Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Structural organization of HBV pgRNA genome driven by phase separation in capsid confinement
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 19 February 2026

Structural organization of HBV pgRNA genome driven by phase separation in capsid confinement

  • Yunqiang Bian  ORCID: orcid.org/0000-0002-7316-83011,2 na1,
  • Hai Pan  ORCID: orcid.org/0000-0001-6660-90521 na1,
  • Jiaqi Mao2,3 na1,
  • Yixin He1,2,
  • Yanwei Wang3,
  • Yi Cao  ORCID: orcid.org/0000-0003-1493-78682,
  • Wenfei Li  ORCID: orcid.org/0000-0003-2679-40752,4 &
  • …
  • Wei Wang  ORCID: orcid.org/0000-0001-5441-03022 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biological physics
  • Computational biophysics
  • Hepatitis B virus
  • Molecular modelling

Abstract

Viruses rely on the precise packaging of their genomes within a capsid to execute essential life-cycle events, yet the principles governing genome structural organization in this confined environment remain elusive. Here, we reveal that hepatitis B virus (HBV) pregenomic RNA (pgRNA) exploits liquid-liquid phase separation (LLPS) inside the capsid to sculpt its architecture. Multiscale molecular dynamics (MD) simulations, supplemented by biochemical assays, show that pgRNA coalesces into a hollow, shell-like condensate along the inner capsid surface, with coexisting low- and high-density regions. Electrostatic interactions between pgRNA and the disordered C-terminal domain of capsid protein primarily govern condensate formation. LLPS drives the establishment of microphases composed of nematically aligned RNA hairpin arrays interspersed by domains rich in flexible single-stranded RNA linkers, achieving an optimal balance between structural order and dynamic flexibility. Intriguingly, although the ensemble-averaged pgRNA density exhibits icosahedral symmetry, individual simulation snapshots display pronounced heterogeneity, indicating symmetry breaking at the single-particle level. In addition, LLPS-induced hollow-shell architecture of pgRNA genome promotes long-range RNA base-pairing and enhances polymerase mobility, which may facilitate the functional dynamics of polymerase during reverse transcription. Our findings uncover a capsid-confined LLPS mechanism that orchestrates viral genome structure and dynamics, offering new targets for antiviral intervention.

Similar content being viewed by others

In vitro functional analysis of gRNA sites regulating assembly of hepatitis B virus

Article Open access 16 December 2021

Functional and molecular dissection of HCMV long non-coding RNAs

Article Open access 11 November 2022

Structure of human cytomegalovirus virion reveals host tRNA binding to capsid-associated tegument protein pp150

Article Open access 17 September 2021

Data availability

All source data generated in this study have been deposited in the Figshare database (https://doi.org/10.6084/m9.figshare.29605127). The input files of MD simulation and representative trajectory files are available at https://box.nju.edu.cn/d/eb918ffb092246cf8971/. Source data are provided with this paper.

References

  1. Bruinsma, R. F., Wuite, G. J. & Roos, W. H. Physics of viral dynamics. Nat. Rev. Phys. 3, 76–91 (2021).

    Google Scholar 

  2. Kindt, J., Tzlil, S., Ben-Shaul, A. & Gelbart, W. M. DNA packaging and ejection forces in bacteriophage. Proc. Natl. Acad. Sci. USA 98, 13671–13674 (2001).

    Google Scholar 

  3. Bloomfield, V. A. Dna condensation by multivalent cations. Biopolymers 44, 269–282 (1997).

    Google Scholar 

  4. Nishikiori, M., den Boon, J. A., Unchwaniwala, N. & Ahlquist, P. Crowning touches in positive-strand RNA virus genome replication complex structure and function. Annu. Rev. Virol. 9, 193–212 (2022).

    Google Scholar 

  5. Jacques, D. A. et al. HIV-1 uses dynamic capsid pores to import nucleotides and fuel encapsidated DNA synthesis. Nature 536, 349–353 (2016).

    Google Scholar 

  6. Boerneke, M. A., Ehrhardt, J. E. & Weeks, K. M. Physical and functional analysis of viral RNA genomes by SHAPE. Annu. Rev. Virol. 6, 93–117 (2019).

    Google Scholar 

  7. Rao, V. B. & Feiss, M. Mechanisms of DNA packaging by large double-stranded DNA viruses. Annu. Rev. Virol. 2, 351–378 (2015).

    Google Scholar 

  8. Lan, T. C. et al. Secondary structural ensembles of the SARS-CoV-2 RNA genome in infected cells. Nat. Commun. 13, 1128 (2022).

    Google Scholar 

  9. Biswas, B., Kandpal, M. & Vivekanandan, P. A G-quadruplex motif in an envelope gene promoter regulates transcription and virion secretion in HBV genotype b. Nucleic Acids Res. 45, 11268–11280 (2017).

    Google Scholar 

  10. Speir, J. A. & Johnson, J. E. Nucleic acid packaging in viruses. Curr. Opin. Struct. Biol. 22, 65–71 (2012).

    Google Scholar 

  11. Jiang, W. & Tang, L. Atomic Cryo-Em structures of viruses. Curr. Opin. Struct. Biol. 46, 122–129 (2017).

    Google Scholar 

  12. Bayfield, O. W. et al. Cryo-Em structure and in vitro DNA packaging of a thermophilic virus with supersized t= 7 capsids. Proc. Natl. Acad. Sci. USA 116, 3556–3561 (2019).

    Google Scholar 

  13. Yuan, S. et al. Cryo-Em structure of a herpesvirus capsid at 3.1 Å. Science 360, eaao7283 (2018).

    Google Scholar 

  14. Liu, H. & Cheng, L. Cryo-Em shows the polymerase structures and a nonspooled genome within a dsRNA virus. Science 349, 1347–1350 (2015).

    Google Scholar 

  15. Banari, A. et al. Advancing time-resolved structural biology: latest strategies in Cryo-EM and X-ray crystallography. Nat. Methods 22, 1420–1435 (2025).

  16. Zhu, D., Cao, D. & Zhang, X. Virus structures revealed by advanced cryoelectron microscopy methods. Structure 31, 1348–1359 (2023).

    Google Scholar 

  17. Lynch, D. L., Pavlova, A., Fan, Z. & Gumbart, J. C. Understanding virus structure and dynamics through molecular simulations. J. Chem. Theory Comput. 19, 3025–3036 (2023).

    Google Scholar 

  18. Hadden, J. A. et al. All-atom molecular dynamics of the HBV capsid reveals insights into biological function and cryo-em resolution limits. Elife 7, e32478 (2018).

    Google Scholar 

  19. Coshic, K., Maffeo, C., Winogradoff, D. & Aksimentiev, A. The structure and physical properties of a packaged bacteriophage particle. Nature 627, 905–914 (2024).

    Google Scholar 

  20. Grime, J. M. A. et al. Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly. Nat. Commun. 7, 11568 (2016).

    Google Scholar 

  21. Perilla, J. R. & Schulten, K. Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations. Nat. Commun. 8, 15959 (2017).

    Google Scholar 

  22. He, Y., Gu, T., Bian, Y., Li, W. & Wang, W. Effect of pregenomic RNA on the mechanical stability of HBV capsid by coarse-grained molecular simulations. J. Phys. Chem. B 128, 11565–11572 (2024).

    Google Scholar 

  23. Smith, D. E. et al. The bacteriophage φ29 portal motor can package DNA against a large internal force. Nature 413, 748–752 (2001).

    Google Scholar 

  24. Choi, K. H. et al. Insight into DNA and protein transport in double-stranded DNA viruses: the structure of bacteriophage n4. J. Mol. Biol. 378, 726–736 (2008).

    Google Scholar 

  25. Perlmutter, J. D. & Hagan, M. F. Mechanisms of virus assembly. Annu Rev. Phys. Chem. 66, 217–239 (2015).

    Google Scholar 

  26. Garmann, R. F., Comas-Garcia, M., Knobler, C. M. & Gelbart, W. M. Physical principles in the self-assembly of a simple spherical virus. Acc. Chem. Res. 49, 48–55 (2016).

    Google Scholar 

  27. Selzer, L. & Zlotnick, A. Assembly and release of hepatitis B virus. Cold Spring Harb. Perspect. Med. 5, a021394 (2015).

  28. Nasser, N., Tonnerre, P., Mansouri, A. & Asselah, T. Hepatitis-B virus: replication cycle, targets, and antiviral approaches. Curr. Opin. Virol. 63, 101360 (2023).

    Google Scholar 

  29. Wang, J. C.-Y., Dhason, M. S. & Zlotnick, A. Structural organization of pregenomic RNA and the carboxy-terminal domain of the capsid protein of hepatitis B virus. PLoS Pathog 8(9), e1002919 (2012).

  30. Fujimoto, K. et al. All-atom molecular dynamics study of hepatitis B virus containing pregenome RNA in solution. J. Chem. Phys. 155, 145101 (2021).

    Google Scholar 

  31. Borodavka, A. & Acker, J. Seeing biomolecular condensates through the lens of viruses. Annu. Rev. Virol. 10, 163–182 (2023).

    Google Scholar 

  32. Jack, A. et al. SARS-COV-2 nucleocapsid protein forms condensates with viral genomic RNA. PLoS Biol. 19, e3001425 (2021).

    Google Scholar 

  33. Wu, Y. et al. RNA-induced liquid phase separation of SARS-CoV-2 nucleocapsid protein facilitates nf-κb hyper-activation and inflammation. Signal Transduct. Target Ther. 6, 167 (2021).

    Google Scholar 

  34. Chen, H. et al. Liquid–liquid phase separation by SARS-CoV-2 nucleocapsid protein and RNA. Cell Res 30, 1143–1145 (2020).

    Google Scholar 

  35. Yoo, J. & Aksimentiev, A. Improved parametrization of Li+, Na+, K+, and Mg2+ ions for all-atom molecular dynamics simulations of nucleic acid systems. J. Phys. Chem. Lett. 3, 45–50 (2012).

    Google Scholar 

  36. Yoo, J. & Aksimentiev, A. New tricks for old dogs: improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Phys. Chem. Chem. Phys. 20, 8432–8449 (2018).

    Google Scholar 

  37. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Google Scholar 

  38. Zhang, H. et al. Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Sci. China Life Sci. 63, 953–985 (2020).

    Google Scholar 

  39. Brangwynne, C. P. et al. Germline p granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    Google Scholar 

  40. Larson, A. G. et al. Liquid droplet formation by hp1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    Google Scholar 

  41. Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).

    Google Scholar 

  42. Zhou, H., Kota, D., Qin, S. & Prasad, R. Fundamental aspects of phase-separated biomolecular condensates. Chem. Rev. 124, 8550–8595 (2024).

    Google Scholar 

  43. Dignon, G. L., Best, R. B. & Mittal, J. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 71, 53–75 (2020).

    Google Scholar 

  44. Borgia, A. et al. Extreme disorder in an ultrahigh-affinity protein complex. Nature 555, 61–66 (2018).

    Google Scholar 

  45. Mittag, T. & Pappu, R. V. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol. Cell 82, 2201–2214 (2022).

    Google Scholar 

  46. Kaur, T. et al. Sequence-encoded and composition-dependent protein-RNA interactions control multiphasic condensate morphologies. Nat. Commun. 12, 872 (2021).

    Google Scholar 

  47. Li, W., Terakawa, T., Wang, W. & Takada, S. Energy landscape and multiroute folding of topologically complex proteins adenylate kinase and 2ouf-knot. Proc. Natl. Acad. Sci. USA 109, 17789–17794 (2012).

    Google Scholar 

  48. Li, W., Wang, W. & Takada, S. Energy landscape views for interplays among folding, binding, and allostery of calmodulin domains. Proc. Natl. Acad. Sci. USA 111, 10550–10555 (2014).

    Google Scholar 

  49. Hinckley, D. M., Freeman, G. S., Whitmer, J. K. & De Pablo, J. J. An experimentally-informed coarse-grained 3-site-per-nucleotide model of DNA: Structure, thermodynamics, and dynamics of hybridization. J. Chem. Phys. 139, 144903 (2013).

  50. Takada, S. et al. Modeling structural dynamics of biomolecular complexes by coarse-grained molecular simulations. Acc. Chem. Res. 48, 3026–3035 (2015).

    Google Scholar 

  51. Huertas, J., Woods, E. J. & Collepardo-Guevara, R. Multiscale modelling of chromatin organisation: resolving nucleosomes at near-atomistic resolution inside genes. Curr. Opin. Cell Biol. 75, 102067 (2022).

    Google Scholar 

  52. Lequieu, J., Schwartz, D. C. & de Pablo, J. J. In silico evidence for sequence-dependent nucleosome sliding. Proc. Natl. Acad. Sci. 114, E9197–E9205 (2017).

    Google Scholar 

  53. Moller, J., Lequieu, J. & de Pablo, J. J. The free energy landscape of internucleosome interactions and its relation to chromatin fiber structure. ACS Cent. Sci. 5, 341–348 (2019).

    Google Scholar 

  54. Tan, C., Terakawa, T. & Takada, S. Dynamic coupling among protein binding, sliding, and DNA bending revealed by molecular dynamics. J. Am. Chem. Soc. 138, 8512–8522 (2016).

    Google Scholar 

  55. Nagae, F., Murayama, Y. & Terakawa, T. Molecular mechanism of parental h3/h4 recycling at a replication fork. Nat. Commun. 15, 9485 (2024).

    Google Scholar 

  56. Bian, Y. et al. Fusion dynamics and size-dependence of droplet microstructure in ssDNA-mediated protein phase separation. JACS Au 4, 3690–3704 (2024).

    Google Scholar 

  57. Dignon, G. L., Zheng, W., Kim, Y. C., Best, R. B. & Mittal, J. Sequence determinants of protein phase behavior from a coarse-grained model. PLoS Comput. Biol. 14, e1005941 (2018).

    Google Scholar 

  58. Phan, T. M., Kim, Y. C., Debelouchina, G. T. & Mittal, J. Interplay between charge distribution andin shaping hp1 paralog phase separation and localization. Elife 12, RP90820 (2024).

    Google Scholar 

  59. Tan, C., Niitsu, A. & Sugita, Y. Highly charged proteins and their repulsive interactions antagonize biomolecular condensation. JACS Au 3, 834–848 (2023).

    Google Scholar 

  60. Harati Taji, Z. et al. Transient RNA interactions leave a covalent imprint on a viral capsid protein. J. Am. Chem. Soc. 144, 8536–8550 (2022).

    Google Scholar 

  61. Yu, J. et al. Multivalent ions induce lateral structural inhomogeneities in polyelectrolyte brushes. Sci. Adv. 3, eaao1497 (2017).

    Google Scholar 

  62. Tagliazucchi, M., de la Cruz, M. O. & Szleifer, I. Self-organization of grafted polyelectrolyte layers via the coupling of chemical equilibrium and physical interactions. Proc. Natl. Acad. Sci. 107, 5300–5305 (2010).

    Google Scholar 

  63. He, G.-L., Merlitz, H., Sommer, J.-U. & Wu, C.-X. Microphase Separation of Mixed Binary Polymer Brushes at Different Temperatures. Macromolecules 42, 7194–7202 (2009).

    Google Scholar 

  64. Bina, M., Sciortino, F. & Mahrir, A. N. Phase separation in polymer-based biomimetic structures containing planar membranes. Biointerphases 17, 060802 (2022).

    Google Scholar 

  65. Gao, K., Kearney, L. T. & Howarter, J. A. Planar phase separation of weak polyelectrolyte brushes in poor solvent. J. Polym. Sci. Part B 55, 370–377 (2017).

  66. Wang, J. C.-Y., Nickens, D. G., Lentz, T. B., Loeb, D. D. & Zlotnick, A. Encapsidated hepatitis B virus reverse transcriptase is poised on an ordered RNA lattice. Proc. Natl. Acad. Sci. USA 111, 11329–11334 (2014).

    Google Scholar 

  67. Patel, N. et al. HBV RNA pre-genome encodes specific motifs that mediate interactions with the viral core protein that promote nucleocapsid assembly. Nat. Microbiol. 2, 17098 (2017).

    Google Scholar 

  68. Patel, N. et al. In vitro functional analysis of gRNA sites regulating assembly of hepatitis B virus. Commun. Biol. 4, 1407 (2021).

    Google Scholar 

  69. Abraham, T. M. & Loeb, D. D. Base pairing between the 5’ half of ϵ and a cis-acting sequence,ϕ, makes a contribution to the synthesis of minus-strand DNA for human hepatitis b virus. J. Virol. 80, 4380–4387 (2006).

    Google Scholar 

  70. Beren, C., Dreesens, L. L., Liu, K. N., Knobler, C. M. & Gelbart, W. M. The effect of RNA secondary structure on the self-assembly of viral capsids. Biophys. J. 113, 339–347 (2017).

    Google Scholar 

  71. Chu, T.-H., Liou, A.-T., Su, P.-Y., Wu, H.-N. & Shih, C. Nucleic acid chaperone activity associated with the arginine-rich domain of human hepatitis b virus core protein. J. Virol. 88, 2530–2543 (2014).

    Google Scholar 

  72. Bruce, D., Deschenaux, R., Donnio, B. & Guillon, D. 12.05 - metallomesogens. In Comprehensive Organometallic Chemistry III (eds, Mingos, D. M. P. & Crabtree, R. H.) 195–293 (Elsevier, Oxford, 2007).

  73. Perlmutter, J. D., Qiao, C. & Hagan, M. F. Viral genome structures are optimal for capsid assembly. eLife 2, e00632 (2013).

    Google Scholar 

  74. Yoffe, A. M. et al. Predicting the sizes of large RNA molecules. Proc. Natl. Acad. Sci. 105, 16153–16158 (2008).

    Google Scholar 

  75. Gopal, A. et al. Viral RNAs are unusually compact. PLOS ONE 9, 1–10 (2014).

    Google Scholar 

  76. Shin, M. K., Kim, J. H., Ryu, D. K. & Ryu, W. S. Circularization of an RNA template via long-range base pairing is critical for hepadnaviral reverse transcription. Virology 371, 362–373 (2008).

    Google Scholar 

  77. Liu, N., Tian, R. & Loeb, D. D. Base pairing among three cis-acting sequences contributes to template switching during hepadnavirus reverse transcription. Proc. Natl. Acad. Sci. USA 100, 1984–1989 (2003).

    Google Scholar 

  78. Venkatakrishnan, B. & Zlotnick, A. The structural biology of hepatitis B virus: form and function. Annu Rev. Virol. 3, 429–451 (2016).

    Google Scholar 

  79. Shen, S. et al. Conditional replication and secretion of hepatitis B virus genome uncover the truncated 3’ terminus of encapsidated viral pregenomic RNA. J. Virol. 97, e00760–23 (2023).

    Google Scholar 

  80. York, A. Targeting viral liquid–liquid phase separation. Nat. Rev. Microbiol. 19, 550–550 (2021).

    Google Scholar 

  81. Li, H. et al. Phase separation in viral infections. Trends Microbiol. 30, 1217–1231 (2022).

    Google Scholar 

  82. Zhang, X., Zheng, R., Li, Z. & Ma, J. Liquid-liquid phase separation in viral function. J. Mol. Biol. 435, 167955 (2023).

    Google Scholar 

  83. Risso-Ballester, J. et al. A condensate-hardening drug blocks RSV replication in vivo. Nature 595, 596–599 (2021).

    Google Scholar 

  84. Lopez, N. et al. Deconstructing virus condensation. PLoS Pathog. 17, e1009926 (2021).

    Google Scholar 

  85. Monette, A. et al. Pan-retroviral nucleocapsid-mediated phase separation regulates genomic RNA positioning and trafficking. Cell Rep. 31, 107520 (2020).

  86. Monette, A., Niu, M., Asser, M. N., Gorelick, R. J. & Mouland, A. J. Scaffolding viral protein nc nucleates phase separation of the HIV-1 biomolecular condensate. Cell Rep. 40, 111251 (2022).

  87. Alenquer, M. et al. Influenza A virus ribonucleoproteins form liquid organelles at endoplasmic reticulum exit sites. Nat. Commun. 10, 1629 (2019).

    Google Scholar 

  88. Savastano, A., Ibáñez de Opakua, A., Rankovic, M. & Zweckstetter, M. Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates. Nat. Commun. 11, 6041 (2020).

    Google Scholar 

  89. Prisk, T., Pantalei, C., Kaiser, H. & Sokol, P. Confinement-driven phase separation of quantum liquid mixtures. Phys. Rev. Lett. 109, 075301 (2012).

    Google Scholar 

  90. Munoz-Santiburcio, D. & Marx, D. Confinement-controlled aqueous chemistry within nanometric slit pores: focus review. Chem. Rev. 121, 6293–6320 (2021).

    Google Scholar 

  91. Hsu, C.-P., Aretz, J., Hordeichyk, A., Fässler, R. & Bausch, A. R. Surface-induced phase separation of reconstituted nascent integrin clusters on lipid membranes. Proc. Natl. Acad. Sci. USA 120, e2301881120 (2023).

    Google Scholar 

  92. Litschel, T. et al. Membrane-induced 2d phase separation of the focal adhesion protein talin. Nat. Commun. 15, 4986 (2024).

    Google Scholar 

  93. Rao, S. S. et al. A 3d map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Google Scholar 

  94. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Google Scholar 

  95. Huang, K. et al. Physical and data structure of 3d genome. Sci. Adv. 6, eaay4055 (2020).

    Google Scholar 

  96. Zandi, R., Dragnea, B., Travesset, A. & Podgornik, R. On virus growth and form. Phys. Rep. 847, 1–102 (2020). On virus growth and form.

    Google Scholar 

  97. Dong, Y., Li, S. & Zandi, R. Effect of the charge distribution of virus coat proteins on the length of packaged RNAs. Phys. Rev. E 102, 062423 (2020).

    Google Scholar 

  98. Erdemci-Tandogan, G., Wagner, J., van der Schoot, P., Podgornik, R. & Zandi, R. RNA topology remolds electrostatic stabilization of viruses. Phys. Rev. E 89, 032707 (2014).

    Google Scholar 

  99. Erdemci-Tandogan, G., Orland, H. & Zandi, R. RNA base pairing determines the conformations of RNA inside spherical viruses. Phys. Rev. Lett. 119, 188102 (2017).

    Google Scholar 

  100. Šali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Google Scholar 

  101. Case, D. A. et al. Ambertools. J. Chem. Inf. Model 63, 6183–6191 (2023).

    Google Scholar 

  102. Haines, K. M. & Loeb, D. D. The sequence of the RNA primer and the dna template influence the initiation of plus-strand dna synthesis in hepatitis b virus. J. Mol. Biol. 370, 471–480 (2007).

    Google Scholar 

  103. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Google Scholar 

  104. Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput 11, 3696–3713 (2015).

    Google Scholar 

  105. Zgarbová, M. et al. Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput 7, 2886–2902 (2011).

    Google Scholar 

  106. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Google Scholar 

  107. Nosé, S. & Klein, M. Constant pressure molecular dynamics for molecular systems. Mol. Phys. 50, 1055–1076 (1983).

    Google Scholar 

  108. Berendsen, H. J., van der Spoel, D. & van Drunen, R. Gromacs: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43–56 (1995).

    Google Scholar 

  109. Abraham, M. J. et al. Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015).

    Google Scholar 

  110. Heo, L. & Feig, M. One bead per residue can describe all-atom protein structures. Structure 32, 97–111.e6 (2024).

    Google Scholar 

  111. Kenzaki, H. et al. Cafemol: a coarse-grained biomolecular simulator for simulating proteins at work. J. Chem. Theory Comput 7, 1979–1989 (2011).

    Google Scholar 

  112. Terakawa, T. & Takada, S. Multiscale ensemble modeling of intrinsically disordered proteins: p53 n-terminal domain. Biophys. J. 101, 1450–1458 (2011).

    Google Scholar 

  113. Matysiak, S. & Clementi, C. Optimal combination of theory and experiment for the characterization of the protein folding landscape of s6: how far can a minimalist model go?. J. Mol. Biol. 343, 235–248 (2004).

    Google Scholar 

  114. Jung, J. et al. GENESIS: a hybrid-parallel and multi-scale molecular dynamics simulator with enhanced sampling algorithms for biomolecular and cellular simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 5, 310–323 (2015).

    Google Scholar 

  115. Kobayashi, C. et al. GENESIS 1.1: a hybrid-parallel molecular dynamics simulator with enhanced sampling algorithms on multiple computational platforms. J. Comput. Chem. 38, 2193–2206 (2017).

    Google Scholar 

  116. Tan, C. et al. Implementation of residue-level coarse-grained models in GENESIS for large-scale molecular dynamics simulations. PLoS Comput. Biol. 18, e1009578 (2022).

    Google Scholar 

  117. Yu, X., Jin, L., Jih, J., Shih, C. & Hong Zhou, Z. 3.5 å cryoem structure of hepatitis B virus core assembled from full-length core protein. PloS One 8, e69729 (2013).

    Google Scholar 

  118. Chen, H. et al. Ionic strength-dependent persistence lengths of single-stranded RNA and DNA. Proc. Natl. Acad. Sci. USA 109, 799–804 (2012).

    Google Scholar 

  119. Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596, 583–589 (2021).

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Xin Wang of BASF for his technical support with the Atomic Force Microscopy (AFM) experiments. This work was supported by National Natural Science Foundation of China (Grant Nos. 12574224 to W.L., 12090052 to W.W., and 12347102 to W.L.), Basic Research Program of Jiangsu Province (BK20253050 to W.L.), and the grant of Wenzhou Institute, University of Chinese Academy of Sciences (WIUCASQD2021010 to W.L., WIUCASQD2022036 to Y.B.). The authors also thank the support from HPC Center of Nanjing University, e-Science center of Nanjing University, Nanjing Kunpeng&Ascend Center of Cultivation, and the Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine (funded by the Nanjing Municipal Health Commission) and its Jiangsu counterpart.

Author information

Author notes
  1. These authors contributed equally: Yunqiang Bian, Hai Pan, Jiaqi Mao.

Authors and Affiliations

  1. Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, PR China

    Yunqiang Bian, Hai Pan & Yixin He

  2. Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing, PR China

    Yunqiang Bian, Jiaqi Mao, Yixin He, Yi Cao, Wenfei Li & Wei Wang

  3. Department of Physics, Wenzhou University, Wenzhou, PR China

    Jiaqi Mao & Yanwei Wang

  4. Jiangsu Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Department of Cardiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, PR China

    Wenfei Li

Authors
  1. Yunqiang Bian
    View author publications

    Search author on:PubMed Google Scholar

  2. Hai Pan
    View author publications

    Search author on:PubMed Google Scholar

  3. Jiaqi Mao
    View author publications

    Search author on:PubMed Google Scholar

  4. Yixin He
    View author publications

    Search author on:PubMed Google Scholar

  5. Yanwei Wang
    View author publications

    Search author on:PubMed Google Scholar

  6. Yi Cao
    View author publications

    Search author on:PubMed Google Scholar

  7. Wenfei Li
    View author publications

    Search author on:PubMed Google Scholar

  8. Wei Wang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

W.L. and W.W. conceived the ideas and designed the work. Y.B. and Y.H. conducted the molecular dynamics simulations. H.P. and J.M. carried out the experiments. Y.W. and Y.C. contributed to the discussion. Y.B., W.L. and W.W. co-wrote the manuscript.

Corresponding author

Correspondence to Wenfei Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

: Nature Communications thanks Aleksei Aksimentiev who co-reviewed with Kush Coshic, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description Of Additional Supplementary File

Supplementary Movie 1

Supplementary Movie 2

Supplementary Movie 3

Supplementary Movie 4

Supplementary Movie 5

Supplementary Movie 6

Supplementary Movie 7

Supplementary Movie 8

Supplementary Movie 9

Supplementary Movie 10

Supplementary Movie 11

Supplementary Movie 12

Supplementary Movie 13

Reporting summary

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, Y., Pan, H., Mao, J. et al. Structural organization of HBV pgRNA genome driven by phase separation in capsid confinement. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69689-2

Download citation

  • Received: 21 July 2025

  • Accepted: 06 February 2026

  • Published: 19 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69689-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing