Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Natural hyperbolicity of hexagonal boron nitride in the deep ultraviolet
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 17 February 2026

Natural hyperbolicity of hexagonal boron nitride in the deep ultraviolet

  • Bongjun Choi  ORCID: orcid.org/0000-0002-4776-35371,
  • Jason Lynch  ORCID: orcid.org/0009-0008-5929-24111,
  • Wangleong Chen2,
  • Seong-Joon Jeon3,4,
  • Hyungseob Cho3,4,
  • Kyungmin Yang1,
  • Jonghwan Kim  ORCID: orcid.org/0000-0002-7646-32693,4,5,
  • Nader Engheta1,2,6,7 &
  • …
  • Deep Jariwala  ORCID: orcid.org/0000-0002-3570-87681,2 

Nature Communications , Article number:  (2026) Cite this article

  • 500 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Nanophotonics and plasmonics
  • Polaritons

Abstract

Hyperbolic media enable unique optical phenomena including hyperlensing, negative refraction, enhanced photonic density of states (PDOS), and highly confined polaritons. While most hyperbolic media are artificially engineered metamaterials, certain natural materials with extreme anisotropy can exhibit hyperbolic dispersion. Here, based on experimental evidence and theoretical fitting estimates to the experimental data, we suggest the presence of natural hyperbolic dispersion in hexagonal boron nitride (hBN) in the deep-ultraviolet (DUV) regime, induced by strong, anisotropic exciton resonances. Using all-optical imaging spectroscopic ellipsometry (ISE), we characterize the complex dielectric function along in-plane and out-of-plane directions down to 190 nm (6.53 eV), revealing a potential type-II hyperbolic window in the DUV regime. We predict that hyperbolicity supports hyperbolic exciton polaritons (HEP) with high directionality and slow group velocity, as confirmed by numerical calculations. Our findings suggest hBN as a platform for nanophotonic applications in the technologically significant DUV spectral range.

Similar content being viewed by others

Boundary-induced excitation of higher-order hyperbolic phonon polaritons

Article 03 October 2025

Hyperbolic dispersion and low-frequency plasmons in electrides

Article Open access 29 September 2025

Hyperbolic optics and superlensing in room-temperature KTN from self-induced k-space topological transitions

Article Open access 13 December 2021

Data availability

Relevant data supporting the key findings of this study are available within the article and the Supplementary Information file. All raw data generated during the current study are available from the corresponding authors upon request.

References

  1. Sreekanth, K. V. et al. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 15, 621–627 (2016).

    Google Scholar 

  2. Sternbach, A. et al. Programmable hyperbolic polaritons in van der Waals semiconductors. Science 371, 617–620 (2021).

    Google Scholar 

  3. Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686–1686 (2007).

    Google Scholar 

  4. Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nat. Photonics 7, 948–957 (2013).

    Google Scholar 

  5. Krishnamoorthy, H. N., Jacob, Z., Narimanov, E., Kretzschmar, I. & Menon, V. M. Topological transitions in metamaterials. Science 336, 205–209 (2012).

    Google Scholar 

  6. Yang, X., Yao, J., Rho, J., Yin, X. & Zhang, X. Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nat. Photonics 6, 450–454 (2012).

    Google Scholar 

  7. Lynch, J. et al. High-temperature-resilient hyperbolicity in a mixed-dimensional superlattice. Matter 8, 102290 (2025).

    Google Scholar 

  8. Salandrino, A. & Engheta, N. Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations. Phys. Rev. B. Condens. Matter Mater. Phys. 74, 075103 (2006).

    Google Scholar 

  9. Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006).

    Google Scholar 

  10. Hoffman, A. J. et al. Negative refraction in semiconductor metamaterials. Nat. Mater. 6, 946–950 (2007).

    Google Scholar 

  11. Poddubny, A. N., Belov, P. A. & Kivshar, Y. S. Spontaneous radiation of a finite-size dipole emitter in hyperbolic media. Phys. Rev. A At. Mol. Opt. Phys. 84, 023807 (2011).

    Google Scholar 

  12. Choi, B. et al. Giant optical anisotropy in 2D metal–organic chalcogenates. ACS Nano 18, 25489–25498 (2024).

    Google Scholar 

  13. Zhang, H. et al. Cavity-enhanced linear dichroism in a van der Waals antiferromagnet. Nat. Photonics 16, 311–317 (2022).

    Google Scholar 

  14. Grudinin, D. et al. Hexagonal boron nitride nanophotonics: a record-breaking material for the ultraviolet and visible spectral ranges. Mater. Horiz. 10, 2427–2435 (2023).

