Abstract
Viruses rely on the precise packaging of their genomes within a capsid to execute essential life-cycle events, yet the principles governing genome structural organization in this confined environment remain elusive. Here, we reveal that hepatitis B virus (HBV) pregenomic RNA (pgRNA) exploits liquid-liquid phase separation (LLPS) inside the capsid to sculpt its architecture. Multiscale molecular dynamics (MD) simulations, supplemented by biochemical assays, show that pgRNA coalesces into a hollow, shell-like condensate along the inner capsid surface, with coexisting low- and high-density regions. Electrostatic interactions between pgRNA and the disordered C-terminal domain of capsid protein primarily govern condensate formation. LLPS drives the establishment of microphases composed of nematically aligned RNA hairpin arrays interspersed by domains rich in flexible single-stranded RNA linkers, achieving an optimal balance between structural order and dynamic flexibility. Intriguingly, although the ensemble-averaged pgRNA density exhibits icosahedral symmetry, individual simulation snapshots display pronounced heterogeneity, indicating symmetry breaking at the single-particle level. In addition, LLPS-induced hollow-shell architecture of pgRNA genome promotes long-range RNA base-pairing and enhances polymerase mobility, which may facilitate the functional dynamics of polymerase during reverse transcription. Our findings uncover a capsid-confined LLPS mechanism that orchestrates viral genome structure and dynamics, offering new targets for antiviral intervention.
Similar content being viewed by others
Data availability
All source data generated in this study have been deposited in the Figshare database (https://doi.org/10.6084/m9.figshare.29605127). The input files of MD simulation and representative trajectory files are available at https://box.nju.edu.cn/d/eb918ffb092246cf8971/. Source data are provided with this paper.
References
Bruinsma, R. F., Wuite, G. J. & Roos, W. H. Physics of viral dynamics. Nat. Rev. Phys. 3, 76–91 (2021).
Kindt, J., Tzlil, S., Ben-Shaul, A. & Gelbart, W. M. DNA packaging and ejection forces in bacteriophage. Proc. Natl. Acad. Sci. USA 98, 13671–13674 (2001).
Bloomfield, V. A. Dna condensation by multivalent cations. Biopolymers 44, 269–282 (1997).
Nishikiori, M., den Boon, J. A., Unchwaniwala, N. & Ahlquist, P. Crowning touches in positive-strand RNA virus genome replication complex structure and function. Annu. Rev. Virol. 9, 193–212 (2022).
Jacques, D. A. et al. HIV-1 uses dynamic capsid pores to import nucleotides and fuel encapsidated DNA synthesis. Nature 536, 349–353 (2016).
Boerneke, M. A., Ehrhardt, J. E. & Weeks, K. M. Physical and functional analysis of viral RNA genomes by SHAPE. Annu. Rev. Virol. 6, 93–117 (2019).
Rao, V. B. & Feiss, M. Mechanisms of DNA packaging by large double-stranded DNA viruses. Annu. Rev. Virol. 2, 351–378 (2015).
Lan, T. C. et al. Secondary structural ensembles of the SARS-CoV-2 RNA genome in infected cells. Nat. Commun. 13, 1128 (2022).
Biswas, B., Kandpal, M. & Vivekanandan, P. A G-quadruplex motif in an envelope gene promoter regulates transcription and virion secretion in HBV genotype b. Nucleic Acids Res. 45, 11268–11280 (2017).
Speir, J. A. & Johnson, J. E. Nucleic acid packaging in viruses. Curr. Opin. Struct. Biol. 22, 65–71 (2012).
Jiang, W. & Tang, L. Atomic Cryo-Em structures of viruses. Curr. Opin. Struct. Biol. 46, 122–129 (2017).
Bayfield, O. W. et al. Cryo-Em structure and in vitro DNA packaging of a thermophilic virus with supersized t= 7 capsids. Proc. Natl. Acad. Sci. USA 116, 3556–3561 (2019).
Yuan, S. et al. Cryo-Em structure of a herpesvirus capsid at 3.1 Å. Science 360, eaao7283 (2018).
Liu, H. & Cheng, L. Cryo-Em shows the polymerase structures and a nonspooled genome within a dsRNA virus. Science 349, 1347–1350 (2015).
Banari, A. et al. Advancing time-resolved structural biology: latest strategies in Cryo-EM and X-ray crystallography. Nat. Methods 22, 1420–1435 (2025).
Zhu, D., Cao, D. & Zhang, X. Virus structures revealed by advanced cryoelectron microscopy methods. Structure 31, 1348–1359 (2023).
