
ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

https://doi.org/10.1038/s41467-026-69465-2

Received: 10 April 2025

Accepted: 2 February 2026

Cite this article as: Im, H., Böhm, F.,
Pedretti, G. et al. Accelerating hybrid
XOR–CNF Boolean satisfiability
problems natively with in-memory
computing. Nat Commun (2026).
https://doi.org/10.1038/
s41467-026-69465-2

Haesol Im, Fabian Böhm, Giacomo Pedretti, Noriyuki Kushida, Moslem Noori, Elisabetta
Valiante, Xiangyi Zhang, Chan-Woo Yang, Tinish Bhattacharya, Xia Sheng, Jim Ignowski,
Arne Heittmann, John Paul Strachan, Masoud Mohseni, Raymond Beausoleil, Thomas
Van Vaerenbergh & Ignacio Rozada

We are providing an unedited version of this manuscript to give early access to its
findings. Before final publication, the manuscript will undergo further editing. Please
note there may be errors present which affect the content, and all legal disclaimers
apply.

If this paper is publishing under a Transparent Peer Review model then Peer
Review reports will publish with the final article.

© The Author(s) 2026. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative
Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Nature Communications
Article in Press

Accelerating hybrid XOR–CNF Boolean satisfiability
problems natively with in-memory computing

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

Accelerating Hybrid XOR–CNF SAT Problems Natively with In-Memory Computing1

Haesol Im,1,† Fabian Böhm,2,† Giacomo Pedretti,3 Noriyuki Kushida,1 Moslem Noori,1 Elisabetta Valiante,1 Xiangyi2

Zhang,1 Chan-Woo Yang,1 Tinish Bhattacharya,4 Xia Sheng,3 Jim Ignowski,3 Arne Heittmann,5 John Paul3

Strachan,5,6 Masoud Mohseni,3 Raymond Beausoleil,3 Thomas Van Vaerenbergh,2 and Ignacio Rozada1,∗4

11QB Information Technologies (1QBit), Vancouver, BC, Canada5

2HPE Labs, Hewlett Packard Enterprise, Brussels, Belgium6

3HPE Labs, Hewlett Packard Enterprise, Milpitas, CA, USA7

4University of California, Santa Barbara, CA, USA8

5Peter Grünberg Institute (PGI-14),9

Forschungszentrum Jülich GmbH, Jülich, Germany10

6RWTH Aachen University, Aachen, Germany11

†These authors contributed equally to this work.12

(Dated: February 2, 2026)13

The Boolean satisfiability (SAT) problem is a computationally challenging decision problem cen-
tral to many industrial applications. For SAT problems in cryptanalysis, circuit design, and telecom-
munication, solutions can often be found more efficiently by representing them with a combination of
exclusive OR (XOR) and conjunctive normal form (CNF) clauses. We propose a hardware accelera-
tor architecture that natively embeds and solves such hybrid XOR–CNF problems using in-memory
computing hardware. To achieve this, we introduce an algorithm and demonstrate, both experi-
mentally and through simulations, how it can be efficiently implemented with memristor crossbar
arrays. Compared to the conventional approaches that translate XOR–CNF problems to pure CNF
problems, our simulations show that the accelerator improves computation speed, energy efficiency,
and chip area utilization of in-memory accelerators by ∼10× for a set of hard cryptographic bench-
marking problems. Moreover, the accelerator achieves a ∼10× speedup and a ∼1000× gain in energy
efficiency over state-of-the-art SAT solvers running on CPUs.

1. INTRODUCTION14

The Boolean satisfiability (SAT) problem is a fundamental decision problem that was the first problem to be15

proven NP-complete [1, 2]. Solving a SAT problem involves determining whether there is an assignment of Boolean16

variables satisfying a given propositional logic formula. Many problems in engineering and computer science reduce to17

SAT problems with a polynomial-time overhead, which then can be tackled with SAT solvers employing local search18

heuristics or exhaustive search. SAT solvers are thus widely employed in many industry-relevant applications, such19

as scheduling, planning, cryptanalysis, and integrated circuit design [3, 4], as well as being used as the engine for20

more-general constrained optimization solvers [5]. Yet, due to the computational complexity of SAT problems, the21

cost of finding solutions could, in the worst case, scale exponentially with the number of variables.22

Due to the ubiquity of SAT problems in industrial optimization applications, there is an ongoing effort to improve23

algorithms for SAT solvers, as well as to develop dedicated hardware accelerators [6–14] that can find solutions faster24

and more energy efficiently. A promising line of research has been the study of SAT solvers in hybrid problem25

formulations [15–17]. SAT problems are typically formulated in conjunctive normal form (CNF), where a set of26

clauses containing Boolean variables are connected by logical OR operations. However, many applications naturally27

involve clauses linked by exclusive-OR (XOR) operations, such as channel decoding in wireless receivers [18], model28

counting [15], circuit fault testing [3], and cryptographic decoding attacks [19]. These problems can be formulated29

natively as hybrid XOR–CNF SAT problems containing both CNF and XOR clauses. Although XOR clauses can be30

reduced to CNF clauses using Tseitin transformations [20], doing so introduces a significant performance overhead as31

it increases the number of variables and clauses in the problem. Hybrid XOR–CNF SAT solvers that support both32

CNF and XOR clauses have therefore been found to considerably outperform pure CNF SAT solvers [17, 21].33

While hybrid XOR–CNF solvers have predominantly been implemented as software solutions running on digital34

computers [16, 22], there is potential in harnessing the benefits of native XOR–CNF problem formulations using35

in-memory hardware accelerators. In-memory computing (IMC), leveraging analog crossbar arrays for low latency36

and parallel linear algebra computations, is a promising technology for building hardware accelerators [23]. IMC37

accelerators have already demonstrated their ability to enhance both speed and energy efficiency for SAT solvers in38

∗ Corresponding author: ignacio.rozada@1qbit.com

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

2

the case of pure CNF SAT problems, outperforming conventional CPUs [8, 9, 24]. Combining the advantages of a39

hybrid XOR–CNF formulation with IMC hardware could offer considerable advantages in tackling computationally40

challenging SAT problems with inherent XOR clauses. However, compared to pure CNF problems, evaluating XOR41

clauses requires more complex and energy-intensive circuits that can potentially offset the efficiency and latency42

advantages of IMC hardware. Moreover, XOR clauses can contain many literals, whereas SAT hardware accelerators43

can often support only a few literals per clause. For IMC hardware, a large number of literals can also make it more44

challenging to retain low error rates during computation, as the corresponding analog signals exhibit an increased45

dynamic range.46

Therefore, in this work, we set to address the open question of whether IMC is suitable for accelerating the solving47

of hybrid XOR–CNF problems efficiently. We present an IMC accelerator architecture that can be used to na-48

tively implement and solve hybrid XOR–CNF problems. As part of this architecture, we propose WalkSAT-XNF,49

an XOR-native implementation of the WalkSAT stochastic local search (SLS) heuristic, where all variables within50

unsatisfied clauses are candidates for being flipped. We propose an efficient method for XOR–CNF clause evaluation51

and gradient computation using analog crossbar arrays. To demonstrate feasibility on hardware, we experimentally52

implement WalkSAT-XNF on crossbar arrays based on TaOx memristors for a small-scale minimal disagreement53

parity (MDP) problem. Additionally, we simulate a memristor-based accelerator architecture in a 28 nm complemen-54

tary metal–oxide–semiconductor (CMOS) process and evaluate the computation speed and energy consumption on55

benchmarking problems from cryptographic applications including the McEliece–Niederreiter cryptosystem [25, 26]56

and the Advanced Encryption Standard (AES) [27, 28]. Compared to solving problems in their CNF representation57

with an IMC accelerator, our approach achieves an order-of-magnitude improvement in computation speed and energy58

consumption, within a 10× smaller chip area, by employing hybrid XOR–CNF representations. Furthermore, com-59

pared to state-of-the-art SAT solvers running on CPUs, our accelerator solves benchmarking problems with up to 30060

variables and 1016 clauses ∼10× faster while consuming ∼1000× less energy. Our results highlight the potential of61

IMC accelerators for efficiently implementing hybrid XOR–CNF SAT solvers, enabling native problem representations62

for solving a variety of complex industry-relevant problems.63

2. RESULTS64

2.1. Mapping and Benchmarking Advantages of Hybrid XOR–CNF SAT Problems over CNF65

A SAT problem for a set of Boolean variables xi ∈ {0, 1} and clauses Ci is given by the conjunction (∧)66

F(x1, . . . , xn) = C1 ∧ C2 ∧ · · · ∧ Ci. (1)

The problem is said to be satisfiable if an assignment of the Boolean variables exists where all clauses Cj are true. In67

a CNF representation, each Cj is a clause formed from a disjunction (∨) of literals lk as CCNF,j = lk ∨ · · · ∨ lm, where68

the literals lk are either propositions (xk) or their negations (xk) of the Boolean variables. XORSAT problems, on69

the other hand, are SAT problems where clauses are formed using XOR operations (⊕) between literals:70

CXOR,j = lk ⊕ · · · ⊕ lm.

Problems formulated in XOR-and-OR normal form (XNF) are then hybrid XOR–CNF SAT problems, where the71

propositional logic formula (1) contains both CNF and XOR clauses. Figure 1a illustrates an XNF instance with72

three CNF and two XOR clauses. Here, the variable assignment x1 = 1, x2 = 0, x3 = 0, x4 = 1 guarantees73

satisfiability. In general, an XOR clause with k literals x1, . . . , xk can be equivalently represented using 2k−1 CNF74

clauses, each containing k literals. These clauses represent all possible combinations of an even number of negated75

variables76

CXOR,j =
∧

even number of ¬

±x1 ∨ · · · ∨ ±xk , (2)

where ± denotes the possible permutations for propositions (+) of literals or their negations (−). For instance, the first77

XOR clause in Fig. 1a has the equivalent CNF representation (x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3).78

Translating XOR clauses into CNF clauses incurs an exponential increase in the number of additional clauses, hence79

making clause evaluation computationally more expensive.80

In practice, this exponential overhead can partly be mitigated by employing the Tseitin transformation [20], yet this81

method provides a clear trade-off between the reduction of overall clauses and the number of additional variables that82

need to be considered [16]. Conversely, translating a SAT problem in CNF representation into an XORSAT problem83

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

3

is generally impossible, though many key SAT applications, such as integer factorization, circuit fault testing [4], and84

cryptographic decoding attacks [19], originate from XOR-based logic. In these cases, XOR clauses can be reconstructed85

from the CNF clauses by reversing the transformation in Eq. (2), typically reducing both clause and variable counts.86

We demonstrate the differences between CNF and XNF formulations in Fig. 1 for SAT problems from cryptographic87

attacks on the McEliece–Niederreiter and AES cryptosystems, as well as instances generated from the minimal dis-88

agreement parity (MDP) problem (details of the instances are provided in the Methods section). All instances inherit89

native XOR clauses but are initially provided with CNF clauses only. We explore two methods of generating hybrid90

XOR–CNF instances from these original problems. First, we convert directly the CNF instances to the XNF repre-91

sentation employing the cnf2xnf tool within the xnfSAT solver [16]. The final representation of this process is denoted92

by XNF in Fig. 1b. After this conversion, the resulting problems contain 2%–43% XOR clauses. Additionally, we93

employ a SAT preprocessing (PP) tool [29] to the CNF instances (generating new instance denoted by CNF-PP in94