    Google Scholar 

  15. Wang, H. et al. Planar hyperbolic polaritons in 2D van der Waals materials. Nat. Commun. 15, 69 (2024).

    Google Scholar 

  16. Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    Google Scholar 

  17. Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    Google Scholar 

  18. Wang, C. et al. Van der Waals thin films of WTe2 for natural hyperbolic plasmonic surfaces. Nat. Commun. 11, 1158 (2020).

    Google Scholar 

  19. Wang, F. et al. Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus. Nat. Commun. 12, 5628 (2021).

    Google Scholar 

  20. Ruta, F. L. et al. Hyperbolic exciton polaritons in a van der Waals magnet. Nat. Commun. 14, 8261 (2023).

    Google Scholar 

  21. Gershuni, Y. & Epstein, I. In-plane exciton polaritons versus plasmon polaritons: nonlocal corrections, confinement, and loss. Phys. Rev. B 109, L121408 (2024).

    Google Scholar 

  22. Eini, T. et al. Electrically tunable interband collective excitations in biased bilayer and trilayer graphene. Phys. Rev. Lett. 134, 196903 (2025).

    Google Scholar 

  23. Kats, I., Eini, T. & Epstein, I. Monolayer semiconductor superlattices as hyperbolic materials at visible to near-infrared frequencies. Phys. Rev. B 111, L041302 (2025).

    Google Scholar 

  24. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Google Scholar 

  25. Venturi, G., Mancini, A., Melchioni, N., Chiodini, S. & Ambrosio, A. Visible-frequency hyperbolic plasmon polaritons in a natural van der Waals crystal. Nat. Commun. 15, 9727 (2024).

    Google Scholar 

  26. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004).

    Google Scholar 

  27. Cassabois, G., Valvin, P. & Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photonics 10, 262–266 (2016).

    Google Scholar 

  28. Elias, C. et al. Flat bands and giant light-matter interaction in hexagonal boron nitride. Phys. Rev. Lett. 127, 137401 (2021).

    Google Scholar 

  29. Zunger, A., Katzir, A. & Halperin, A. Optical properties of hexagonal boron nitride. Phys. Rev. B 13, 5560 (1976).

    Google Scholar 

  30. Tarrio, C. & Schnatterly, S. Interband transitions, plasmons, and dispersion in hexagonal boron nitride. Phys. Rev. B 40, 7852 (1989).

    Google Scholar 

  31. Cao, X., Clubine, B., Edgar, J., Lin, J. & Jiang, H. Two-dimensional excitons in three-dimensional hexagonal boron nitride. Appl. Phys.s Lett. 103, 191106 (2013).

  32. Arnaud, B., Lebègue, S., Rabiller, P. & Alouani, M. Huge excitonic effects in layered hexagonal boron nitride. Phys. Rev. Lett. 96, 026402 (2006).

    Google Scholar 

  33. Wirtz, L., Marini, A. & Rubio, A. Excitons in boron nitride nanotubes: dimensionality effects. Phys. Rev. Lett. 96, 126104 (2006).

    Google Scholar 

  34. Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    Google Scholar 

  35. Sponza, L. et al. Direct and indirect excitons in boron nitride polymorphs: a story of atomic configuration and electronic correlation. Phys. Rev. B 98, 125206 (2018).

    Google Scholar 

  36. Artús, L. et al. Ellipsometry study of hexagonal boron nitride using synchrotron radiation: transparency window in the Far-UVC. Adv. Photonics Res. 2, 2000101 (2021).

    Google Scholar 

  37. Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications. (Wiley, 2007).

  38. Dahal, R. et al. Anisotropic charge carrier transport in free-standing hexagonal boron nitride thin films. Appl. Phys. express 9, 065801 (2016).

    Google Scholar 

  39. Hoffman, T. B., Clubine, B., Zhang, Y., Snow, K. & Edgar, J. H. Optimization of Ni–Cr flux growth for hexagonal boron nitride single crystals. J. Cryst. growth 393, 114–118 (2014).

    Google Scholar 

  40. Scuri, G. et al. Large excitonic reflectivity of monolayer MoSe 2 encapsulated in hexagonal boron nitride. Phys. Rev. Lett. 120, 037402 (2018).

    Google Scholar 

  41. Epstein, I. et al. Near-unity light absorption in a monolayer WS2 van der Waals heterostructure cavity. Nano Lett. 20, 3545–3552 (2020).

    Google Scholar 

  42. Li, M., Biswas, S., Hail, C. U. & Atwater, H. A. Refractive index modulation in monolayer molybdenum diselenide. Nano Lett. 21, 7602–7608 (2021).