Lynch, D. L., Pavlova, A., Fan, Z. & Gumbart, J. C. Understanding virus structure and dynamics through molecular simulations. J. Chem. Theory Comput. 19, 3025–3036 (2023).
Hadden, J. A. et al. All-atom molecular dynamics of the HBV capsid reveals insights into biological function and cryo-em resolution limits. Elife 7, e32478 (2018).
Coshic, K., Maffeo, C., Winogradoff, D. & Aksimentiev, A. The structure and physical properties of a packaged bacteriophage particle. Nature 627, 905–914 (2024).
Grime, J. M. A. et al. Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly. Nat. Commun. 7, 11568 (2016).
Perilla, J. R. & Schulten, K. Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations. Nat. Commun. 8, 15959 (2017).
He, Y., Gu, T., Bian, Y., Li, W. & Wang, W. Effect of pregenomic RNA on the mechanical stability of HBV capsid by coarse-grained molecular simulations. J. Phys. Chem. B 128, 11565–11572 (2024).
Smith, D. E. et al. The bacteriophage φ29 portal motor can package DNA against a large internal force. Nature 413, 748–752 (2001).
Choi, K. H. et al. Insight into DNA and protein transport in double-stranded DNA viruses: the structure of bacteriophage n4. J. Mol. Biol. 378, 726–736 (2008).
Perlmutter, J. D. & Hagan, M. F. Mechanisms of virus assembly. Annu Rev. Phys. Chem. 66, 217–239 (2015).
Garmann, R. F., Comas-Garcia, M., Knobler, C. M. & Gelbart, W. M. Physical principles in the self-assembly of a simple spherical virus. Acc. Chem. Res. 49, 48–55 (2016).
Selzer, L. & Zlotnick, A. Assembly and release of hepatitis B virus. Cold Spring Harb. Perspect. Med. 5, a021394 (2015).
Nasser, N., Tonnerre, P., Mansouri, A. & Asselah, T. Hepatitis-B virus: replication cycle, targets, and antiviral approaches. Curr. Opin. Virol. 63, 101360 (2023).
Wang, J. C.-Y., Dhason, M. S. & Zlotnick, A. Structural organization of pregenomic RNA and the carboxy-terminal domain of the capsid protein of hepatitis B virus. PLoS Pathog 8(9), e1002919 (2012).
Fujimoto, K. et al. All-atom molecular dynamics study of hepatitis B virus containing pregenome RNA in solution. J. Chem. Phys. 155, 145101 (2021).
Borodavka, A. & Acker, J. Seeing biomolecular condensates through the lens of viruses. Annu. Rev. Virol. 10, 163–182 (2023).
Jack, A. et al. SARS-COV-2 nucleocapsid protein forms condensates with viral genomic RNA. PLoS Biol. 19, e3001425 (2021).
Wu, Y. et al. RNA-induced liquid phase separation of SARS-CoV-2 nucleocapsid protein facilitates nf-κb hyper-activation and inflammation. Signal Transduct. Target Ther. 6, 167 (2021).
Chen, H. et al. Liquid–liquid phase separation by SARS-CoV-2 nucleocapsid protein and RNA. Cell Res 30, 1143–1145 (2020).
Yoo, J. & Aksimentiev, A. Improved parametrization of Li+, Na+, K+, and Mg2+ ions for all-atom molecular dynamics simulations of nucleic acid systems. J. Phys. Chem. Lett. 3, 45–50 (2012).
Yoo, J. & Aksimentiev, A. New tricks for old dogs: improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Phys. Chem. Chem. Phys. 20, 8432–8449 (2018).
Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).
Zhang, H. et al. Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Sci. China Life Sci. 63, 953–985 (2020).
Brangwynne, C. P. et al. Germline p granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).
Larson, A. G. et al. Liquid droplet formation by hp1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).
Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).
Zhou, H., Kota, D., Qin, S. & Prasad, R. Fundamental aspects of phase-separated biomolecular condensates. Chem. Rev. 124, 8550–8595 (2024).
Dignon, G. L., Best, R. B. & Mittal, J. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 71, 53–75 (2020).
Borgia, A. et al. Extreme disorder in an ultrahigh-affinity protein complex. Nature 555, 61–66 (2018).
Mittag, T. & Pappu, R. V. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol. Cell 82, 2201–2214 (2022).
Kaur, T. et al. Sequence-encoded and composition-dependent protein-RNA interactions control multiphasic condensate morphologies. Nat. Commun. 12, 872 (2021).
Li, W., Terakawa, T., Wang, W. & Takada, S. Energy landscape and multiroute folding of topologically complex proteins adenylate kinase and 2ouf-knot. Proc. Natl. Acad. Sci. USA 109, 17789–17794 (2012).
Li, W., Wang, W. & Takada, S. Energy landscape views for interplays among folding, binding, and allostery of calmodulin domains. Proc. Natl. Acad. Sci. USA 111, 10550–10555 (2014).
Hinckley, D. M., Freeman, G. S., Whitmer, J. K. & De Pablo, J. J. An experimentally-informed coarse-grained 3-site-per-nucleotide model of DNA: Structure, thermodynamics, and dynamics of hybridization. J. Chem. Phys. 139, 144903 (2013).
Takada, S. et al. Modeling structural dynamics of biomolecular complexes by coarse-grained molecular simulations. Acc. Chem. Res. 48, 3026–3035 (2015).
Huertas, J., Woods, E. J. & Collepardo-Guevara, R. Multiscale modelling of chromatin organisation: resolving nucleosomes at near-atomistic resolution inside genes. Curr. Opin. Cell Biol. 75, 102067 (2022).
Lequieu, J., Schwartz, D. C. & de Pablo, J. J. In silico evidence for sequence-dependent nucleosome sliding. Proc. Natl. Acad. Sci. 114, E9197–E9205 (2017).
Moller, J., Lequieu, J. & de Pablo, J. J. The free energy landscape of internucleosome interactions and its relation to chromatin fiber structure. ACS Cent. Sci. 5, 341–348 (2019).
Tan, C., Terakawa, T. & Takada, S. Dynamic coupling among protein binding, sliding, and DNA bending revealed by molecular dynamics. J. Am. Chem. Soc. 138, 8512–8522 (2016).
Nagae, F., Murayama, Y. & Terakawa, T. Molecular mechanism of parental h3/h4 recycling at a replication fork. Nat. Commun. 15, 9485 (2024).
Bian, Y. et al. Fusion dynamics and size-dependence of droplet microstructure in ssDNA-mediated protein phase separation. JACS Au 4, 3690–3704 (2024).
Dignon, G. L., Zheng, W., Kim, Y. C., Best, R. B. & Mittal, J. Sequence determinants of protein phase behavior from a coarse-grained model. PLoS Comput. Biol. 14, e1005941 (2018).
Phan, T. M., Kim, Y. C., Debelouchina, G. T. & Mittal, J. Interplay between charge distribution andin shaping hp1 paralog phase separation and localization. Elife 12, RP90820 (2024).
Tan, C., Niitsu, A. & Sugita, Y. Highly charged proteins and their repulsive interactions antagonize biomolecular condensation. JACS Au 3, 834–848 (2023).
Harati Taji, Z. et al. Transient RNA interactions leave a covalent imprint on a viral capsid protein. J. Am. Chem. Soc. 144, 8536–8550 (2022).
Yu, J. et al. Multivalent ions induce lateral structural inhomogeneities in polyelectrolyte brushes. Sci. Adv. 3, eaao1497 (2017).
Tagliazucchi, M., de la Cruz, M. O. & Szleifer, I. Self-organization of grafted polyelectrolyte layers via the coupling of chemical equilibrium and physical interactions. Proc. Natl. Acad. Sci. 107, 5300–5305 (2010).
He, G.-L., Merlitz, H., Sommer, J.-U. & Wu, C.-X. Microphase Separation of Mixed Binary Polymer Brushes at Different Temperatures. Macromolecules 42, 7194–7202 (2009).
Bina, M., Sciortino, F. & Mahrir, A. N. Phase separation in polymer-based biomimetic structures containing planar membranes. Biointerphases 17, 060802 (2022).
Gao, K., Kearney, L. T. & Howarter, J. A. Planar phase separation of weak polyelectrolyte brushes in poor solvent. J. Polym. Sci. Part B 55, 370–377 (2017).
Wang, J. C.-Y., Nickens, D. G., Lentz, T. B., Loeb, D. D. & Zlotnick, A. Encapsidated hepatitis B virus reverse transcriptase is poised on an ordered RNA lattice. Proc. Natl. Acad. Sci. USA 111, 11329–11334 (2014).
Patel, N. et al. HBV RNA pre-genome encodes specific motifs that mediate interactions with the viral core protein that promote nucleocapsid assembly. Nat. Microbiol. 2, 17098 (2017).
Patel, N. et al. In vitro functional analysis of gRNA sites regulating assembly of hepatitis B virus. Commun. Biol. 4, 1407 (2021).
Abraham, T. M. & Loeb, D. D. Base pairing between the 5’ half of ϵ and a cis-acting sequence,ϕ, makes a contribution to the synthesis of minus-strand DNA for human hepatitis b virus. J. Virol. 80, 4380–4387 (2006).
Beren, C., Dreesens, L. L., Liu, K. N., Knobler, C. M. & Gelbart, W. M. The effect of RNA secondary structure on the self-assembly of viral capsids. Biophys. J. 113, 339–347 (2017).
Chu, T.-H., Liou, A.-T., Su, P.-Y., Wu, H.-N. & Shih, C. Nucleic acid chaperone activity associated with the arginine-rich domain of human hepatitis b virus core protein. J. Virol. 88, 2530–2543 (2014).
Bruce, D., Deschenaux, R., Donnio, B. & Guillon, D. 12.05 - metallomesogens. In Comprehensive Organometallic Chemistry III (eds, Mingos, D. M. P. & Crabtree, R. H.) 195–293 (Elsevier, Oxford, 2007).
Perlmutter, J. D., Qiao, C. & Hagan, M. F. Viral genome structures are optimal for capsid assembly. eLife 2, e00632 (2013).
Yoffe, A. M. et al. Predicting the sizes of large RNA molecules. Proc. Natl. Acad. Sci. 105, 16153–16158 (2008).
Gopal, A. et al. Viral RNAs are unusually compact. PLOS ONE 9, 1–10 (2014).
Shin, M. K., Kim, J. H., Ryu, D. K. & Ryu, W. S. Circularization of an RNA template via long-range base pairing is critical for hepadnaviral reverse transcription. Virology 371, 362–373 (2008).
Liu, N., Tian, R. & Loeb, D. D. Base pairing among three cis-acting sequences contributes to template switching during hepadnavirus reverse transcription. Proc. Natl. Acad. Sci. USA 100, 1984–1989 (2003).
Venkatakrishnan, B. & Zlotnick, A. The structural biology of hepatitis B virus: form and function. Annu Rev. Virol. 3, 429–451 (2016).
Shen, S. et al. Conditional replication and secretion of hepatitis B virus genome uncover the truncated 3’ terminus of encapsidated viral pregenomic RNA. J. Virol. 97, e00760–23 (2023).
York, A. Targeting viral liquid–liquid phase separation. Nat. Rev. Microbiol. 19, 550–550 (2021).
Li, H. et al. Phase separation in viral infections. Trends Microbiol. 30, 1217–1231 (2022).
Zhang, X., Zheng, R., Li, Z. & Ma, J. Liquid-liquid phase separation in viral function. J. Mol. Biol. 435, 167955 (2023).
Risso-Ballester, J. et al. A condensate-hardening drug blocks RSV replication in vivo. Nature 595, 596–599 (2021).
Lopez, N. et al. Deconstructing virus condensation. PLoS Pathog. 17, e1009926 (2021).
Monette, A. et al. Pan-retroviral nucleocapsid-mediated phase separation regulates genomic RNA positioning and trafficking. Cell Rep. 31, 107520 (2020).
Monette, A., Niu, M., Asser, M. N., Gorelick, R. J. & Mouland, A. J. Scaffolding viral protein nc nucleates phase separation of the HIV-1 biomolecular condensate. Cell Rep. 40, 111251 (2022).
Alenquer, M. et al. Influenza A virus ribonucleoproteins form liquid organelles at endoplasmic reticulum exit sites. Nat. Commun. 10, 1629 (2019).
Savastano, A., Ibáñez de Opakua, A., Rankovic, M. & Zweckstetter, M. Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates. Nat. Commun. 11, 6041 (2020).
Prisk, T., Pantalei, C., Kaiser, H. & Sokol, P. Confinement-driven phase separation of quantum liquid mixtures. Phys. Rev. Lett. 109, 075301 (2012).
Munoz-Santiburcio, D. & Marx, D. Confinement-controlled aqueous chemistry within nanometric slit pores: focus review. Chem. Rev. 121, 6293–6320 (2021).
Hsu, C.-P., Aretz, J., Hordeichyk, A., Fässler, R. & Bausch, A. R. Surface-induced phase separation of reconstituted nascent integrin clusters on lipid membranes. Proc. Natl. Acad. Sci. USA 120, e2301881120 (2023).
Litschel, T. et al. Membrane-induced 2d phase separation of the focal adhesion protein talin. Nat. Commun. 15, 4986 (2024).
Rao, S. S. et al. A 3d map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).
Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).
Huang, K. et al. Physical and data structure of 3d genome. Sci. Adv. 6, eaay4055 (2020).
Zandi, R., Dragnea, B., Travesset, A. & Podgornik, R. On virus growth and form. Phys. Rep. 847, 1–102 (2020). On virus growth and form.
Dong, Y., Li, S. & Zandi, R. Effect of the charge distribution of virus coat proteins on the length of packaged RNAs. Phys. Rev. E 102, 062423 (2020).
Erdemci-Tandogan, G., Wagner, J., van der Schoot, P., Podgornik, R. & Zandi, R. RNA topology remolds electrostatic stabilization of viruses. Phys. Rev. E 89, 032707 (2014).
Erdemci-Tandogan, G., Orland, H. & Zandi, R. RNA base pairing determines the conformations of RNA inside spherical viruses. Phys. Rev. Lett. 119, 188102 (2017).
Šali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).
Case, D. A. et al. Ambertools. J. Chem. Inf. Model 63, 6183–6191 (2023).
Haines, K. M. & Loeb, D. D. The sequence of the RNA primer and the dna template influence the initiation of plus-strand dna synthesis in hepatitis b virus. J. Mol. Biol. 370, 471–480 (2007).
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).
Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput 11, 3696–3713 (2015).
Zgarbová, M. et al. Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput 7, 2886–2902 (2011).
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).
Nosé, S. & Klein, M. Constant pressure molecular dynamics for molecular systems. Mol. Phys. 50, 1055–1076 (1983).
Berendsen, H. J., van der Spoel, D. & van Drunen, R. Gromacs: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43–56 (1995).
Abraham, M. J. et al. Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015).
Heo, L. & Feig, M. One bead per residue can describe all-atom protein structures. Structure 32, 97–111.e6 (2024).
Kenzaki, H. et al. Cafemol: a coarse-grained biomolecular simulator for simulating proteins at work. J. Chem. Theory Comput 7, 1979–1989 (2011).
Terakawa, T. & Takada, S. Multiscale ensemble modeling of intrinsically disordered proteins: p53 n-terminal domain. Biophys. J. 101, 1450–1458 (2011).
Matysiak, S. & Clementi, C. Optimal combination of theory and experiment for the characterization of the protein folding landscape of s6: how far can a minimalist model go?. J. Mol. Biol. 343, 235–248 (2004).
Jung, J. et al. GENESIS: a hybrid-parallel and multi-scale molecular dynamics simulator with enhanced sampling algorithms for biomolecular and cellular simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 5, 310–323 (2015).
Kobayashi, C. et al. GENESIS 1.1: a hybrid-parallel molecular dynamics simulator with enhanced sampling algorithms on multiple computational platforms. J. Comput. Chem. 38, 2193–2206 (2017).
Tan, C. et al. Implementation of residue-level coarse-grained models in GENESIS for large-scale molecular dynamics simulations. PLoS Comput. Biol. 18, e1009578 (2022).
Yu, X., Jin, L., Jih, J., Shih, C. & Hong Zhou, Z. 3.5 å cryoem structure of hepatitis B virus core assembled from full-length core protein. PloS One 8, e69729 (2013).
Chen, H. et al. Ionic strength-dependent persistence lengths of single-stranded RNA and DNA. Proc. Natl. Acad. Sci. USA 109, 799–804 (2012).
Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596, 583–589 (2021).
Acknowledgements
The authors gratefully acknowledge Dr. Xin Wang of BASF for his technical support with the Atomic Force Microscopy (AFM) experiments. This work was supported by National Natural Science Foundation of China (Grant Nos. 12574224 to W.L., 12090052 to W.W., and 12347102 to W.L.), Basic Research Program of Jiangsu Province (BK20253050 to W.L.), and the grant of Wenzhou Institute, University of Chinese Academy of Sciences (WIUCASQD2021010 to W.L., WIUCASQD2022036 to Y.B.). The authors also thank the support from HPC Center of Nanjing University, e-Science center of Nanjing University, Nanjing Kunpeng&Ascend Center of Cultivation, and the Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine (funded by the Nanjing Municipal Health Commission) and its Jiangsu counterpart.
Author information
Authors and Affiliations
Contributions
W.L. and W.W. conceived the ideas and designed the work. Y.B. and Y.H. conducted the molecular dynamics simulations. H.P. and J.M. carried out the experiments. Y.W. and Y.C. contributed to the discussion. Y.B., W.L. and W.W. co-wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
: Nature Communications thanks Aleksei Aksimentiev who co-reviewed with Kush Coshic, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Bian, Y., Pan, H., Mao, J. et al. Structural organization of HBV pgRNA genome driven by phase separation in capsid confinement. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69689-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69689-2