Fig. 1b) before applying the conversion tool to generate XNF instances. The final representation of this process is95

denoted by XNF-PP in Fig. 1b. Such preprocessing techniques are widely used to compress CNF problem size and to96

enhance solver performance. Details of the preprocessing procedure and the per-instance preprocessing runtime are97

reported in Section 4.98

Figure 1c shows the compression ratio for the number of variables in relation to the original CNF representation.99

Direct XNF conversion reduces the number of variables by (2.0 ± 0.5)× on average. When applying preprocessing,100

the average number of variables initially remains almost unchanged ((1.1 ± 0.1)×) but is considerably reduced once101

the problem has been converted to an XNF representation. The preprocessing followed by XNF conversion achieves102

a compression ratio of (4.6 ± 1.0)×, on average. We also analyze the compression ratio for the number of clauses103

in relation to the CNF representation. With direct XNF conversion, we find that the number of clauses is reduced104

by (3.7 ± 1.2)×, on average. When applying preprocessing to the CNF representation, we again observe a small105

initial reduction in the number of clauses by (2.0± 0.9)×, while conversion of the preprocessed instances to an XNF106

representation reduces the number of clauses by (5.4± 1.8)×, on average, compared to the CNF representation.107

These results show the advantages of mapping problems to an XNF representation, with the greatest benefits108

often observed when combining preprocessing with XNF conversion. Compared to using a pure CNF representation,109

the resulting reduction in the problem size can enhance SAT solver performance and significantly lowers compute110

resource requirements [17, 21]. Moreover, for SAT hardware accelerators, the comparatively smaller XNF instances111

enable reduced chip sizes and energy consumption. Therefore, these results serve as a strong motivation to develop112

hardware accelerators capable of supporting both CNF and XOR clauses simultaneously.113

2.2. WalkSAT-XNF: An XNF-Native SAT Heuristic Compatible with In-Memory Computing Hardware114

To leverage the described mapping advantages, we propose a heuristic called WalkSAT-XNF, designed to solve XNF115

problems in their native form. We then show how this algorithm can be realized efficiently in an accelerator using116

IMC. WalkSAT-XNF employs a local search heuristic and is inspired by prior work on IMC accelerators for CNF117

SAT problems [8]. Similar to the widely used WalkSAT solvers [30, 31], WalkSAT-XNF computes gradients based118

on ‘make’ and ‘break’ values. The make value counts the number of violated clauses that become satisfied, while the119

break value counts the number of satisfied clauses that become violated when flipping a variable. WalkSAT-XNF120

then flips a variable found in violated clauses that maximizes the value obtained by subtracting the break value121

from the make value. In contrast to the standard WalkSAT heuristic, WalkSAT-XNF performs a full-neighbourhood122

evaluation, where gradients for all variables present in unsatisfied clauses are considered, as opposed to evaluating123

only the variables in a randomly chosen violated clause.124

Table 1 shows the pseudocode of the WalkSAT-XNF heuristic. The algorithm starts with an initial variable125

configuration and iteratively searches the space until it finds a solution or reaches the iteration limit. Each iteration126

computes gradients based on make and break values for all variables by evaluating the clauses in which they appear.127

A CNF clause is satisfied if at least one literal is true. Hence, the make value is the number of violated clauses128

containing the variable, as flipping it would satisfy them. The break value, on the other hand, corresponds to the129

number of satisfied clauses, where the variable is the only true literal, as flipping it would break clause satisfaction.130

For an XOR clause to be satisfied, an odd number of true literals is required. Thus, the make value corresponds to131

the number of violated clauses containing the variable, as flipping it would satisfy them. Similarly, break values are132

equal to the number of satisfied clauses containing the variable. The break value subtracted from the make value133

yields the gain value, or gradient. After computing the full gradient, Gaussian noise with a standard deviation σ is134

added to help escape local minima or avoid cycles. The variable with the highest noise-adjusted gain value is then135

flipped, and the process repeats.136

Figure 1d shows the algorithmic efficiency of WalkSAT-XNF when solving the McEliece, MDP, and AES benchmark-137

ing instances using CNF-PP, XNF, and XNF-PP compared to the CNF formulation. We quantify the performance138

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

4

with the iterations-to-solution (ITS99) metric [32], defined as139

ITS99(iter) :=
iter · log 0.01

log(1− θ(iter))
, (3)

where θ(iter) is the success probability of solving the problem as a function of iterations. The ITS99 metric estimates140

the iterations required to observe at least one successful trial with a probability of 99%. Since WalkSAT-XNF stops141

once a solution is found, an optimized ITS99,opt metric can be obtained by evaluating ITS99 at solution-finding trial142

lengths within reasonable error bounds. Compared to the CNF formulation, WalkSAT-XNF solves problems using143

fewer iterations, achieving a median improvement of ∼23× (CNF-PP), ∼10× (XNF), and ∼68× (XNF-PP). The144

greatest performance gains are observed for preprocessed instances.145

In what follows, we thus solely focus on the preprocessed instances for CNF and XNF problems, referring to them146

simply as CNF and XNF for brevity. Complete benchmarking results for all problem representations are available in147

Supplementary Note 1.148

2.3. An In-Memory Computing Accelerator Architecture for WalkSAT-XNF149

To realize WalkSAT-XNF with IMC hardware, we propose the accelerator architecture depicted in Fig. 2, which150

shows the steps performed in each iteration of the heuristic (i.e., clause evaluation, make and break value computations,151

and a variable update) using seven distinct hardware blocks.152

The Boolean variable configuration is initially stored in a register ((1) in Fig. 2). The variables and their respective153

conjugates are then provided as an input signal to a crossbar array to evaluate violation of the individual CNF and154

XOR clauses (2). For problems with N variables and C clauses, the crossbar has 2N columns and C rows. The input155

to the crossbar is applied as binary voltage signals at the columns. Each variable xj and its negation xj are mapped156

to the column pairs {2j, 2j + 1}, while clauses correspond to the rows of the crossbar. Each literal is represented by157

a binary-valued crossbar connection bij ∈ {0, 1} that allows current to flow from a column to a row. Here, positive158

literals xj connect rows to columns with even indices 2j, while negative literals xj connect to columns with odd indices159

2j + 1. These connections are facilitated by memory devices at each crossbar that can be switched between an ON160

and an OFF state, such as resistive random-access memory (RRAM) [8], static random-access memory (SRAM), or161

embedded Flash memory cells [33]. This crossbar array functions as a C-by-2N matrix, with entries of 1 where literals162

appear and 0 elsewhere. The output current at each row is then equivalent to a matrix–vector multiplication between163

the input signal and the array. Using the matrix encoding of the clauses described above, the output signals of the164

crossbar rows are proportional to the number of true literals in the clause for the current assignment of variables.165

Depending on the clause type, the output signals from the crossbar array are evaluated by the circuits (3) of Fig. 2.166

These circuits indicate whether a clause is violated and provide the input signals for the subsequent make and break167

value computations. For XOR clauses, a low-resolution analog-to-digital converter (ADC) with log2(k) bits, where k168

is the maximum number of literals, performs a parity check using the least-significant bit (LSB). The LSB is provided169

as input for the break value computation, as it indicates whether the clause is currently satisfied and can be broken170

by flipping one of its member variables. Conversely, an inversion of the LSB is given as input for the make value171

computation. For CNF clause evaluations, two comparators [8] determine if the number of true literals is 0 (for the172

make value) or 1 (for the break value). The outputs of these comparators are used as input for make and break173

computations.174

The make and break values are computed via a crossbar array (4) that is the transpose of (2). After applying175

the input signals to the rows, the output signals from related pairs of columns are added to derive the make and176

break values for each variable. To calculate the break values for CNF clauses, the column outputs are additionally177

multiplied with the variable configuration using pass transistors to identify true literals. Adding the make and break178

values from XOR and CNF clauses provides the input signals for the subsequent gradient computation (5). Here,179

a Gaussian white noise signal σ generated by a pseudo-random number generator (PRNG) in conjunction with an180

array of digital-to-analog converters (DAC) is added to the make value, and the break values are subtracted from the181

make values using differential amplifiers to calculate the gradient for each variable. Finally, a winner-takes-all (WTA)182

circuit identifies the variable with the highest gradient (6) and the output signal is used to update the register state183

using XOR gates (7).184

Crucially, the relative simplicity of WalkSAT-XNF enables us to map every computational step to an equivalent185

analog circuit, enabling rapid continuous computation. As with other IMC concepts [8, 34], the crossbar arrays186

in Fig. 2 enable parallel gradient computations for both the CNF and XOR clauses within a single clock cycle.187

Performing an entire operation of WalkSAT-XNF is achieved within just three clock cycles, without the need for a188

complex control system, while also circumventing frequent time-intensive communication with external co-processors189

or memory systems. Both XOR and CNF clauses can be evaluated using the same array, allowing for an area-efficient190

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

5

design. Moreover, the crossbar array can implement a number of literals per clause that is equal to the number of191

variables, hence supporting highly complex clauses common in industry workloads.192

2.4. Experimental Demonstration Using RRAM Crossbar Arrays193

As with other mixed-signal computing systems, realizing WalkSAT-XNF in hardware requires it to be sufficiently194

resilient against hardware non-idealities in the analog circuits. Studies have identified variations in the RRAM cells195

and noise in the crossbar array’s analog readout circuit as the dominant non-idealities that can result in a deterioration196

in performance [35]. To evaluate the feasibility of realizing WalkSAT-XNF in hardware, we implement a hybrid version197

of the architecture in Fig. 2 on an RRAM crossbar array chip. We experimentally validate the analog computation198

of clause evaluation and make/break value computation using an RRAM crossbar array chip, while the register,199

the circuits for checking clause satisfaction, the WTA circuit, and the Gaussian noise injection are emulated on a200

digital computer. The RRAM chip is a custom CMOS circuit in a 180 nm technology node with back-end-of-the-line201

(BEOL) monolithically integrated TaOx 1T1M RRAM cells [36, 37]. For the experiment, we use the XNF instance202

derived from the par-8-1-c MDP problem [38], consisting of 13 variables and 42 clauses, including one XOR clause.203

To implement the crossbar’s ON and OFF states bij , the RRAM cells are programmed to either a high-resistance204

state (HRS, or OFF state) or a low-resistance state (LRS, or ON state). Figure 3a shows the conductance values of205

the RRAM cells after programming. Here, the LRS is set to 100 µS and the HRS is set to 1 µS. Two separate arrays206

are used for the clause evaluation (array 1) and the make and break value computations (array 2). Figure 3b shows207

a histogram of the memristor conductances of array 1. The memristors exhibit typical device-to-device variations208

during programming [39], where the LRS and HRS are programmed to have a tolerance of ±10 µS. While further209

optimization is possible [40], we find that this accuracy is sufficient for our purposes.210

To evaluate the capability of this crossbar array to perform clause evaluation (array 1 in Fig. 3a), we supply211

400 random variable configurations as input signals and record the output current from the array. Fig. 3c shows a212

histogram of the results, with distributions colour-coded by the expected number of satisfied literals (H), showing a213

clear separation. It is thus possible to infer the number of satisfied literals directly from the array’s analog output214

signal using the threshold levels indicated by the dotted lines in Fig. 3c with an average error of approximately 1%.215

The second array can be used similarly to evaluate the make and break values. We perform the make and break value216

computations sequentially here, but a parallel, pipelined evaluation is possible by employing two separate crossbar217

arrays. We then employ the gradient computation as part of the full WalkSAT-XNF heuristic. Figure 3d shows the218

cumulative success rate for solving par-8-1-c problem instance. We have performed 500 repeats at a noise level of219