    Google Scholar 

  43. Horng, J. et al. Perfect absorption by an atomically thin crystal. Phys. Rev. Appl. 14, 024009 (2020).

    Google Scholar 

  44. Atash Kahlon, A. et al. Importance of pure dephasing in the optical response of excitons in high-quality van der Waals heterostructures. Phys. Rev. B 112, L041402 (2025).

    Google Scholar 

  45. Meshulam, M. et al. Temperature-dependent optical and polaritonic properties of excitons in HBN-encapsulated monolayer TMDs. Adv. Opt. Mater. 10, e02535 (2025).

    Google Scholar 

  46. Cannuccia, E., Monserrat, B. & Attaccalite, C. Theory of phonon-assisted luminescence in solids: application to hexagonal boron nitride. Phys. Rev. B 99, 081109 (2019).

    Google Scholar 

  47. Paleari, F., P C Miranda, H., Molina-Sánchez, A. & Wirtz, L. Exciton-phonon coupling in the ultraviolet absorption and emission spectra of bulk hexagonal boron nitride. Phys. Rev. Lett. 122, 187401 (2019).

    Google Scholar 

  48. Malitson, I. H. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55, 1205–1209 (1965).

    Google Scholar 

  49. Dodge, M. J. Refractive properties of magnesium fluoride. Appl. Opt. 23, 1980–1985 (1984).

    Google Scholar 

  50. Reshef, O., De Leon, I., Alam, M. Z. & Boyd, R. W. Nonlinear optical effects in epsilon-near-zero media. Nat. Rev. Mater. 4, 535–551 (2019).

    Google Scholar 

  51. Liberal, I. & Engheta, N. Zero-index structures as an alternative platform for quantum optics. Proc. Natl. Acad. Sci. USA 114, 822–827 (2017).

    Google Scholar 

  52. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS 2. Phys. Rev. Lett. 113, 076802 (2014).

    Google Scholar 

  53. Ishihara, T., Takahashi, J. & Goto, T. Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4. Phys. Rev. B 42, 11099 (1990).

    Google Scholar 

  54. Epstein, I. et al. Highly confined in-plane propagating exciton-polaritons on monolayer semiconductors. 2D Mater. 7, 035031 (2020).

    Google Scholar 

  55. Song, B. et al. Determination of dielectric functions and exciton oscillator strength of two-dimensional hybrid perovskites. ACS Mater. Lett. 3, 148–159 (2020).

    Google Scholar 

  56. Kats, M. A., Blanchard, R., Genevet, P. & Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 12, 20–24 (2013).

    Google Scholar 

  57. Pettersson, L. A., Roman, L. S. & Inganäs, O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 86, 487–496 (1999).

    Google Scholar 

  58. Peumans, P., Yakimov, A. & Forrest, S. R. Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93, 3693–3723 (2003).

    Google Scholar 

  59. Ma, E. Y. et al. The reststrahlen effect in the optically thin limit: a framework for resonant response in thin media. Nano Lett. 22, 8389–8393 (2022).

    Google Scholar 

  60. Basov, D., Fogler, M. & García de Abajo, F. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Google Scholar 

  61. Jackson, E., Tischler, J., Ratchford, D. & Ellis, C. The role of losses in determining hyperbolic material figures of merit. Sci. Rep. 14, 25156 (2024).

    Google Scholar 

  62. Novotny, L. & Hecht, B. Principles of Nano-Optics. (Cambridge University Press, 2012).

  63. Maier, S. A. Plasmonics: Fundamentals and Applications. Vol. 1 (Springer, 2007).

  64. Wang, H. et al. Strain-tunable hyperbolic exciton polaritons in monolayer black arsenic with two exciton resonances. Nano Lett. 24, 2057–2062 (2024).

    Google Scholar 

  65. Eini, T., Asherov, T., Mazor, Y. & Epstein, I. Valley-polarized hyperbolic exciton polaritons in few-layer two-dimensional semiconductors at visible frequencies. Phys. Rev. B 106, L201405 (2022).

    Google Scholar 

  66. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    Google Scholar 

  67. Fei, Z. et al. Nano-optical imaging of WS e2 waveguide modes revealing light-exciton interactions. Phys. Rev. B 94, 081402 (2016).

    Google Scholar 

  68. Pizzocchero, F. et al. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 7, 11894 (2016).

    Google Scholar 

  69. Malitson, I. H. & Dodge, M. J. Refractive index and birefringence of synthetic sapphire. J. Opt. Soc. Am. 62, 1405 (1972).

    Google Scholar 

  70. McPeak, K. M. et al. Plasmonic films can easily be better: rules and recipes. ACS Photonics 2, 326–333 (2015).

    Google Scholar 

  71. Hill, H. M. et al. Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett. 15, 2992–2997 (2015).

    Google Scholar 

  72. He, K. et al. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014).

    Google Scholar 

  73. Wang, G. et al. Exciton states in monolayer MoSe2: impact on interband transitions. 2D Mater. 2, 045005 (2015).

    Google Scholar 

  74. Blancon, J.-C. et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1292 (2017).

    Google Scholar 

  75. Jariwala, D., Davoyan, A. R., Wong, J. & Atwater, H. A. Van der Waals materials for atomically-thin photovoltaics: promise and outlook. ACS Photonics 4, 2962–2970 (2017).

    Google Scholar 

  76. Ahuja, R. et al. Electronic and optical properties of lead iodide. J. Appl. Phys. 92, 7219–7224 (2002).

    Google Scholar 

  77. Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014).

    Google Scholar 

  78. Anantharaman, S. B. et al. Ultrastrong light–matter coupling in two-dimensional metal–organic chalcogenolates. Nat. Photonics 19, 322–328 (2025).

  79. Beliaev, L. Y., Shkondin, E., Lavrinenko, A. V. & Takayama, O. Thickness-dependent optical properties of aluminum nitride films for mid-infrared wavelengths. J. Vacuum Sci. Technol. A 39, 043408 (2021).

Download references

Acknowledgements

D. J., B.C., and J.L. acknowledge support from the Office of Naval Research Young Investigator Award, Metamaterials Program (N00014-23−1-2037). This work was carried out in part at the Singh Center for Nanotechnology, which is supported by the NSF National Nanotechnology Coordinated Infrastructure Program under Grant NNCI-2025608. J.K. acknowledges the support from the Institute for Basic Science (IBS), Korea under Project Code IBS-R014-A1 and the National Research Foundation of Korea grants (NRF-2023R1A2C2007998). N. E. acknowledges partial support from the US Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiatives (MURI) program with grant # FA9550-21−1-0312 and AFOSR grant # FA9550-23-1-0307.

Author information

Authors and Affiliations

  1. Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA

    Bongjun Choi, Jason Lynch, Kyungmin Yang, Nader Engheta & Deep Jariwala

  2. Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA

    Wangleong Chen, Nader Engheta & Deep Jariwala

  3. Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea

    Seong-Joon Jeon, Hyungseob Cho & Jonghwan Kim

  4. Center for van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang, Republic of Korea

    Seong-Joon Jeon, Hyungseob Cho & Jonghwan Kim

  5. Department of Physics, Pohang University of Science and Technology, Pohang, Republic of Korea

    Jonghwan Kim

  6. Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA

    Nader Engheta

  7. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA

    Nader Engheta

Authors
  1. Bongjun Choi
    View author publications

    Search author on:PubMed Google Scholar

  2. Jason Lynch
    View author publications

    Search author on:PubMed Google Scholar

  3. Wangleong Chen
    View author publications

    Search author on:PubMed Google Scholar

  4. Seong-Joon Jeon
    View author publications

    Search author on:PubMed Google Scholar

  5. Hyungseob Cho
    View author publications

    Search author on:PubMed Google Scholar

  6. Kyungmin Yang
    View author publications

    Search author on:PubMed Google Scholar

  7. Jonghwan Kim
    View author publications

    Search author on:PubMed Google Scholar

  8. Nader Engheta
    View author publications

    Search author on:PubMed Google Scholar

  9. Deep Jariwala
    View author publications

    Search author on:PubMed Google Scholar

Contributions

D.J. supervised and acquired funding for the project. D.J. and B.C. conceived and designed the experiment. B.C. performed the ellipsometry measurements and conducted the data fitting. B.C. performed the optical simulations and calculations in discussion with D.J., N.E., and J.L. W.C. fit preliminary ellipsometry data. K.Y. fabricated samples. S. J. and H.C. performed the reflectance measurement under the supervision of J.K., B.C., and D.J. wrote the manuscript with inputs from all authors. All authors discussed the results and revised the manuscript.

Corresponding authors

Correspondence to Jonghwan Kim, Nader Engheta or Deep Jariwala.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, B., Lynch, J., Chen, W. et al. Natural hyperbolicity of hexagonal boron nitride in the deep ultraviolet. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69536-4

Download citation

  • Received: 13 December 2025

  • Accepted: 04 February 2026

  • Published: 17 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69536-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing