAT
COMPETITION 2020, 27 (2020).

[49] M. Soos, B. Selman, H. Kautz, J. Devriendt, and S. Gocht, Cryptominisat with walksat at the sat competition 2020, SAT
COMPETITION 2020 , 29 (2020).

[50] M. Lo, M.-C. F. Chang, and J. Cong, SAT-Accel: A modern sat solver on a FPGA, in Proceedings of the 2025 ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, FPGA 25 (Association for Computing Machinery, New
York, NY, USA, 2025) p. 234-246.

[61] D. J. Bernstein, T. Lange, and C. Peters, Attacking and defending the mceliece cryptosystem, in Post-Quantum Cryptog-
raphy, edited by J. Buchmann and J. Ding (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008) pp. 31-46.

[52] R. J. McEliece, A Public-Key Cryptosystem Based On Algebraic Coding Theory, Deep Space Network Progress Report
44, 114 (1978).

[53] H. Niederreiter, Knapsack-type cryptosystems and algebraic coding theory, Prob. Contr. Inform. Theory 15, 157 (1986).

[64] National Institute of Standards and Technology, Post-quantum cryptography candidates to be standardized and
round 4 of the nist post-quantum cryptography standardization process, https://csrc.nist.gov/news/2022/
pgc-candidates-to-be-standardized-and-round-4 (2022), nIST news page; Accessed: 2025-02-13.

[65] N. Patterson, The algebraic decoding of goppa codes, IEEE Transactions on Information Theory 21, 203 (1975).

[66] S. Mandra, A. Akbari Asanjan, L. Brady, A. Lott, D. E. Bernal Neira, and H. Munoz Bauza, PySA: Fast Simulated
Annealing in Native Python (2023), https://github.com/nasa/pysa.

[57] H. Im, F. Bohm, G. Pedretti, N. Kushida, M. Noori, E. Valiante, X. Zhang, C. W. Yang, T. Bhattacharya, J. Ignowski,
A. Heittmann, J. P. Strachan, M. Mohseni, R. Beausoleil, T. Van Vaerenbergh, S. Xia, and I. Rozada, Dataset for ac-
celerating hybrid xor—cnf sat problems natively with in-memory computing, https://doi.org/10.5281/zenodo. 18235974
(2026), zenodo data repository.

[58] J. Chen, XORSAT: An efficient algorithm for the dimacs 32-bit parity problem, ArXiv abs/cs/0703006 (2007).

[59] Dimacs instance repository, http://archive.dimacs.rutgers.edu/pub/challenge/sat/benchmarks/cnf/.

[60] B. M.P. and K. R. Babu, Secure cloud storage using aes encryption, in 2016 International Conference on Automatic Control
and Dynamic Optimization Techniques (ICACDOT) (2016) pp. 859-864.

[61] A. Balint, A. Belov, D. Diepold, S. Gerber, M. Jarvisalo, and C. Sinz, eds., Proceedings of SAT Challenge 2012 : Solver
and Benchmark Descriptions (University of Helsinki, 2012).

[62] A. Ignatiev, A. Morgado, and J. Marques-Silva, PySAT: A Python toolkit for prototyping with SAT oracles, in SAT (2018)
pp. 428-437.

[63] M. Noori, E. Valiante, T. V. Vaerenbergh, M. Mohseni, and I. Rozada, A statistical analysis for per-instance evaluation
of stochastic optimizers: How many repeats are enough? (2025), https://arxiv.org/abs/2503.16589, arXiv:2503.16589
[cs.LG].

4] A. van de Ven and et al., Powertop, https://github.com/fenrus75/powertop, version 2.15.

5] B. Murmann, ADC Performance Survey 1997-2024, available: https://github. com/bmurmann/ADC-survey.

6] T. Andrulis, Accelergy ADC Plug-In, available: https://github.com/Accelergy-Project/accelergy-adc-plug-in.

7] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar,
Isaac: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars, ACM SIGARCH Computer
Architecture News 44, 14 (2016).

ACKNOWLEDGEMENTS

The authors thank our editor, Marko Bucyk, for his careful review and editing of the manuscript, and Dmitri
Strukov for discussions on XOR hardware architectures. This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) through Air Force Research Laboratory Agreement No. FA8650-23-
3-7313. The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S. Government.

AUTHOR CONTRIBUTIONS

H.I. and F.B. contributed equally to this work and are recognized co-first authors. H.I. and F.B. wrote the
manuscript. H.I., N.K., and T.B. performed algorithm designs. M.N. and E.V. analyzed the numeric results. H.I.,
X.Z., and C.-W.Y. conducted the corresponding numeric benchmarking simulation. A.H. performed circuit and
architectural simulations. X.S., J.I., and J.P.S. contributed to the memristor fabrication and experimental system
development. G.P. and T.V.V. conceived the idea of asserting XOR clauses with in-memory computing. F.B. derived
the hardware architecture, conducted the hardware modelling and energy simulations, and performed the hardware
experiments. I.R. conceived the main idea of the XOR—-CNF use case. I.R., T.V.V., J.P.S., M.M., and R.B. supervised
and led the collaboration effort. All authors analyzed and discussed the results.

COMPETING INTERESTS

The authors declare no competing interests.

TABLES

1: function WALKSAT-XNF (noise_level, clauses, max_iter)

2: configuration < assign binary values

3: iter < 0

4: while iter < max_iter do

5: U < {variable: variable in unsatisfied clauses}

6 for variable € U do

7 gainyariable < COMPUTE_GAIN_VALUE(variable, configuration, clauses)

8: noisy-_gainyariable < Zailyariable + Noise_level-e, e ~ N (0,1)

9: end for
10: variable_to_flip < argmax{noisy_gainyariable: variable € U}
11: configuration|variable_to_flip] < flip configuration[variable_to_flip]
12: if all clauses evaluated at configuration are satisfied then
13: return TRUE > The instance is satisfiable
14: end if
15: iter < iter + 1
16: end while
17: return FALSE > Solution is not found

18: end function

19: function CoMPUTE_-GAIN_VALUE(variable, configuration, clauses)

20: C « clauses

21: break_count < 0

22: make_count < 0

23: for C € {clause: clause in C connected to variable} do

24: N < number of true literals in C' evaluated at configuration
25: if C is CNF clause then

26: if N =0 then

27: make_count < make_count + 1

28: end if

29: if N =1 then

30: break_count < break_count + 1

31: end if

32: else if C is XOR clause then

33: if N is even then > Currently violated
34: make_count < make_count + 1

35: else if N is odd then > Currently satisfiable
36: break_count < break_count + 1

37: end if

38: end if

39: end for

40: return make_count — break_count

41: end function

TABLE 1: WalkSAT-XNF Heuristic

FIGURE CAPTIONS

Figure 1: Mapping advantages of hybrid XOR—CNF problems over pure CNF problems (a) XNF SAT
instance containing CNF and XOR clauses and a solution that certifies its satisfiability. (b) Strategies for converting
CNF instances to XNF instances. (c) Average variable and clause compression ratio obtained by the preprocessing
strategies on three classes of XNF problems. Error bars show the standard deviation. (d) Advantages in iterations-to-
solution for the WalkSAT-XNF heuristic when comparing different problem representations to the CNF formulation.
The box-and-whisker plots shows the median and interquartile range.

Figure 2: Hardware architecture for an in-memory XOR—-CNF solver accelerator Hardware architecture
for implementing WalkSAT-XNF with IMC. An iteration of WalkSAT-XNF is performed sequentially by a register
(1), a clause lookup crossbar array (2), clause evaluation circuits (3), a make and break computation crossbar array
(4), a gradient computation (5), a winner-takes-all circuit (6), and a variable flip (7). The function of these elements
is shown for the example SAT problem in Fig. la and an initial variable assignment z; = 1, 2 = 1, x3 = 0, and
T4 = 1.

Figure 3: Experimental demonstration of WalkSAT-XNF on TaO, memristor crossbar arrays (a)

(a) A TS AXE;‘SSATS CryptoMiniSat
olved(%)|A TTS A ETS Solved(%)

MecEliece (?()5‘;:1(())55) (?'.g:igg) 100 (13%5; 2('977.2.110)3 100
MDP (2.07.521;04) (52'.2:1(?65) 875 (2257.5) (9.12-.1504) 100
Y T I
WG eaae % | ao Gaey 1
(b) A WalkSAT-SKC Kissat

TTS A ETS Solved(%)|A TTS A ETS Solved(%)
MeBliee | (05 gy 100 | (D G0y 10
MDP (12.'52~.110(168) (12.'(?..110%; 62.5 (3?45.5) (1%48%?())5) 100
s T T [w
P A I T

TABLE 2: Performance comparison of XOR—CNF and CNF solvers relative to WalkSAT-XNF Median
time-to-solution (A TTS) and energy-to-solution (A ETS) relative to WalkSAT-XNF as well as percentage of solved
instances for hybrid XOR-CNF solvers (a) xnfSAT and CrytoMiniSat and CNF solvers (b) WalkSAT-SKC and
Kissat. The IQR is shown in brackets.

Class CNF CNF-PP XNF XNF-PP
kmax dcNF dXOR |Kmax doNF dXOR |Kkmax doNF dXOR |kmax donNF dxor
McEliece| 3 1.55 — 5 2.56 — 13 1.93 344 | 13 10.31 18.97
MDP 3 252 — 6 297 - 13 4.17 790 | 15 9.28 13.57
AES 5 0.82 — 5 097 — 14 1.43 3.57| 12 3.25 5.16

TABLE 3: Clause densities across problem representations Maximum number of literals per clause k., and
average clause densities (in %) deng/xor for CNF and XOR clauses for the different problem representations

Conductance map of the memristor crossbar arrays used for clause evaluation (array 1) and make and break value
computations (array 2). (b) Histogram of the conductance values in array 1. (c) Histogram of the output currents of
array 1 for 400 random variable assignments. The histogram is split and coloured according to the expected number
of true literals. Vertical lines indicate the discretization levels applied for clause evaluation. (d) Cumulative success
rate when solving the par-8-1-c problem instance when implemented experimentally in the memristor crossbar arrays
and simulations of WalkSAT-XNF heuristic presented in Table 1 for the noise ¢ = 2.5. (e¢) Comparison of iterations-
to-solution values for different noise levels between experiments and simulations. Error bars for (d) and (e) depict the
standard error [63].

Figure 4: Energy and area advantages of hybrid XOR—-CNF formulations for in-memory hardware
accelerators (a) Relative crossbar area between XNF and CNF benchmarking instances. (b) Average energy per
iteration of WalkSAT-XNF for XNF and CNF benchmarking instances. (c) and (d) Relative contribution of the
different hardware components to the energy consumption for the CNF and XNF representations of the benchmarking
instances McEliece (¢) and MDP (d).

Figure 5: Comparison of energy-to-solution and time-to-solution for hybrid XOR—-CNF and pure
CNF problems (a) Relative speedup of XNF over CNF (top) and TTS for the XNF and CNF representations
(bottom) for the benchmarking instances using WalkSAT-XNF. (b) Relative energy advantage (top) and ETS for the
XNF and CNF representations (bottom) for the benchmarking instances using WalkSAT-XNF. No data is shown for
p-16-5, as no solution was found for the CNF representation.

Figure 6: Benchmark of energy-to-solution and time-to-solution against state-of-the-art SAT solvers
(a) TTS and ETS benchmarking results comparing WalkSAT-XNF with the native XNF solvers xnfSAT and
CryptoMiniSat. (b) TTS and ETS benchmarking results comparing WalkSAT-XNF to the CNF-native solvers
WalkSAT-SKC and Kissat.

Instance
McEliece MDP AES

CNF 2.5 2.5 1.0
XNF 3.0 2.5 1.5

Algorithm ’ Parameter ’ Formulation

WalkSAT—XNF’ Noise (o) ’

(a) Noise parameter for WalkSAT-XNF

Solvers | ETS Estimate

WalkSAT-XNF
CryptoMiniSat, Kissat, WalkSAT-SKC

average joules per iteration x ITS
1.5 watts x TTS

(b) ETS estimates used for solvers

TABLE 4: Solver parameters and energy-to-solution (ETS) estimation methodology (a) Noise
parameter (o) used for WalkSAT-XNF across different problem formulations and instances. (b) Calculation
methodology for energy-to-solution (ETS) estimates for benchmarking solvers.

FIGURES
@ literal (b) st X ng- oy rt (d
! _ ey Qesso converter PP 104 -
Fow= Va5) A S e A CNF (PP)
(x1Vx3) A CNF clauses convery v
= ||
LoVeVE) A N s Ll - ;((EE (PP)
\] c o 3L
(1@, Dx5) A XOR clauses ©) g 10
(3Pxy) | S 9r CNF (PP) mmm XNF (PP) s
L% = XNF 5 . °
.© 2 % 102 =
X o 5r © E T
with x;=1, x,=0, x;=0, x4=1—| solution g g 0 EoT |
Fxnr= (1V0) A w [—
(1V0) A st % 100k - =
(1vV1v1) A gaor i
(100) A 3 S5t ¢
_ O © F
08D =1/ 5 J I .= [-
McEliece MDP AES McEliece MDP AES

FIG. 1

E ON-STATE OFF-STATE
b,;=1 b.s=0
x,Dx,Dx, .‘ éé’@x
%@z, — 1}
%V, 0%
x,Vx, > 1
X,VX,VX, > 2

>
g

[T
aoaookoo

Make

LSB Brea
input
XOR evaluation
Make
m input
m Break

CNF evaluation input

1 X1 X2 X3 X3 X5 X4

“????

Find violated i i Calculate
clauses > | gradients
Variable " Flip highest
assignment ¢ |_ grad|ent

3

(a)
100
10
o) 75
©
£20
g 50
[+4
30 25
40 0
0 20 0 20
Column index Row index
(b)
103
‘g EEm ON-state
8 102 L [OFF-state
€
c
2 10" ¢
&
T 100 E 1

50 100
Array #1 conductances (uS)

150

oL

o] o
(1]x
LBy | | o]
L — —_ g _ C
FIG. 2
(c) Satisfied literals
0 2 4
4 £ 2000 . =0
o] S B H=1
g £ - =2
S g 1000 mm H=3
2 2 =4
o 1]
O T
0
0 1 2 3 4
Array #1 output current (pA)
(d)
1.0
o —— experiment //
© —— simulation /
& 4/
2 05F
|9
o
3
2]
OO0 b — i v v i
100 10! 102 103

+
1/0

+
1/1

| [170] [179]

Make / Break

on—02Z

|ﬂg

Solver iteration

FIG. 3

Iterations-to-solution ITSgg oy

600

550

500

450

400

300

250

200

Noise std. dev. ¢

simulation
—§— experiment
1 1 1 1 1
0 1 2 3 4

make/break
array

. WTA
s PRNG

7%
1%

52%
2% 34%
60%
. 23%
7%

9%
2%
3%

5%

)

C

(

h

clause
array
B evaluation

8%
1%

9%
2%
3%

5%

)

(d
81%

Z-S3av
1-S3v
G-91-d

m XNF

o
@
a

CNF

n o n o

~ 4ND Jano
abejuenpe ealy

—

Neo]

—

10—10
10—11 E

([) uonyesay yad Abisu3z

FIG. 4

I
I
I
I
I
I
I
|
—
||
I
[T —
=
VA I
I
- I
I
z —
(@]
—
—
—
b 1 1 1 1 1 1
n m — o m ©
o o o o | |
—~ — —~ —~ o o
— —
4ND JaA0

abejuenpe Abisug

m XNF

CNF

(o] 1 1 1

~

) m — o

o o o o o
— — — —

1

4ND Jano
abejuenpe swi|

(f) uonnjos-03-Abisu3z

FIG. 5

TTS WalkSAT-XNF (s)

ETS WalkSAT-XNF (J)

(a)
10°
102

107!

10~
106

103

10°

TTS XnfSAT (s)

TTS CryptoMiniSat (s)

1073 10! 10° 1073 10! 10°
T T T T T T
* *
)
¥
o wlg o (e
£ g
. R
® McEliece
« MDP
® AES
* . x* 3
o oty '
ok R
Ol | & 1 1 | Ol | * 1 1 |
1075 107! 103 107 1075 107! 103 107

ETS xnfSAT (J)

ETS CryptoMiniSat ())

TTS WalkSAT-XNF (s)

ETS WalkSAT-XNF (J)

FIG. 6

(b)
108
102

107!

1074
106

103

10°

TTS WalkSAT-SKC (s)

TTS Kissat (s)

1073 10t 10° 1073 10! 10°
T T T T T T
* *
S r
K *
.“ .""
Ol *
® McEliece
« MDP
* AES
.".. *
‘ *
e
.". * o *
Ol | EO | 1 || Ol | Eo | 1 |
107> 107! 103 107 107> 107! 103 107

ETS WalkSAT-SKC ())

ETS Kissat (J)

s

(a) (b) CNF-|xne | DAV
literal 50¢|__PP_ |converter [eT=] 104

Fxnr= (X_ZV’;;) A
(x1Vx3) A CNF clauses
(21 VX,VXs) A
(1 ©Dx,Dx3) A XOR clauses
(x3Dx4)

CNF (PP)
I XNF
Il XNF (PP)

103

—~
O
-~

9r CNF (PP) mmmm XNF (PP)
e XNF

7

_J__-_-l 100 . .

102

Variable
compression compression

= 0 O P

with x;=1, x,=0, x3=0, x4=1—| solution
Fxne= (1V0) A

(1v0) A

(1vivl) A

(16060) A

0B =1/

R |
_|

10!

}—
|
H

Clause

WalkSAT-XNF ITS advantage over CNF

McEliece MDP AES McEliece MDP AES

E ON-STATE OFF-STATE n Make
bs=1 bz=0 input
xOx0% 4 NP
2@, o1\ .
_ XOR evaluation
x,Vx, :@x Make
x,\Vx, > EV | : input
x1ﬁzﬁa I I :EV
A 1 A A m Break
IIIIEHI”E”I”IHIHZI CNF evaluation input
“ B G T X B KT e Calouste
n n n n n n n n clauses i gradients :
S
1] (1] o] [1] Variable Flip highest
X1 X X3 X4 assignment < L gradient |

!

1|%1

1 | %2
{—T X3
; 1] X4
\

[o71] [170] [1/0] [07/0]
Make / Break

..

o0n—02Z

Histogram count

Row index
N

102

10t

10°

0
75
0
50
0 25
0 0
0 20 0 20
Column index Row index
I ON-state
I OFF-state
0 50 100 150

Array #1 conductances (uS)

Conductance (uS

Success rate

—_
(@)
-~

Satisfied literals

0 2 4

T H T H T
‘g 2000 mm H=0
S I H=1
I I H=2
g 1000 Em H=3
o
B I H=4
T

0 1 2 3 4
Array #1 output current (pnA)

(d)

1.0 F ;
—— experiment
—— simulation

0.5

0.0

10t 102 103
Solver iteration

Iterations-to-solution ITSgo, opt

600

550

500

450

400

350

300

250

200

150

Noise std. dev. ¢

simulation
—f— experiment
0 1 2 3 4

. WTA
make/break
array

BN PRNG

7%
1%

52%
’
>% 34%
60%
. 23%
7%

9%
2%
3%

5%

B

clause
array
B evaluation

8%
1%

9%
2%
3%

5%

—_ —_ o
(S o© >
— — —
[ee]
I
——
I
I
I
I
I
—
I
L
—
—
.
= —
<
—
- —
—
—
[T
= —
O
——
—
1 1 1 | IR S S 'Y " 1
m S v o = A
T - - a 1 _
—~ dNDJeno = 3 2

abejuenpe ealy

() uonesayr yod Abisug

Z-S3v
1-53v
G-91-d

z-91d

z-s3v
1-53v
G-91-d
¥-91-d
€-91-d
z-91-d
1-91-d
€-g-d
z-8-d
1-8-d
6-32IN
8-3dI
yRERI
9-3dI
G-3dW
a=Bl
€30I
Z-3dW
T-3dW
0-3dI

Il XNF

CNF

~ 1 1 1 1
[T} m -
o o o

o
o
—

10—3 -
1076 -

— — —

4ND J9A0
abejuenpe Abisu3z

ol 1 1 1
n m —
o o o

([) uonnjos-03-Abiaug

Il XNF

IIIIIIIIII..:“I“II
—
&
—
a

CNF

~

100 -

S

—~ —~ — —
4ND Jano

abejuenpe awi|

1072 -
1074

(s) uoin|os-03-awWi|

TTS WalkSAT-XNF (s)

ETS WalkSAT-XNF (J)

(a)
10°
102

1071

1074

TTS xnfSAT (s)

1073 10? 10°

TTS CryptoMiniSat (s)

1073 10? 10°

* *
* | L
.
. olg o L '
) .
oo & x
e McEliece r &
~ MDP
+ AES
",) . x @ L .
o oo . -0
* *
1 * 1 1 1 1 & 1 1 1

1075 107t 103
ETS xnfSAT (J)

107

107> 107! 103
ETS CryptoMiniSat (J)

107

TTS WalkSAT-XNF (s)

ETS WalkSAT-XNF (J)

(b)
10°
102

101

1074

TTS WalkSAT-SKC (s)

1073 10? 10°

TTS Kissat (s)

1073 10! 10°

T T T T T T
* *
' L
K o
% C %
e McEliece r &
« MDP oy
- V{< ~o‘f’.~
+ AES K K
& «7@:&@
L R
. f}.‘f‘.-;go‘f
. 4
' - 9
S *
Gl B | 1 1 S| P 1 1
107> 107! 103 107 107> 107! 103 107

ETS WalkSAT-SKC ())

ETS Kissat (J)