σ = 2.5, where the solver runs for a maximum of 2000 iterations per repeat. The solver consistently finds a satisfying220

solution within this limit and experimental results align well with ideal (i.e., variation-free and noiseless) simulations221

despite hardware non-idealities.222

We also compare experiments and simulations by varying the noise level σ. To quantify differences in the cumulative223

success rate, we analyze the iterations-to-solution (ITS99,opt). In Fig. 3e, we show ITS99,opt for different noise levels224

and compare it against simulation-based results. Our results agree well with the experimental results, within the225

margin of error of the simulations. Overall, our results demonstrate that WalkSAT-XNF can be implemented using226

RRAM-based analog IMC hardware. The agreement between experiments and simulations highlights the robustness227

of the WalkSAT-XNF heuristic to hardware non-idealities, making it well-suited for implementation in custom CMOS228

circuits. This observation is also supported by a simulation-based sensitivity study, the results of which are presented229

in Supplementary Note 5. We believe this robustness to be due to the fact that the weights and the input states in our230

architecture are binary. The results of the crossbar array’s operations are discrete integer values, thereby providing231

additional robustness against noise, compared to, for example, floating point operations.232

2.5. Simulation-Based Benchmarking for a 28 nm RRAM Architecture233

To evaluate our accelerator architecture illustrated in Fig. 2, we designed and simulated an architecture implemen-234

tation using TaOx RRAM crossbar arrays realized in a 28 nm CMOS process. For the simulations, we have derived235

latency and energy models from detailed circuit simulations and have evaluated them using activity simulations for236

the different SAT instances in Fig. 1. As our architecture supports both XOR and CNF clauses, we compare the CNF237

and XNF representations for the same problems on the same accelerator architecture to highlight the advantages for238

IMC accelerators of converting CNF instances to XNF instances. Figure 4a shows the average area advantage of XNF239

representations over CNF representations. We define the area advantage as AXNF/ACNF, where A is the number of240

memory cells in the crossbar arrays required for a given benchmarking instance. We find that XNF representations241

provide a (12.2±4.7)× average area advantage for the crossbar arrays due to there being a reduced number of variables242

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

6

and clauses. This significantly reduces the footprint, thereby enhancing the cost-effectiveness, scalability, and energy243

efficiency of the accelerator.244

Figure 4b shows the average energy per iteration of the WalkSAT-XNF heuristic. The median energy uptake for245

the XNF representation is 36 pJ (interquartile range (IQR): 47 pJ) compared to 107 pJ (IQR: 119 pJ) for the CNF246

representation, thereby achieving a ∼3× improvement in energy efficiency. Figure 4c provides a breakdown of energy247

consumption across hardware components for a McEliece instance. For the CNF representation with 174 variables248

and 623 clauses, the average energy per iteration is ∼90 pJ. Here, the majority of energy is consumed by the circuits249

responsible for generating the Gaussian noise signal (PRNG, ∼80%), while the second-largest contributor (the clause250

evaluation array) accounts for only ∼9% of the energy uptake. The make and break computation array, the evaluation251

circuits, and the WTA circuit combined contribute to ∼10% of the energy consumption. For the XNF representation252

with 32 variables and 96 clauses (13 of which are XOR clauses), energy consumption drops to ∼33 pJ, that is, only a253

third of the CNF instance. Moreover, we find that the relative energy contributions between the two representations254

are notably different as approximately a third of the energy consumption of the XNF representation is dedicated to255

the clause evaluation circuits. The XOR clause evaluation is energetically more expensive, which accounts for 93% of256

the energy uptake of the evaluation circuits.257

Figure 4d shows a comparison of this breakdown for a 16-bit MDP instance. The XNF representation shows lower258

relative energy consumption by the evaluation circuits compared to Fig. 4c, due to a lower XOR-to-CNF clause ratio259

(7% in the MDP instance versus 23% in the McEliece instance). Overall, while an XNF representation significantly260

reduces energy consumption, it introduces a trade-off: problem size reduction increases the number of XOR clauses261

which are more energy-intensive to evaluate.262

Figure 5a shows the relative advantage of the time-to-solution (TTS) for the CNF and XNF representations. Here,263

the TTS is attained by multiplying ITS99,opt with the latency of performing one iteration. We find that, in all instances,264

the TTS for the XNF instances is improved over the CNF representation with a median advantage of 3.7× (IQR:265

22.2). Separated by instance classes, MDP instances show the greatest improvement (546×, IQR: 27,496.2), followed266

by McEliece (3.7×, IQR: 0.8) and AES (1.7×, IQR: 0.2). A further comparison between the CPU and hardware267

implementations of WalkSAT-XNF is provided in Supplementary Note 1, highlighting the additional speedups gained268

through IMC hardware acceleration.269

To analyze the energy consumption of the accelerator architecture for the different problem representations, we con-270

sider the energy-to-solution (ETS). The ETS is calculated by multiplying ITS99,opt with the average energy consumed271

per iteration. Figure 5b shows the relative ETS advantage of the XNF representation over the CNF representation.272

We find that energy consumption is improved over CNF with a median of 11.4× (IQR: 65.4). Separated by instance273

classes, we again observe that the MDP instances benefit most (1644.1×, IQR: 83540.7), followed by McEliece (11.4×,274

IQR: 3.4) and AES (3.9×, IQR: 0.6).275

Beyond this comparison of different problem representations for IMC hardware accelerators, we benchmark our276

accelerator against SAT solvers running on a CPU. For our benchmarking, the ETS and TTS were measured when277

running solvers on a 2.6 GHz Xeon CPU, and compared to the results for the XNF instances in Fig. 5. The TTS of278

the benchmarking solvers is directly derived from the CPU runtime. For the SAT solvers, we consider the SLS-solvers279

xnfSAT [16] and WalkSAT-SKC [30], alongside the conflict-driven clause learning (CDCL) solvers CryptoMiniSat [22]280

and Kissat [41]. The xnfSAT and CryptoMiniSat solvers are capable of solving problems in XNF representation281

and are therefore evaluated with XNF instances (see Supplementary Note 2 for more details). For xnfSAT, we282

initially noted that performance for preprocessed XNF instances is considerably worse compared to unprocessed XNF283

instances. To provide the fairest comparison, we therefore decided to evaluate the performance of xnfSAT using the284

unprocessed XNF instances, while WalkSAT-XNF and CryptoMiniSat were evaluated using the XNF-PP instances.285

WalkSAT-SKC and Kissat on the other hand support only CNF clauses and were therefore evaluated using the CNF286

representation of the benchmarking instances.287

Figure 6 presents correlation plots comparing TTS and ETS for XNF-native solvers (a) and CNF-native solvers288

(b) against our WalkSAT-XNF accelerator. Table 2 summarizes the median relative performance. Compared to the289

best-performing software solver CryptoMiniSat, WalkSAT-XNF improves the median TTS by 9.1× and the ETS by290

2.3 · 103×. Notably, while our accelerator outperforms CryptoMiniSat for the McEliece instances, most MDP and291

AES problems are solved faster by CryptoMiniSat. This indicates that the structure of such problems may be more292

favourable to CDCL-type solvers compared to the SLS heuristic employed in WalkSAT-XNF. However, WalkSAT-293

XNF demonstrates a smaller ETS in most instances compared to the CDCL-type solvers. We also note that, while294

WalkSAT-XNF is always able to find a solution, the SLS solvers xnfSAT and WalkSAT-SKC are unable to solve295

a portion of the MDP instances. Moreover, xnfSAT exhibits a large variance, while WalkSAT-XNF forms distinct296

clusters for similar class and size instances. This clustering pattern allows for a more stable prediction of performance297

of similar instances and can likely be attributed to the full-neighbourhood evaluation, compared to xnfSAT’s individual298

clause evaluation.299

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

7

3. DISCUSSION300

Our results show that IMC hardware accelerators for SAT problems can be enhanced to solve problems in a301

hybrid XOR–CNF representation, which is the native representation of several industrial optimization problems. By302

performing parallel gradient computation of XOR and CNF clauses on the same crossbar arrays, our approach enables303

a fast and energy-efficient hardware implementation of our WalkSAT-XNF heuristic. This allows us to combine the304

algorithmic advantages of mapping problems to a hybrid XOR–CNF representation with the inherent parallelism and305

efficiency of IMC hardware.306

For SAT problems that can be natively expressed as hybrid XOR–CNF problems, we find that this can reduce307

the chip area and energy consumption, while also improving the computation speed compared to mapping them to308

a pure CNF representation. This presents an advantage over existing SAT hardware accelerators, which can solve309

problems only in pure CNF formulation. When tackling pure CNF problems, the IMC architecture in Fig. 2 has310

previously demonstrated that it can outperform comparable SAT accelerators (see Supplementary Note 3). As shown311

in our comparison in Fig. 4, the ability to implement XOR clauses can provide an additional order-of-magnitude312

improvement in computation speed and energy efficiency.313

Moreover, the crossbar array embedding depicted in Fig. 2 can, in principle, support dense XOR and CNF clauses314

with as many literals as there are variables. Our experimental proof of concept successfully demonstrates this for a315

hybrid XOR–CNF problem with up to five literals per clause, which can be extended to even more complex clauses.316

This allows our architecture to additionally leverage the advantages of SAT preprocessing techniques, which tend to317

trade increased algorithmic efficiency with a higher density of literals per clause (see Table 3). By combining these318

advantages, we find that our proposed accelerator can outperform state-of-the-art SAT solvers running on digital319

computers in terms of computation speed and energy consumption.320

As energy efficiency becomes an increasing concern in high-performance computing systems for resource-intensive321

applications such as optimization and artificial intelligence, hybrid XOR–CNF IMC accelerators can reduce operational322

costs and mitigate environmental impacts. In edge-computing applications, such as channel decoding in wireless323

receivers or AI route planning in autonomous vehicles, constraints on energy consumption and latency for computing324

hardware can benefit from fast and energy-efficient SAT accelerators to improve performance while enabling new use325

cases. Because XOR clauses are native to a wide variety of industry-relevant applications, such as hardware design,326

cryptanalysis, and telecommunications, we expect that a hybrid XOR–CNF SAT accelerator can provide considerable327

advantages when solving hard SAT problems.328

While CNF and hybrid XOR–CNF instances have been identified as promising use cases for the IMC accelerator,329

there are also important industrial applications that rely on pure XORSAT problems. Although finding satisfying330

assignments to XORSAT problems is polynomial in problem complexity and thereby performed efficiently with linear331

system solvers on digital computers [6], there is a variety of hard industry-relevant XORSAT problems where the state-332

of-the-art heuristics rely on XORSAT evaluations, such as error correction [18] or efficiently attacking the McEliece333

cryptosystem [42]. For such problems, spin glass hardware accelerators have previously been demonstrated that scale334

exponentially in compute time [6, 7] and it is likely that a native XOR–CNF accelerator can improve performance335

over existing techniques [43].336

An interesting outcome of our research has been the insight that our proposed WalkSAT-XNF heuristic can benefit337

considerably from fast preprocessing techniques present in common SAT software libraries. By applying preprocessing338

to CNF instances before converting them to XNF instances, we have observed significant overall improvements in339

the number of iterations required to find a solution compared to XNF instances without preprocessing. While the340

hybrid XOR–CNF solver xnfSAT does not appear to benefit from preprocessing for the benchmarking instances we341

have studied, WalkSAT-XNF can improve the median TTS and ETS by an order of magnitude.342

Although our results show there are clear advantages in using hybrid IMC XOR–CNF SAT accelerators, we envision343

possible improvements that could further enhance computational performance and relevance to industrial use cases.344

Our analysis of their energy consumption has identified the generation of noise signals and the evaluation of XOR345

clauses as targets for improvements. Enhancing the energy efficiency of noise signal generation would be possible by346

optimizing the PRNG design or by using analog noise sources [44]. Similarly, the circuit used for conducting parity347

checks could likely be improved, given that only the LSB is needed or that, alternatively, trees of XOR gates can348

be employed. As we show in Supplementary Note 4, additional energy savings can also be achieved by reducing the349

resolution of the ADC.350

One challenge in realizing performance enhancements for industrial applications pertains to the scalability of IMC351

hardware. Crossbar arrays are limited in size, for example, by parasitic effects, signal drop-off, and non-idealities, to352

a few hundred rows and columns. Current IMC hardware capable of dense matrix–vector operations could support353

the computations in our architecture for SAT problems with up to ∼250 variables and ∼500 clauses within a single354

array [45]. To overcome this limitation and increase the capacity for solving larger and more-complex SAT problems,355

one potential strategy would be to distribute the computational load by partitioning the variables and clauses across356

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

8

multiple crossbar arrays [33]. Exploring the implementation of such a multi-array architecture is an essential step in357

enhancing the scalability and applicability of our solver, opening up the possibility of solving larger and more-complex358

SAT instances.359

The WalkSAT-XNF heuristic is an evolution of the CNF-specific WalkSAT heuristic and does not differentiate360

between XOR and CNF clauses for the purpose of variable selection. Based on the insights from this work, it could be361

possible to use IMC hardware for accelerating algorithmically efficient heuristics that include more sophisticated clause362

differentiation (e.g., by pre-solving the XOR clauses using Gauss–Jordan elimination [46]). Further enhancements363

can be achieved by combining it with the parallel tempering framework, which has recently been shown to provide364

performance improvements for IMC architectures with minimal overhead [47]. Finally, high-performance SAT solvers365

often combine CDCL and SLS heuristics, including XOR subroutines [48, 49]; our IMC approach could similarly be366

adapted to accelerate other types of heuristics, including CDCL SAT solvers [50].367

4. METHODS368

4.1. Benchmarking Instances369

McEliece–Niederreiter Cryptosystem The McEliece instances are derived from cryptographic attacks [25, 51] on370

the McEliece–Niederreiter cryptosystem [52, 53]. This cryptosystem was proposed as the first code-based public-key371

cryptosystem in the 1970s and has been elected by the National Institute of Standards and Technology (NIST) as a372

quantum-resistant public-key cryptographic algorithm for evaluating post-quantum cybersecurity [54].373

For the encryption and decryption of a cipher, the receiver generates three matrices: the n-by-k generator matrix G374

typically using Goppa codes; an n-by-n permutation matrix P ; and a random k-by-k invertible matrix S. The receiver375

publishes a public key G′ := SGP . The message sender prepares a plaintext message m and creates the ciphertext376

y = mTG′ + e, where e is an error vector with a Hamming weight of t. The receiver then uses an error-correction377

algorithm [55] to identify the error vector e and obtains m via G,P , and S. A potential attack on the McEliece378

cryptosystem involves identifying the error vector e. In particular, the authors in Ref. [25] interpret the problem as379

finding the minimum-weight codeword. Let H be an (n− k)× n matrix, with Hi,j being the (i, j)-th element of the380

matrix H. The linear system Hc = 0 is then written over the binary field with the XOR logical operator ⊕. For381

instance, the i-th equality of Hc = 0 is382

Hi,1c1 ⊕ Hi,2c2 ⊕ · · · ⊕ Hi,ncn = 0. (4)

A decoding attack on the system involves finding a solution c to Hc = 0 having the desired Hamming weight.383

Based on this attack, the McEliece instances are generated via the PySA package [56] (further details can be found384

in Refs. [26, 57]). Each instance is first generated as a set of XOR equations as shown in Eq. (4). The XOR equations385

are then translated to CNF clauses, and the Hamming weight of the desired solution c is incorporated using additional386

CNF clauses. We use 10 CNF instances with a code length equal to 16. We label these instances from McE-i, where387

i ∈ {0, . . . , 9}. The numbers of variables and clauses range from 171 to 183, and 611 to 659, respectively.388

Minimal Disagreement Parity Problem The MDP instances are generated from the minimal disagreement parity389

problem described in Ref. [38]. Given an m-by-n binary matrix X, a binary vector y of length m, and an integer k,390

the MDP problem seeks to find a binary vector a ∈ {0, 1}n satisfying391

m
i=1






n
j=1

Xi,jaj


⊕ yi


 ≤ k. (5)

The difficulty in solving the MDP problem has been explored in the literature, and an algorithm for solving the392

inequality (5), relying on XOR clauses only, was suggested in Ref. [58]. A total of 15 MDP instances were proposed393

by Crawford [38] and added to the DIMACS library [59], with the instances translated to a CNF representation. We394

selected 10 instances, par-8-i-c and par-16-i-c, i ∈ {1, . . . , 5}, from the DIMACS library [59], and they can be accessed395

from Ref. [57]. We labelled these instances p-8-i, p-16-i, where i ∈ {1, . . . , 5}. The numbers of variables and clauses396

lie in the ranges [64, 74] and [254, 298] for the par-8-i-c family, and [317, 349] and [1264, 1392] for the par-16-i-c family.397

Advanced Encryption Standard The Advanced Encryption Standard (AES) [27, 28] is a symmetric key encryption398

algorithm selected by the National Institute of Standards and Technology (NIST). It was developed to replace an399

older data encryption standard (DES) that was shown to be vulnerable to decryption attacks, particularly with the400

advent of stronger computational resources. Applications of AES include securing communications for online financial401

transactions and encrypting data in a database [60]. XOR operations are one of the key components of the encryption402

process that utilizes the so-called round keys, which are inherent to AES and finding them is indicative of a successful403

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

9

cryptographic attack. Instances pertaining to AES are available in the dataset from the 2012 SAT competition [61],404

and they can be accessed from Ref. [57]. Solving these problem instances is viewed as a successful cryptographic405

attack to AES. As mentioned in Ref. [61], these instances inherit XOR operations, but are translated into a CNF406

representation, making it possible to utilize SAT solvers that operate only CNF clauses. We use instances called407

aes 32 1 keyfind i, where i = 1, 2 and label them AES-1 and AES-2 in the benchmarking experiment below. The408

numbers of variables and clauses are 300 and 1056, respectively.409

4.2. XNF Problem Conversion410

We provide the details on the conversion process for generating the formulation classes CNF-PP, XNF, and XNF-411

PP, which illustrated in Fig. 1b. We incorporated CNF preprocessing using PySAT [62], a Python library designed412

to work with SAT instances with CNF clauses only. We use PySAT to access the CaDiCaL solver’s preprocessor [29].413

To produce preprocessed CNF instances (denoted by CNF-PP in the figure), the parameter named ‘rounds’ was414

set to 3, indicating the number of preprocessing rounds. PySAT supports a variety of preprocessing techniques,415

including blocked clause elimination, covered clause elimination, globally blocked clause elimination, equivalent literal416

substitution, bounded variable elimination, failed literal probing, hyper binary resolution, clause subsumption, and417

clause vivification. Details on each technique can be found in Ref. [29]. All available preprocessing techniques418

supported by the package were employed, provided by the following parameters: block, cover, condition, decompose,419

elim, probe, probehbr, subsume, and vivify. The time to process a CNF instance to its preprocessed counterpart420

CNF-PP ranges approximately from 2 · 10−3 to 1 · 10−2 seconds, with an average time of around 7 · 10−3 seconds.421

To convert an instance in CNF representation into XNF form, we employed the cnf2xnf tool, which is a utility422

present in the xnfSAT solver [16]. The cnf2xnf tool is designed to transform CNF instances by identifying and423

extracting XOR clauses from given CNF clauses. The resulting hybrid representation retains the structure of the424

original CNF instance while introducing XOR clauses, making the clauses more compact. The processing time to425

convert a CNF instance to an XNF instance ranges from approximately 3 · 10−3 to 3 · 10−2 seconds, with an average426

time of around 4 ·10−3 seconds. For converting a CNF instance to XNF form, the processing time ranges from 2 ·10−3
427

to 4 · 10−3 seconds, with an average time of around 3 · 10−3 seconds.428

Table 3 presents the average of clause densities of each instance class, where the density is calculated by summing429

the number of literals in each clause and dividing by the total number of variables. We present further observations re-430

garding the literals per clause densities dCNF and dXOR of the XNF and XNF-PP formulation classes in Supplementary431

Note 1.432

4.3. Benchmarking of SAT Solvers on CPUs433

The TTS and ETS of xnfSAT, CryptoMiniSat, WalkSAT-SKC, and Kissat were calculated using an Intel Xeon434

CPU running at 2.60 GHz with 512 GB of system memory and 128 virtual cores. For the ITS and TTS estimations,435

the number of trials was set to 1000 by all algorithms and instances in order to obtain a reliable success probability436

θ [63]. For CryptoMiniSat, the parameter named ‘maxsol’ was set to 1, quantifying the number of targeted solutions437

found by the algorithm. The maximum allowed runtime for Kissat was set to 300 seconds. For WalkSAT-XNF,438

WalkSAT-SKC, and xnfSAT, each trial was capped at 109 maximum allowed bit flips. The noise parameters used439

for WalkSAT-XNF were optimized in a grid search for the different problem classes. The optimized parameters are440

displayed in Table 4a. The computation of the ETS for each solver is outlined in Table 4b.441

To estimate the energy consumption of solvers that solely depend on software, 1.5 joules per second (i.e., 1.5 watts)442

was used. We benchmarked several instances using CryptoMiniSat on an AMD Epyc server while tracking the energy443

usage using the Powertop package [64]. In all cases, we observed 1.5 watts, which we used as the baseline energy444

usage for all CPU-based solvers. Of note, the full benchmarking experiments were performed on Intel Xeon CPUs445

running at 2.80 GHz with 90 GB of RAM and 64 logical cores on the Google Cloud Platform (GCP), on which it446

is not possible to measure the energy directly. We believe our estimate of 1.5 watts is conservative, as the per-core447

thermal design can have a higher power ceiling.448

4.4. Hardware Accelerator Energy Modelling449

The components of the hardware architecture in Fig. 2 have been designed, validated, and modelled in a TSMC 28450

nm technology node. The crossbar array is modelled for a BEOL integrated RRAM device using TaOx memristors451

based on data from previously fabricated test chips [37]. The output currents at the bit lines are detected and452

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

10

processed using transimpedance amplifiers with active common-drain feedback. For CNF clauses, output signals are453

evaluated with comparators based on a StrongARM latch architecture. For the XOR clause evaluation, we model the454

energy consumption of the ADCs based on a regression analysis of the ADC survey data in Refs. [65, 66]. Based on455

the maximum number of literals for the benchmarking problems (see Table 3), we assume an ADC bit resolution of456

4 bits, which can support clauses with up to 15 literals. For an ADC with a sampling rate of 900 million samples per457

second and a bit resolution of 4 bits, we estimate an energy consumption per operation of 0.718 pJ and an area of458

3.9 · 10−3 mm2.459

The Gaussian noise signal is generated from an XORSHIFT-64 PRNG using the Alias method. The normal-460

distributed random number sequence generated by the PRNG is converted to analog signals using R2R ladder DACs461

at each bit line of the gradient evaluation crossbar ((4) in Fig. 2). The WTA circuit is realized using voltage-controlled462

delay lines, whose output is evaluated using merger trees and arbiters. The one-hot encoded output of the WTA circuit463

is fed into an array of XOR gates, whose other input is the current variable configuration stored in the register. The464

output is used to set the new state of the register.465

The circuit is driven and synchronized by a central clock signal, where the signal provided by the register sequentially466

progresses through the individual circuit blocks shown in Fig. 2. A single iteration of WalkSAT-XNF is performed467

in three clock cycles. During the first clock cycle, the signals are applied to the first crossbar array and the output468

signals are analyzed using the readout circuit. During the second clock cycle, the second crossbar array is operated469

in the same way. During the third clock cycle, the WTA operation is performed, and the register state is updated.470

The combined latency of these components per iteration of WalkSAT-XNF was modelled as taking titer = 6ns. Once471

the register is initialized, the entire circuit will continuously repeat this flow until a predefined number of iterations is472

reached or until a satisfying solution has been identified. Additional details about the circuit designs and the hardware473

parameters can be found in Ref. [8].474

From these modelling results, a semi-analytical model has been derived, which evaluates the energy consumption of475

the individual components based on average signal levels and activity patterns. For the benchmarking, we have built476

a custom cycle-accurate simulator that derives instance-specific activity patterns and signal levels when running the477

WalkSAT-XNF heuristic. Using the semi-analytical model, we derive the mean energy consumption for each instance478

without the need for extensive SPICE-like simulations, which would be intractable. We derived the mean energy479

consumption per iteration of the WalkSAT-XNF heuristic Emean/iter for each instance and calculated the energy to480

solution as ETS = Emean/iter · ITS.481

4.5. Experimental Validation of the WalkSAT-XNF Heuristic on Memristor Crossbar Arrays482

The experimental setup used to realize our IMC architecture comprises a custom chip fabricated in a TSMC 180483

nm technology node and houses three 64-by-64 memristor crossbar arrays. The 1T1M cells are based on Ta/TaOx/Pt484

RRAM that was monolithically integrated in-house in a BEOL process. To perform in-memory computations, the485

chip contains digital control and analog sensing circuits. Input signals to each array’s word line are applied digitally486

and the analog output is reconstructed using the ‘shift and add’ method [67]. To convert and measure the signals487

from the array’s bit lines, transimpedance amplifiers and sample-and-hold circuits are employed that rapidly convert488

the output currents to voltage signals and sample them. The signals are then converted to digital signals using ADCs.489

The chip is hosted on a custom-printed circuit board, which facilitates the voltage supply to the chip and provides a490

digital interface to access, control, and program the individual crossbar arrays. Additional details about the layout491

and the fabrication of the chip may be found in Ref. [36]. For the implementation of the WalkSAT-XNF heuristic, a492

custom Python program was written that performs the matrix operations in Fig. 2 on the crossbar arrays. Here, the493

matrices in Fig. 3a were programmed into two of the chip’s arrays. During the matrix operations, the binary input494

signals are communicated to the chip and the output signals are measured and returned via the digital interface. For495

the clause evaluation, the number of true literals is inferred from the output signal using equidistant quantization496

levels. These levels have been optimized to yield the lowest error rate.497

DATA AVAILABILITY498

The benchmarking instances used in this study are available in Ref. [57].499

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

11

CODE AVAILABILITY500

The simulator used for the heuristic simulation and energy modelling is open-sourced and available at https:501

//github.com/HewlettPackard/CountryCrab.502

REFERENCES503

[1] S. A. Cook, The complexity of theorem proving procedures, in Proceedings of the Third Annual ACM Symposium (New504

York, 1971) pp. 151–158.505

[2] L. A. Levin, Universal sequential search problems, Probl. Peredachi Inf. (in Russian) 9, 115–116 (1973).506

[3] T. Larrabee, Test pattern generation using boolean satisfiability, IEEE Transactions on Computer-Aided Design of Inte-507

grated Circuits and Systems 11, 4 (1992).508

[4] D. E. Knuth, The art of computer programming, Volume 4, Fascicle 6: Satisfiability (Addison-Wesley Professional, 2015).509

[5] L. Perron and F. Didier, CP-SAT, https://developers.google.com/optimization/cp/cp_solver.510

[6] M. Kowalsky, T. Albash, I. Hen, and D. A. Lidar, 3-regular three-xorsat planted solutions benchmark of classical and511

quantum heuristic optimizers, Quantum Science and Technology 7, 025008 (2022).512

[7] S. Nikhar, S. Kannan, N. A. Aadit, S. Chowdhury, and K. Y. Camsari, All-to-all reconfigurability with sparse and higher-513

order ising machines, Nature Communications 15, 8977 (2024).514

[8] G. Pedretti, F. Böhm, T. Bhattacharya, A. Heittman, X. Zhang, M. Hizzani, G. Hutchinson, D. Kwon, J. Moon, E. Valiante,515

I. Rozada, C. E. Graves, J. Ignowski, M. Mohseni, J. P. Strachan, D. Strukov, R. Beausoleil, and T. V. Vaerenbergh, Solving516

boolean satisfiability problems with resistive content addressable memories, npj Unconventional Computing 2, 7 (2025).517

[9] A. Sharma, M. Burns, A. Hahn, and M. Huang, Augmenting an electronic ising machine to effectively solve boolean518

satisfiability, Scientific Reports 13, 22858 (2023).519

[10] Q. Zhang, S. Su, Z. Liu, H.-C. Cheng, Z. Qiu, M. Palaria, J. Ye, D. Meng, B. Chen, S. Hossain, W. Wu, and M. S.-W.520

Chen, A stochastic analog sat solver in 65nm CMOS achieving 6.6µs average solution time with 100% solvability for hard521

3-sat problems, in 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (2024).522

[11] C. Shim, J. Bae, and B. Kim, 30.3 VIP-Sat: A Boolean Satisfiability Solver Featuring 5×12 Variable In-Memory Processing523

Elements with 98% Solvability for 50-Variables 218-Clauses 3-SAT Problems, in 2024 IEEE International Solid-State524

Circuits Conference (ISSCC) (IEEE, 2024) pp. 486–488.525

[12] S. Xie, M. Yang, S. A. Lanham, Y. Wang, M. Wang, S. Oruganti, and J. P. Kulkarni, 29.2 Snap-SAT: A One-Shot Energy-526

Performance-Aware All-Digital Compute-in-Memory Solver for Large-Scale Hard Boolean Satisfiability Problems, in 2023527

IEEE International Solid- State Circuits Conference (ISSCC) (IEEE, 2023) pp. 420–422.528

[13] D. Kim, N. M. Rahman, and S. Mukhopadhyay, PRESTO: A Processing-in-Memory-Based k -SAT Solver Using Recurrent529

Stochastic Neural Network With Unsupervised Learning, IEEE Journal of Solid-State Circuits 59, 2310 (2024).530

[14] T. Bhattacharya, D. Kwon, G. Hutchinson, X. Zhang, I. Rozada, and D. Strukov, A Fully Integrated Mixed-Signal531

Compute-In-Memory Accelerator for Solving Arbitrary Order Boolean Satisfiability Problems, in 2024 IEEE Symposium532

on VLSI Technology and Circuits (VLSI Technology and Circuits) (2025).533

[15] M. Soos, S. Gocht, and K. S. Meel, Tinted, detached, and lazy cnf-xor solving and its applications to counting and sampling,534

in International Conference on Computer Aided Verification (Springer, 2020) pp. 463–484.535

[16] W. Nawrocki, Z. Liu, A. Fröhlich, M. J. H. Heule, and A. Biere, Xor local search for boolean brent equations., in SAT ,536

Lecture Notes in Computer Science, Vol. 12831, edited by C.-M. Li and F. Manyà (Springer, 2021) pp. 417–435.537

[17] B. Andraschko, J. Danner, and M. Kreuzer, Sat solving using xor-or-and normal forms, Mathematics in Computer Science538

18, 1 (2024).539

[18] A. Nandi, S. Chakrabartty, and C. S. Thakur, Margin propagation based xor-sat solvers for decoding of ldpc codes, IEEE540

Transactions on Communications (2024).541

[19] E. Bellini, A. D. Piccoli, R. Makarim, S. Polese, L. Riva, and A. Visconti, New records of pre-image search of reduced542

sha-1 using sat solvers, in Proceedings of the Seventh International Conference on Mathematics and Computing: ICMC543

2021 (Springer, 2022) pp. 141–151.544

[20] G. S. Tseitin, On the complexity of derivation in propositional calculus, in Automation of Reasoning: 2: Classical Papers545

on Computational Logic 1967–1970 (Springer Berlin Heidelberg, Berlin, Heidelberg, 1983) pp. 466–483.546

[21] W. Nawrocki, Z. Liu, A. Fröhlich, M. J. Heule, and A. Biere, XOR local search for boolean brent equations, in Theory547

and Applications of Satisfiability Testing–SAT 2021: 24th International Conference, Barcelona, Spain, July 5-9, 2021,548

Proceedings 24 (Springer, 2021) pp. 417–435.549

[22] M. Soos, K. Nohl, and C. Castelluccia, Extending SAT solvers to cryptographic problems, in Theory and Applications550

of Satisfiability Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009.551

Proceedings, Lecture Notes in Computer Science, Vol. 5584, edited by O. Kullmann (Springer, 2009) pp. 244–257.552

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

12

[23] A. Sebastian, M. Le Gallo, K.-A. Riduan, and E. Evangelos, Memroy devices and applications for in-memory computing,553

Nature Nanotechnology 15, 529 (2020).554

[24] C. Zhu, A. C. Rucker, Y. Wang, and W. J. Dally, SatIn: Hardware for boolean satisfiability inference, arXiv preprint555

arXiv:2303.02588 (2023).556

[25] A. Canteaut and F. Chabaud, A new algorithm for finding minimum-weight words in a linear code: application to mceliece’s557

cryptosystem and to narrow-sense bch codes of length 511, IEEE Transactions on Information Theory 44, 367 (1998).558

[26] S. Mandrà, H. Munoz-Bauza, G. Mossi, and E. G. Rieffel, Generating hard ising instances with planted solutions using559

post-quantum cryptographic protocols, Future Generation Computer Systems , 107721 (2025).560

[27] J. Daemen and V. Rijmen, The Design of Rijndael : AES - The Advanced Encryption Standard, 1st ed., Information561

Security and Cryptography (Springer Berlin Heidelberg, Berlin, Heidelberg, 2002).562

[28] A. A. Kamal and A. M. Youssef, Applications of sat solvers to aes key recovery from decayed key schedule images, in 2010563

Fourth International Conference on Emerging Security Information, Systems and Technologies (2010) pp. 216–220.564

[29] A. Biere, T. Faller, K. Fazekas, M. Fleury, N. Froleyks, and F. Pollitt, CaDiCaL 2.0, in Computer Aided Verification -565

36th International Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024, Proceedings, Part I , Lecture Notes566

in Computer Science, Vol. 14681, edited by A. Gurfinkel and V. Ganesh (Springer, 2024) pp. 133–152.567

[30] B. Selman, H. Kautz, and B. Cohen, Noise strategies for improving local search, Proceedings of the National Conference568

on Artificial Intelligence 1 (1999).569

[31] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. (Prentice Hall, 2010).570

[32] M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura, and H. G. Katzgraber, Physics-inspired optimization571

for quadratic unconstrained problems using a digital annealer, Frontiers in Physics 7, 48 (2019).572

[33] T. Bhattacharya, G. H. Hutchinson, G. Pedretti, and D. Strukov, Ho-fpia: High-order field-programmable ising arrays with573

in-memory computing, in 2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (IEEE, 2024) pp. 252–259.574

[34] T. Bhattacharya, G. H. Hutchinson, G. Pedretti, X. Sheng, J. Ignowski, T. Van Vaerenbergh, R. Beausoleil, J. P. Strachan,575

and D. B. Strukov, Computing high-degree polynomial gradients in memory, Nature Communications 15, 8211 (2024).576

[35] A. Heittmann, M. Hizzani, and J. P. Strachan, Impact of variability compensation on the performance of an rram-based577

3-sat solver, in 2025 IEEE International Symposium on Circuits and Systems (ISCAS) (2025) pp. 1–5.578

[36] C. Li, J. Ignowski, X. Sheng, R. Wessel, B. Jaffe, J. Ingemi, C. Graves, and J. P. Strachan, Cmos-integrated nanoscale579

memristive crossbars for cnn and optimization acceleration, in 2020 IEEE International Memory Workshop (IMW) (IEEE,580

2020) pp. 1–4.581

[37] X. Sheng, C. E. Graves, S. Kumar, X. Li, B. Buchanan, L. Zheng, S. Lam, C. Li, and J. P. Strachan, Low-conductance582

and multilevel cmos-integrated nanoscale oxide memristors, Advanced electronic materials 5, 1800876 (2019).583

[38] J. M. Crawford, M. J. Kearns, and R. E. Schapire, The minimal disagreement parity problem as a hard satisfiability584

problem, Computational Intell. Research Lab and AT&T Bell Labs TR (1994).585

[39] G. Pedretti, E. Ambrosi, and D. Ielmini, Conductance variations and their impact on the precision of in-memory computing586

with resistive switching memory (rram), in 2021 IEEE International Reliability Physics Symposium (IRPS) (2021) pp. 1–8.587

[40] M. Rao, H. Tang, J. Wu, W. Song, M. Zhang, W. Yin, Y. Zhuo, F. Kiani, B. Chen, X. Jiang, et al., Thousands of588

conductance levels in memristors integrated on cmos, Nature 615, 823 (2023).589

[41] A. Biere, arminbiere/kissat: Release 4.0.0 (2024), https://github.com/arminbiere/kissat.590

[42] J. Stern, A new identification scheme based on syndrome decoding, in Lecture Notes in Computer Science (Springer Berlin591

Heidelberg, 1994) p. 13–21.592

[43] D. Dobrynin, A. Renaudineau, M. Hizzani, D. Strukov, M. Mohseni, and J. P. Strachan, Energy landscapes of combinatorial593

optimization in Ising machines, Phys. Rev. E 110, 045308 (2024).594

[44] F. Cai, S. Kumar, T. Van Vaerenbergh, X. Sheng, R. Liu, C. Li, Z. Liu, M. Foltin, S. Yu, Q. Xia, J. J. Yang, R. Beausoleil,595

W. D. Lu, and J. P. Strachan, Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural596

networks, Nature Electronics 3, 409 (2020).597

[45] S. Ambrogio, P. Narayanan, A. Okazaki, A. Fasoli, C. Mackin, K. Hosokawa, A. Nomura, T. Yasuda, A. Chen, A. Friz,598

M. Ishii, J. Luquin, Y. Kohda, N. Saulnier, K. Brew, S. Choi, I. Ok, T. Philip, V. Chan, C. Silvestre, I. Ahsan, V. Narayanan,599

H. Tsai, and G. W. Burr, An analog-ai chip for energy-efficient speech recognition and transcription, Nature 620, 768.600

[46] M. Soos and K. S. Meel, Gaussian Elimination Meets Maximum Satisfiability, in Proceedings of the 18th International601

Conference on Principles of Knowledge Representation and Reasoning (2025).602

[47] X. Zhang, I. Rozada, F. Böhm, E. Valiante, M. Noori, T. Van Vaerenbergh, C.-W. Yang, G. Pedretti, M. Mohseni, and603

R. Beausoleil, Distributed binary optimization with in-memory computing: An application for the sat problem, arXiv604

preprint arXiv:2409.09152 (2024).605

[48] M. Soos, J. Devriendt, S. Gocht, A. Shaw, and K. S. Meel, Cryptominisat with CCAnr at the sat competition 2020, SAT606

COMPETITION 2020, 27 (2020).607

[49] M. Soos, B. Selman, H. Kautz, J. Devriendt, and S. Gocht, Cryptominisat with walksat at the sat competition 2020, SAT608

COMPETITION 2020 , 29 (2020).609

[50] M. Lo, M.-C. F. Chang, and J. Cong, SAT-Accel: A modern sat solver on a FPGA, in Proceedings of the 2025 ACM/SIGDA610

International Symposium on Field Programmable Gate Arrays, FPGA ’25 (Association for Computing Machinery, New611

York, NY, USA, 2025) p. 234–246.612

[51] D. J. Bernstein, T. Lange, and C. Peters, Attacking and defending the mceliece cryptosystem, in Post-Quantum Cryptog-613

raphy, edited by J. Buchmann and J. Ding (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008) pp. 31–46.614

[52] R. J. McEliece, A Public-Key Cryptosystem Based On Algebraic Coding Theory, Deep Space Network Progress Report615

44, 114 (1978).616

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

13

[53] H. Niederreiter, Knapsack-type cryptosystems and algebraic coding theory, Prob. Contr. Inform. Theory 15, 157 (1986).617

[54] National Institute of Standards and Technology, Post-quantum cryptography candidates to be standardized and618

round 4 of the nist post-quantum cryptography standardization process, https://csrc.nist.gov/news/2022/619

pqc-candidates-to-be-standardized-and-round-4 (2022), nIST news page; Accessed: 2025-02-13.620

[55] N. Patterson, The algebraic decoding of goppa codes, IEEE Transactions on Information Theory 21, 203 (1975).621

[56] S. Mandra, A. Akbari Asanjan, L. Brady, A. Lott, D. E. Bernal Neira, and H. Munoz Bauza, PySA: Fast Simulated622

Annealing in Native Python (2023), https://github.com/nasa/pysa.623

[57] H. Im, F. Bohm, G. Pedretti, N. Kushida, M. Noori, E. Valiante, X. Zhang, C. W. Yang, T. Bhattacharya, J. Ignowski,624

A. Heittmann, J. P. Strachan, M. Mohseni, R. Beausoleil, T. Van Vaerenbergh, S. Xia, and I. Rozada, Dataset for ac-625

celerating hybrid xor–cnf sat problems natively with in-memory computing, https://doi.org/10.5281/zenodo.18235974626

(2026), zenodo data repository.627

[58] J. Chen, XORSAT: An efficient algorithm for the dimacs 32-bit parity problem, ArXiv abs/cs/0703006 (2007).628

[59] Dimacs instance repository, http://archive.dimacs.rutgers.edu/pub/challenge/sat/benchmarks/cnf/.629

[60] B. M.P. and K. R. Babu, Secure cloud storage using aes encryption, in 2016 International Conference on Automatic Control630

and Dynamic Optimization Techniques (ICACDOT) (2016) pp. 859–864.631

[61] A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz, eds., Proceedings of SAT Challenge 2012 : Solver632

and Benchmark Descriptions (University of Helsinki, 2012).633

[62] A. Ignatiev, A. Morgado, and J. Marques-Silva, PySAT: A Python toolkit for prototyping with SAT oracles, in SAT (2018)634

pp. 428–437.635

[63] M. Noori, E. Valiante, T. V. Vaerenbergh, M. Mohseni, and I. Rozada, A statistical analysis for per-instance evaluation636

of stochastic optimizers: How many repeats are enough? (2025), https://arxiv.org/abs/2503.16589, arXiv:2503.16589637

[cs.LG].638

[64] A. van de Ven and et al., Powertop, https://github.com/fenrus75/powertop, version 2.15.639

[65] B. Murmann, ADC Performance Survey 1997-2024, available: https://github.com/bmurmann/ADC-survey.640

[66] T. Andrulis, Accelergy ADC Plug-In, available: https://github.com/Accelergy-Project/accelergy-adc-plug-in.641

[67] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar,642

Isaac: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars, ACM SIGARCH Computer643

Architecture News 44, 14 (2016).644

ACKNOWLEDGEMENTS645

The authors thank our editor, Marko Bucyk, for his careful review and editing of the manuscript, and Dmitri646

Strukov for discussions on XOR hardware architectures. This material is based upon work supported by the Defense647

Advanced Research Projects Agency (DARPA) through Air Force Research Laboratory Agreement No. FA8650-23-648

3-7313. The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as649

representing the official views or policies of the Department of Defense or the U.S. Government.650

AUTHOR CONTRIBUTIONS651

H.I. and F.B. contributed equally to this work and are recognized co-first authors. H.I. and F.B. wrote the652

manuscript. H.I., N.K., and T.B. performed algorithm designs. M.N. and E.V. analyzed the numeric results. H.I.,653

X.Z., and C.-W.Y. conducted the corresponding numeric benchmarking simulation. A.H. performed circuit and654

architectural simulations. X.S., J.I., and J.P.S. contributed to the memristor fabrication and experimental system655

development. G.P. and T.V.V. conceived the idea of asserting XOR clauses with in-memory computing. F.B. derived656

the hardware architecture, conducted the hardware modelling and energy simulations, and performed the hardware657

experiments. I.R. conceived the main idea of the XOR–CNF use case. I.R., T.V.V., J.P.S., M.M., and R.B. supervised658

and led the collaboration effort. All authors analyzed and discussed the results.659

COMPETING INTERESTS660

The authors declare no competing interests.661

TABLES662

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

14

1: function WalkSAT-XNF(noise level, clauses, max iter)
2: configuration ← assign binary values
3: iter ← 0
4: while iter ≤ max iter do
5: U ← {variable: variable in unsatisfied clauses}
6: for variable ∈ U do
7: gainvariable ← Compute Gain Value(variable, configuration, clauses)
8: noisy gainvariable ← gainvariable + noise level·e, e ∼ N (0, 1)
9: end for

10: variable to flip ← argmax{noisy gainvariable: variable ∈ U}
11: configuration[variable to flip] ← flip configuration[variable to flip]
12: if all clauses evaluated at configuration are satisfied then
13: return TRUE ▷ The instance is satisfiable
14: end if
15: iter ← iter + 1
16: end while
17: return FALSE ▷ Solution is not found
18: end function

19: function Compute Gain Value(variable, configuration, clauses)
20: C ← clauses
21: break count ← 0
22: make count ← 0
23: for C ∈ {clause: clause in C connected to variable} do
24: N ← number of true literals in C evaluated at configuration
25: if C is CNF clause then
26: if N = 0 then
27: make count ← make count + 1
28: end if
29: if N = 1 then
30: break count ← break count + 1
31: end if
32: else if C is XOR clause then
33: if N is even then ▷ Currently violated
34: make count ← make count + 1
35: else if N is odd then ▷ Currently satisfiable
36: break count ← break count + 1
37: end if
38: end if
39: end for
40: return make count − break count
41: end function

TABLE 1: WalkSAT-XNF Heuristic

FIGURE CAPTIONS663

Figure 1: Mapping advantages of hybrid XOR–CNF problems over pure CNF problems (a) XNF SAT664

instance containing CNF and XOR clauses and a solution that certifies its satisfiability. (b) Strategies for converting665

CNF instances to XNF instances. (c) Average variable and clause compression ratio obtained by the preprocessing666

strategies on three classes of XNF problems. Error bars show the standard deviation. (d) Advantages in iterations-to-667

solution for the WalkSAT-XNF heuristic when comparing different problem representations to the CNF formulation.668

The box-and-whisker plots shows the median and interquartile range.669

Figure 2: Hardware architecture for an in-memory XOR–CNF solver accelerator Hardware architecture670

for implementing WalkSAT-XNF with IMC. An iteration of WalkSAT-XNF is performed sequentially by a register671

(1), a clause lookup crossbar array (2), clause evaluation circuits (3), a make and break computation crossbar array672

(4), a gradient computation (5), a winner-takes-all circuit (6), and a variable flip (7). The function of these elements673

is shown for the example SAT problem in Fig. 1a and an initial variable assignment x1 = 1, x2 = 1, x3 = 0, and674

x4 = 1.675

Figure 3: Experimental demonstration of WalkSAT-XNF on TaOx memristor crossbar arrays (a)676

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

15

(a)
xnfSAT CryptoMiniSat

∆ TTS ∆ ETS Solved(%) ∆ TTS ∆ ETS Solved(%)

McEliece
3.1 · 105
(6.7 · 105)

8.0 · 107
(1.7 · 108) 100

10.5
(3.9)

2.7 · 103
(972.1)

100

MDP
758

(2.0 · 104)
5.3 · 105
(2.2 · 106) 87.5

0.7
(229.5)

72.5
(9.4 · 104) 100

AES
6.1 · 105
(6.1 · 105)

6.0 · 107
(6.0 · 107) 100

0.13
(0.02)

12.5
(1.8)

100

all
4.2 · 104
(5.9 · 105)

8.3 · 108
(6.3 · 1019) 95

9.1
(13.0)

2.3 · 103
(3.3 · 103) 100

(b)
WalkSAT-SKC Kissat

∆ TTS ∆ ETS Solved(%) ∆ TTS ∆ ETS Solved(%)

McEliece
145.8
(51.6)

3.8 · 104
(1.4 · 104) 100

17.6
(7.8)

4.6 · 103
(2.0 · 103) 100

MDP
2.2 · 106

(1.5 · 1018)
2.5 · 108

(1.6 · 1020) 62.5
4.5

(334.5)

488.3
(1.4 · 105) 100

AES
1.2 · 103
(84.1)

1.1 · 105
(8.3 · 103) 100

0.2
(0.1)

21.6
(7.0)

100

all
197.3

(7.9 · 104)
5.9 · 104
(9.1 · 106) 85

13.5
(19.9)

3.4 · 103
(5.4 · 103) 100

TABLE 2: Performance comparison of XOR–CNF and CNF solvers relative to WalkSAT-XNF Median
time-to-solution (∆ TTS) and energy-to-solution (∆ ETS) relative to WalkSAT-XNF as well as percentage of solved

instances for hybrid XOR–CNF solvers (a) xnfSAT and CrytoMiniSat and CNF solvers (b) WalkSAT-SKC and
Kissat. The IQR is shown in brackets.

Class
CNF CNF-PP XNF XNF-PP

kmax dCNF dXOR kmax dCNF dXOR kmax dCNF dXOR kmax dCNF dXOR

McEliece 3 1.55 – 5 2.56 – 13 1.93 3.44 13 10.31 18.97
MDP 3 2.52 – 6 2.97 – 13 4.17 7.90 15 9.28 13.57
AES 5 0.82 – 5 0.97 – 14 1.43 3.57 12 3.25 5.16

TABLE 3: Clause densities across problem representations Maximum number of literals per clause kmax and
average clause densities (in %) dCNF/XOR for CNF and XOR clauses for the different problem representations

Conductance map of the memristor crossbar arrays used for clause evaluation (array 1) and make and break value677

computations (array 2). (b) Histogram of the conductance values in array 1. (c) Histogram of the output currents of678

array 1 for 400 random variable assignments. The histogram is split and coloured according to the expected number679

of true literals. Vertical lines indicate the discretization levels applied for clause evaluation. (d) Cumulative success680

rate when solving the par-8-1-c problem instance when implemented experimentally in the memristor crossbar arrays681

and simulations of WalkSAT-XNF heuristic presented in Table 1 for the noise σ = 2.5. (e) Comparison of iterations-682

to-solution values for different noise levels between experiments and simulations. Error bars for (d) and (e) depict the683

standard error [63].684

Figure 4: Energy and area advantages of hybrid XOR–CNF formulations for in-memory hardware685

accelerators (a) Relative crossbar area between XNF and CNF benchmarking instances. (b) Average energy per686

iteration of WalkSAT-XNF for XNF and CNF benchmarking instances. (c) and (d) Relative contribution of the687

different hardware components to the energy consumption for the CNF and XNF representations of the benchmarking688

instances McEliece (c) and MDP (d).689

Figure 5: Comparison of energy-to-solution and time-to-solution for hybrid XOR–CNF and pure690

CNF problems (a) Relative speedup of XNF over CNF (top) and TTS for the XNF and CNF representations691

(bottom) for the benchmarking instances using WalkSAT-XNF. (b) Relative energy advantage (top) and ETS for the692

XNF and CNF representations (bottom) for the benchmarking instances using WalkSAT-XNF. No data is shown for693

p-16-5, as no solution was found for the CNF representation.694

Figure 6: Benchmark of energy-to-solution and time-to-solution against state-of-the-art SAT solvers695

(a) TTS and ETS benchmarking results comparing WalkSAT-XNF with the native XNF solvers xnfSAT and696

CryptoMiniSat. (b) TTS and ETS benchmarking results comparing WalkSAT-XNF to the CNF-native solvers697

WalkSAT-SKC and Kissat.698

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

16

Algorithm Parameter Formulation
Instance

McEliece MDP AES

WalkSAT-XNF Noise (σ)
CNF 2.5 2.5 1.0
XNF 3.0 2.5 1.5

(a) Noise parameter for WalkSAT-XNF

Solvers ETS Estimate

WalkSAT-XNF average joules per iteration × ITS
CryptoMiniSat, Kissat, WalkSAT-SKC 1.5 watts × TTS

(b) ETS estimates used for solvers

TABLE 4: Solver parameters and energy-to-solution (ETS) estimation methodology (a) Noise
parameter (σ) used for WalkSAT-XNF across different problem formulations and instances. (b) Calculation

methodology for energy-to-solution (ETS) estimates for benchmarking solvers.

FIGURES699

ℱXNF= (𝑥𝑥2∨𝑥𝑥3) ⋀ (𝑥𝑥1∨𝑥𝑥3) ⋀ (𝑥𝑥1∨𝑥𝑥2∨𝑥𝑥3) ⋀ (𝑥𝑥1⊕𝑥𝑥2⊕𝑥𝑥3) ⋀ (𝑥𝑥3⊕𝑥𝑥4)
with 𝑥𝑥1=1, 𝑥𝑥2=0, 𝑥𝑥3=0, 𝑥𝑥4=1ℱXNF= (1∨0) ⋀ (1∨0) ⋀ (1∨1∨1) ⋀ (1⊕0⊕0) ⋀ (0⊕1) = 1

CNF clauses

XOR clauses

literal

solution

CNF

CNF-
PPPySat

preprocessor
XNF
converter

XNF-
PP

XNF
XNF
converter

(a) (b) (d)

(c)

FIG. 1

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

17

 1.8 1.3 -0.8

𝑥𝑥1⊕𝑥𝑥2⊕𝑥𝑥3𝑥𝑥3⊕𝑥𝑥4𝑥𝑥2∨𝑥𝑥3𝑥𝑥1∨𝑥𝑥3𝑥𝑥1∨𝑥𝑥2∨𝑥𝑥3
𝑥𝑥1 𝑥𝑥1 𝑥𝑥2 𝑥𝑥2 𝑥𝑥3 𝑥𝑥3 𝑥𝑥4 𝑥𝑥4

1 0 1 0 0 1 1 0

1 1 0 1

2

1

0

1

2

ON-STATE
b13=1

OFF-STATE
b18=0 A

D
C

LSB Break
input

Make
input 1 / 0

0 / 1

1 / 0 1 / 0 1 / 1 0 / 1

1 / 0

0 / 1

0 / 0

0 / 1 1 / 0 1 / 0 0 / 0

+ +
=0?

=1? Break
input

Make
input

+ +

+ + + +
Make / Break

XOR evaluation

CNF evaluation
𝑥𝑥1x 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4𝑥𝑥2 𝑥𝑥3 𝑥𝑥4x x x x x x x

1 1

-0.1

2 0 2 1 0 11 0 1 0 0 1 1 0

1

2 3 4

5
Find violated
clauses

Calculate
gradients

Flip highest
gradient

Variable
assignment𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

67 0

1

0

0

W
T
A

N
o
i
s
e

+ + + +
-0.1

 1.8

 1.3

-0.8

0

1

0

0

1

1

0

1

𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4
1

0

0

1

𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4

__ _ _

FIG. 2

0 20

Row index

Array #2

0

25

50

75

100

C
o
n
d
u
c
t
a
n
c
e

(
µ
S
)

0 20

Column index

0

10

20

30

40

R
o
w

i
n
d
e
x

Array #1

0 50 100 150

Array #1 conductances (µS)

10

0

10

1

10

2

10

3

H
i
s
t
o
g
r
a
m

c
o
u
n
t

ON-state

OFF-state

0 1 2 3 4

Array #1 output current (µA)

0

1000

2000

H
i
s
t
o
g
r
a
m

c
o
u
n
t

H=0

H=1

H=2

H=3

H=4

0 2 4

Satisfied literals

10

0

10

1

10

2

10

3

Solver iteration

0.0

0.5

1.0

S
u
c
c
e
s
s

r
a
t
e

experiment

simulation

0 1 2 3 4

Noise std. dev.

150

200

250

300

350

400

450

500

550

600

I
t
e
r
a
t
i
o
n
s
-
t
o
-
s
o
l
u
t
i
o
n

I
T
S

9
9
,
o
p
t

simulation

experiment

(a)

(b)

(c)

(d)

(e)

FIG. 3

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

18

0

5

10

15

A
r
e
a

a
d
v
a
n
t
a
g
e

o
v
e
r

C
N
F

M
c
E
-
0

M
c
E
-
1

M
c
E
-
2

M
c
E
-
3

M
c
E
-
4

M
c
E
-
5

M
c
E
-
6

M
c
E
-
7

M
c
E
-
8

M
c
E
-
9

p
-
8
-
1

p
-
8
-
2

p
-
8
-
3

p
-
1
6
-
1

p
-
1
6
-
2

p
-
1
6
-
3

p
-
1
6
-
4

p
-
1
6
-
5

A
E
S
-
1

A
E
S
-
2

10

11

10

10

E
n
e
r
g
y

p
e
r

i
t
e
r
a
t
i
o
n

(
J
)

CNF XNF

CNF

90 pJ/it.

2%

9%

80%

5%

3%

XNF

 33 pJ/it.

1%

7%

52%

5%

34%

WTA

make/break

array

PRNG

clause

array

evaluation

CNF

243 pJ/it.

2%

9%

81%

5%

3%

XNF

81 pJ/it.

1%

8%

60%

7%

23%

(a)

(b)

(c)

(d)

FIG. 4

M
c
E
-
0

M
c
E
-
1

M
c
E
-
2

M
c
E
-
3

M
c
E
-
4

M
c
E
-
5

M
c
E
-
6

M
c
E
-
7

M
c
E
-
8

M
c
E
-
9

p
-
8
-
1

p
-
8
-
2

p
-
8
-
3

p
-
1
6
-
1

p
-
1
6
-
2

p
-
1
6
-
3

p
-
1
6
-
4

p
-
1
6
-
5

A
E
S
-
1

A
E
S
-
2

10

4

10

2

10

0

10

2

T
i
m
e
-
t
o
-
s
o
l
u
t
i
o
n

(
s
)

CNF XNF

10

1

10

3

10

5

T
i
m
e

a
d
v
a
n
t
a
g
e

o
v
e
r

C
N
F

M
c
E
-
0

M
c
E
-
1

M
c
E
-
2

M
c
E
-
3

M
c
E
-
4

M
c
E
-
5

M
c
E
-
6

M
c
E
-
7

M
c
E
-
8

M
c
E
-
9

p
-
8
-
1

p
-
8
-
2

p
-
8
-
3

p
-
1
6
-
1

p
-
1
6
-
2

p
-
1
6
-
3

p
-
1
6
-
4

p
-
1
6
-
5

A
E
S
-
1

A
E
S
-
2

10

6

10

3

10

0

E
n
e
r
g
y
-
t
o
-
s
o
l
u
t
i
o
n

(
J
)

CNF XNF

10

1

10

3

10

5

E
n
e
r
g
y

a
d
v
a
n
t
a
g
e

o
v
e
r

C
N
F

(a) (b)

FIG. 5

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

19

10

4

10

1

10

2

10

5

T
T
S

W

a
l
k
S
A
T
-
X
N
F

(
s
)

10

3

10

1

10

5

TTS xnfSAT (s)

10

3

10

1

10

5

TTS CryptoMiniSat (s)

10

5

10

1

10

3

10

7

ETS xnfSAT (J)

10

6

10

3

10

0

10

3

10

6

E
T
S

W

a
l
k
S
A
T
-
X
N
F

(
J
)

McEliece

MDP

AES

10

5

10

1

10

3

10

7

ETS CryptoMiniSat (J)

W

a

l

k

S

A

T

-

X

N

F

i

s

w

o

r

s

e

W

a

l

k

S

A

T

-

X

N

F

i

s

b

e

t

t

e

r

1

0

0

x

b

e

t

t

e

r

10

4

10

1

10

2

10

5

T
T
S

W

a
l
k
S
A
T
-
X
N
F

(
s
)

10

3

10

1

10

5

TTS WalkSAT-SKC (s)

10

3

10

1

10

5

TTS Kissat (s)

10

5

10

1

10

3

10

7

ETS WalkSAT-SKC (J)

10

6

10

3

10

0

10

3

10

6

E
T
S

W

a
l
k
S
A
T
-
X
N
F

(
J
)

McEliece

MDP

AES

10

5

10

1

10

3

10

7

ETS Kissat (J)

W

a

l

k

S

A

T

-

X

N

F

i

s

w

o

r

s

e

W

a

l

k

S

A

T

-

X

N

F

i

s

b

e

t

t

e

r

1

0

0

x

b

e

t

t

e

r

(a) (b)

FIG. 6

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

ℱXNF= (𝑥𝑥2∨𝑥𝑥3) ⋀ (𝑥𝑥1∨𝑥𝑥3) ⋀ (𝑥𝑥1∨𝑥𝑥2∨𝑥𝑥3) ⋀ (𝑥𝑥1⊕𝑥𝑥2⊕𝑥𝑥3) ⋀ (𝑥𝑥3⊕𝑥𝑥4)
with 𝑥𝑥1=1, 𝑥𝑥2=0, 𝑥𝑥3=0, 𝑥𝑥4=1ℱXNF= (1∨0) ⋀ (1∨0) ⋀ (1∨1∨1) ⋀ (1⊕0⊕0) ⋀ (0⊕1) = 1

CNF clauses

XOR clauses

literal

solution

CNF

CNF-
PPPySat

preprocessor
XNF
converter

XNF-
PP

XNF
XNF
converter

(a) (b) (d)

(c)

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 1.8 1.3 -0.8

𝑥𝑥1⊕𝑥𝑥2⊕𝑥𝑥3𝑥𝑥3⊕𝑥𝑥4𝑥𝑥2∨𝑥𝑥3𝑥𝑥1∨𝑥𝑥3𝑥𝑥1∨𝑥𝑥2∨𝑥𝑥3
𝑥𝑥1 𝑥𝑥1 𝑥𝑥2 𝑥𝑥2 𝑥𝑥3 𝑥𝑥3 𝑥𝑥4 𝑥𝑥4

1 0 1 0 0 1 1 0

1 1 0 1

2

1

0

1

2

ON-STATE
b13=1

OFF-STATE
b18=0 A

D
C

LSB Break
input

Make
input 1 / 0

0 / 1

1 / 0 1 / 0 1 / 1 0 / 1

1 / 0

0 / 1

0 / 0

0 / 1 1 / 0 1 / 0 0 / 0

+ +
=0?

=1? Break
input

Make
input

+ +

+ + + +
Make / Break

XOR evaluation

CNF evaluation
𝑥𝑥1x 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4𝑥𝑥2 𝑥𝑥3 𝑥𝑥4x x x x x x x

1 1

-0.1

2 0 2 1 0 11 0 1 0 0 1 1 0

1

2 3 4

5
Find violated
clauses

Calculate
gradients

Flip highest
gradient

Variable
assignment𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

67 0

1

0

0

W
T
A

N
o
i
s
e

+ + + +
-0.1

 1.8

 1.3

-0.8

0

1

0

0

1

1

0

1

𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4
1

0

0

1

𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4

__ _ _

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

0 20

Row index

Array #2

0

25

50

75

100

C
o
n
d
u
c
t
a
n
c
e

(
µ
S
)

0 20

Column index

0

10

20

30

40

R
o
w

i
n
d
e
x

Array #1

0 50 100 150

Array #1 conductances (µS)

10

0

10

1

10

2

10

3

H
i
s
t
o
g
r
a
m

c
o
u
n
t

ON-state

OFF-state

0 1 2 3 4

Array #1 output current (µA)

0

1000

2000

H
i
s
t
o
g
r
a
m

c
o
u
n
t

H=0

H=1

H=2

H=3

H=4

0 2 4

Satisfied literals

10

0

10

1

10

2

10

3

Solver iteration

0.0

0.5

1.0

S
u
c
c
e
s
s

r
a
t
e

experiment

simulation

0 1 2 3 4

Noise std. dev.

150

200

250

300

350

400

450

500

550

600

I
t
e
r
a
t
i
o
n
s
-
t
o
-
s
o
l
u
t
i
o
n

I
T
S

9
9
,
o
p
t

simulation

experiment

(a)

(b)

(c)

(d)

(e)

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

0

5

10

15

A
r
e
a

a
d
v
a
n
t
a
g
e

o
v
e
r

C
N
F

M
c
E
-
0

M
c
E
-
1

M
c
E
-
2

M
c
E
-
3

M
c
E
-
4

M
c
E
-
5

M
c
E
-
6

M
c
E
-
7

M
c
E
-
8

M
c
E
-
9

p
-
8
-
1

p
-
8
-
2

p
-
8
-
3

p
-
1
6
-
1

p
-
1
6
-
2

p
-
1
6
-
3

p
-
1
6
-
4

p
-
1
6
-
5

A
E
S
-
1

A
E
S
-
2

10

11

10

10

E
n
e
r
g
y

p
e
r

i
t
e
r
a
t
i
o
n

(
J
)

CNF XNF

CNF

90 pJ/it.

2%

9%

80%

5%

3%

XNF

 33 pJ/it.

1%

7%

52%

5%

34%

WTA

make/break

array

PRNG

clause

array

evaluation

CNF

243 pJ/it.

2%

9%

81%

5%

3%

XNF

81 pJ/it.

1%

8%

60%

7%

23%

(a)

(b)

(c)

(d)

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

M
c
E
-
0

M
c
E
-
1

M
c
E
-
2

M
c
E
-
3

M
c
E
-
4

M
c
E
-
5

M
c
E
-
6

M
c
E
-
7

M
c
E
-
8

M
c
E
-
9

p
-
8
-
1

p
-
8
-
2

p
-
8
-
3

p
-
1
6
-
1

p
-
1
6
-
2

p
-
1
6
-
3

p
-
1
6
-
4

p
-
1
6
-
5

A
E
S
-
1

A
E
S
-
2

10

4

10

2

10

0

10

2

T
i
m
e
-
t
o
-
s
o
l
u
t
i
o
n

(
s
)

CNF XNF

10

1

10

3

10

5

T
i
m
e

a
d
v
a
n
t
a
g
e

o
v
e
r

C
N
F

M
c
E
-
0

M
c
E
-
1

M
c
E
-
2

M
c
E
-
3

M
c
E
-
4

M
c
E
-
5

M
c
E
-
6

M
c
E
-
7

M
c
E
-
8

M
c
E
-
9

p
-
8
-
1

p
-
8
-
2

p
-
8
-
3

p
-
1
6
-
1

p
-
1
6
-
2

p
-
1
6
-
3

p
-
1
6
-
4

p
-
1
6
-
5

A
E
S
-
1

A
E
S
-
2

10

6

10

3

10

0

E
n
e
r
g
y
-
t
o
-
s
o
l
u
t
i
o
n

(
J
)

CNF XNF

10

1

10

3

10

5

E
n
e
r
g
y

a
d
v
a
n
t
a
g
e

o
v
e
r

C
N
F

(a) (b)

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

10

4

10

1

10

2

10

5

T
T
S

W

a
l
k
S
A
T
-
X
N
F

(
s
)

10

3

10

1

10

5

TTS xnfSAT (s)

10

3

10

1

10

5

TTS CryptoMiniSat (s)

10

5

10

1

10

3

10

7

ETS xnfSAT (J)

10

6

10

3

10

0

10

3

10

6

E
T
S

W

a
l
k
S
A
T
-
X
N
F

(
J
)

McEliece

MDP

AES

10

5

10

1

10

3

10

7

ETS CryptoMiniSat (J)

W

a

l

k

S

A

T

-

X

N

F

i

s

w

o

r

s

e

W

a

l

k

S

A

T

-

X

N

F

i

s

b

e

t

t

e

r

1

0

0

x

b

e

t

t

e

r

10

4

10

1

10

2

10

5

T
T
S

W

a
l
k
S
A
T
-
X
N
F

(
s
)

10

3

10

1

10

5

TTS WalkSAT-SKC (s)

10

3

10

1

10

5

TTS Kissat (s)

10

5

10

1

10

3

10

7

ETS WalkSAT-SKC (J)

10

6

10

3

10

0

10

3

10

6

E
T
S

W

a
l
k
S
A
T
-
X
N
F

(
J
)

McEliece

MDP

AES

10

5

10

1

10

3

10

7

ETS Kissat (J)

W

a

l

k

S

A

T

-

X

N

F

i

s

w

o

r

s

e

W

a

l

k

S

A

T

-

X

N

F

i

s

b

e

t

t

e

r

1

0

0

x

b

e

t

t

e

r

(a) (b)

