Abstract
Geomagnetic substorms transfer solar wind energy into the planetary magnetosphere and ionosphere, producing auroral displays and ground magnetic disturbances, particularly intense during the expansion phase. Despite decades of study, the mechanisms governing the expansion phase remain unresolved. Based on coordinated observations of storm-time intense substorms, we reveal that substorm expansion is temporally embedded within a global cycle of field-aligned currents and auroral electrojets, coupled to large-scale plasma convection. The cycle manifests as a coherent movement of current peaks across magnetic longitude and latitude—first antisunward and equatorward, then sunward and poleward—and coincides with enhanced sunward ionospheric convection. This cycle involves two components of the auroral electrojets: the convection-driven DP-2 current and the expansion-phase DP-1 substorm current. The antisunward-equatorward phase, corresponding to intervals of dominant dayside reconnection, begins with DP-2 and can stepwise transition into DP-1. During the subsequent sunward-poleward phase, reflecting intervals of dominant nightside reconnection, DP-1 either persists from the earlier interval or develops within this phase. These observations show that expansion onset can occur under dominance of either dayside or nightside reconnection, while the full development of DP-1 generally involves nightside reconnection, providing insight into substorm evolution.
Similar content being viewed by others
Data availability
Source data are provided with this paper. OMNI and THEMIS data are available at NASA’s Coordinated Data Analysis Web (CDAWeb, https://spdf.gsfc.nasa.gov/pub/data/). The AMPERE field-aligned current is available on https://ampere.jhuapl.edu/browse/. The relevant geomagnetic indices of SuperMAG come from https://supermag.jhuapl.edu/indices/. SuperDARN data can be accessed at https://doi.org/10.20383/102.0447. Source Data are provided with this paper and available at 10.5281/zenodo.18493818.
Code availability
The radar software toolkit (RST) used to produce SuperDARN convection maps is available at https://doi.org/10.5281/zenodo.7467337, and reference therein. IDL SPEDAS used for analyzing data are freely available at https://themis.igpp.ucla.edu/software.shtml. IDL and Python code used for this study are available at 10.5281/zenodo.17776738.
References
Akasofu, S.-I. The development of the auroral substorm. Planet. Space Sci. 12, 273–282 (1964).
Kennel, C. F.Convection and Substorms - Paradigms of Magnetospheric Phenomenology2 (Oxford University Press on Demand, 1996).
Akasofu, S.-I. Auroral Substorms: Search for Processes Causing the Expansion Phase in Terms of the Electric Current Approach. Space Sci. Rev. 212, 341–381 (2017).
Bonfond, B. et al. Are dawn storms jupiter’s auroral substorms?. AGU Adv. 2, e2020AV000275 (2021).
Aizawa, S. et al. Direct evidence of substorm-related impulsive injections of electrons at mercury. Nat. Commun. 14, 4019 (2023).
Branduardi-Raymont, G. et al. Smile definition study report (red book). esa (2018).
Wang, C., Branduardi-Raymont, G., Escoubet, C. P. & Forsyth, C. Solar wind magnetosphere ionosphere link explorer (smile): Science and mission overview. Space Sci. Rev. 221, 9 (2025).
Angelopoulos, V. et al. Tail Reconnection Triggering Substorm Onset. Science 321, 931 (2008).
Lui, A. T. Y., Chang, C. L., Mankofsky, A., Wong, H. K. & Winske, D. A cross-field current instability for substorm expansions. J. Geophys. Res. 96, 11389–11401 (1991).
Kalmoni, N. et al. A diagnosis of the plasma waves responsible for the explosive energy release of substorm onset. Nat. Commun. 9, 4806 (2018).
Panov, E. V. et al. Magnetotail energy dissipation during an auroral substorm. Nat. Phys. 12, 1158–1163 (2016).
Palmroth, M. et al. Magnetotail plasma eruptions driven by magnetic reconnection and kinetic instabilities. Nat. Geosci. 16, 570–576 (2023).
Lyons, L. R. et al. Coordinated observations demonstrating external substorm triggering. J. Geophys. Res. 102, 27039–27052 (1997).
Tsurutani, B. T., Hajra, R., Echer, E. & Gjerloev, J. W. Extremely intense (SML ≤-2500 nT) substorms: isolated events that are externally triggered?. Annales Geophysicae 33, 519–524 (2015).
Zong, Q. G., Yue, C. & Fu, S. Y. Shock Induced Strong Substorms and Super Substorms: Preconditions and Associated Oxygen Ion Dynamics. Space Sci. Rev. 217, 33 (2021).
Hajra, R., Tsurutani, B. T., Echer, E., Gonzalez, W. D. & Gjerloev, J. W. Supersubstorms (SML < -2500 nT): Magnetic storm and solar cycle dependences. J. Geophys. Res. (Space Phys.) 121, 7805–7816 (2016).
Dai, L. et al. Geoeffectiveness of Interplanetary Alfvén Waves. I. Magnetopause Magnetic Reconnection and Directly Driven Substorms. Astrophysical J. 945, 47 (2023).
Hsu, T.-S. & McPherron, R. L. An evaluation of the statistical significance of the association between northward turnings of the interplanetary magnetic field and substorm expansion onsets. J. Geophys. Res.: Space Phys. 107, SMP 31–1–SMP 31–15 (2002).
Boudouridis, A., Zesta, E., Lyons, R., Anderson, P. & Lummerzheim, D. Effect of solar wind pressure pulses on the size and strength of the auroral oval. J. Geophys. Res.: Space Phys. 108, 8012 (2003).
Obayashi, T. & Nishida, A. Large-scale electric field in the magnetosphere. Space Sci. Rev. 8, 3–31 (1968).
Nishida, A. Coherence of geomagnetic dp 2 fluctuations with interplanetary magnetic variations. J. Geophys. Res. 73, 5549–5559 (1968).
Kamide, Y., Sun, W. & Akasofu, S.-I. The average ionospheric electrodynamics for the different substorm phases. J. Geophys. Res. Space Phys. 101, 99–109 (1996).
Kepko, L. et al. Substorm Current Wedge Revisited. Space Sci. Rev. 190, 1–46 (2015).
Keiling, A. et al. Substorm current wedge driven by plasma flow vortices: Themis observations. J. Geophys. Res. Space Phys. 114, A00C22 (2009).
Orr, L., Chapman, S. C., Gjerloev, J. & Guo, W. Network community structure of substorms using supermag magnetometers. Nat. Commun. 12, 1842 (2021).
Milan, S. E. et al. Overview of solar wind–magnetosphere–ionosphere–atmosphere coupling and the generation of magnetospheric currents. Space Sci. Rev. 206, 547–573 (2017).
Lockwood, M., van Eyken, A. P., Bromage, B. J. I., Willis, D. M. & Cowley, S. W. H. Eastward propagation of a plasma convection enhancement following a southward turning of the interplanetary magnetic field. Geophys. Res. Lett. 13, 72–75 (1986).
Dai, L. et al. Global-scale magnetosphere convection driven by dayside magnetic reconnection. Nat. Commun. 15, 639 (2024).
Sonnerup, B. Ö Theory of the low-latitude boundary layer. J. Geophys. Res.: Space Phys. 85, 2017–2026 (1980).
Milan, S. E. Modeling Birkeland currents in the expanding/contracting polar cap paradigm. J. Geophys. Res. (Space Phys.) 118, 5532–5542 (2013).
Juusola, L., Milan, S. E., Lester, M., Grocott, A. & M. Imber, S. Interplanetary magnetic field control of the ionospheric field-aligned current and convection distributions. J. Geophys. Res. Space Phys. 119, 3130–3149 (2014).
Ebihara, Y. & Tanaka, T. Generation mechanism of region 1 field-aligned current and energy transfer from solar wind to polar ionosphere. Rev. Mod. Plasma Phys. 8, 20 (2024).
Zhu, M. et al. The Influence of Ionospheric Conductance on Magnetospheric Convection During the Southward IMF. J. Geophys. Res. (Space Phys.) 129, e2024JA032607 (2024).
Zhu, M. et al. Response of magnetospheric convection to the southward turning of the imf in fast and slow solar wind streams. J. Geophys. Res. Space Phys. 130, e2025JA034529 (2025).
Tanaka, T. et al. Substorm convection and current system deduced from the global simulation. J. Geophys. Res. Space Phys. 115, A05220 (2010).
Iijima, T. & Potemra, T. A. The amplitude distribution of field-aligned currents at northern high latitudes observed by triad. J. Geophys. Res. 81, 2165–2174 (1976).
Iijima, T. & Potemra, T. A. Large-scale characteristics of field-aligned currents associated with substorms. J. Geophys. Res. Space Phys. 83, 599–615 (1978).
Coxon, J., Milan, S., Clausen, L., Anderson, B. & Korth, H. The magnitudes of the regions 1 and 2 Birkeland currents observed by Ampere and their role in solar wind-magnetosphere-ionosphere coupling. J. Geophys. Res.: Space Phys. 119, 9804–9815 (2014).
Cowley, S. W. H. & Lockwood, M. Excitation and decay of solar wind-driven flows in the magnetosphere-ionosphere system. Annales Geophysicae 10, 103–115 (1992).
Milan, S. E. & Grocott, A. Huang, C. & Lu, G. (eds) High Latitude Ionospheric Convection. (eds Huang, C. & Lu, G.) Ionosphere Dynamics and Applications, 3, 21 (2021).
Newell, P. & Gjerloev, J. Substorm and magnetosphere characteristic scales inferred from the supermag auroral electrojet indices. J. Geophys. Res.: Space Phys. 116, A12232 (2011).
Newell, P. & Gjerloev, J. Supermag-based partial ring current indices. J. Geophys. Res.: Space Phys. 117, A05215 (2012).
Gjerloev, J. The supermag data processing technique. J. Geophys. Res.: Space Phys. 117, A09213 (2012).
Gjerloev, J., Hoffman, R., Friel, M., Frank, L. & Sigwarth, J. Substorm behavior of the auroral electrojet indices. Annales Geophysicae 22, 2135–2149 (2004).
Fu, H., Yue, C., Zong, Q.-G., Zhou, X.-Z. & Fu, S. Statistical characteristics of substorms with different intensity. J. Geophys. Res. Space Phys. 126, e2021JA029318 (2021).
Milan, S. E., Boakes, P. D. & Hubert, B. Response of the expanding/contracting polar cap to weak and strong solar wind driving: Implications for substorm onset. J. Geophys. Res. (Space Phys.) 113, A09215 (2008).
Milan, S. E. et al. A superposed epoch analysis of auroral evolution during substorm growth, onset and recovery: open magnetic flux control of substorm intensity. Annales Geophysicae 27, 659–668 (2009).
Milan, S. E., Carter, J. A., Sangha, H., Bower, G. E. & Anderson, B. J. Magnetospheric Flux Throughput in the Dungey Cycle: Identification of Convection State During 2010. J. Geophys. Res. (Space Phys.) 126, e28437 (2021).
Forsyth, C. et al. A new technique for determining Substorm Onsets and Phases from Indices of the Electrojet (SOPHIE). J. Geophys. Res. (Space Phys.) 120, 10,592–10,606 (2015).
Bower, G. E. et al. Asymmetry in the Ring Current During Geomagnetic Disturbances. J. Geophys. Res. (Space Phys.) 130, 2024JA033492 (2025).
Walach, M.-T. & Milan, S. E. Are steady magnetospheric convection events prolonged substorms?. J. Geophys. Res. (Space Phys.) 120, 1751–1758 (2015).
Zou, Y. et al. Are supersubstorms substorms? Extreme nightside auroral electrojet activities during the may 2024 geomagnetic storm. J. Geophys. Res.: Space Phys. 130, e2024JA033303 (2025).
Wing, S. et al. Dayside field-aligned current source regions. J. Geophys. Res. (Space Phys.) 115, A12215 (2010).
Milan, S. E., Grocott, A. & Hubert, B. A superposed epoch analysis of auroral evolution during substorms: Local time of onset region. J. Geophys. Res. (Space Phys.) 115, A00I04 (2010).
Baker, D. N., Pulkkinen, T. I., Angelopoulos, V., Baumjohann, W. & McPherron, R. L. Neutral line model of substorms: Past results and present view. J. Geophys. Res. 101, 12975–13010 (1996).
Shiokawa, K. et al. High-speed ion flow, substorm current wedge, and multiple pi 2 pulsations. J. Geophys. Res.: Space Phys. 103, 4491–4507 (1998).
Birn, J., Hesse, M., Haerendel, G., Baumjohann, W. & Shiokawa, K. Flow braking and the substorm current wedge. J. Geophys. Res. Space Phys. 104, 19895–19903 (1999).
Weygand, J. M. et al. Relation of substorm onset to harang discontinuity. J. Geophys. Res. Space Phys. 113, A04213 (2008).
Ebihara, Y. & Tanaka, T. Energy Flow Exciting Field-Aligned Current at Substorm Expansion Onset. J. Geophys. Res. (Space Phys.) 122, 12,288–12,309 (2017).
Ebihara, Y. & Tanaka, T. Substorm simulation: Formation of westward traveling surge. J. Geophys. Res.: Space Phys. 120, 10–466 (2015).
Nishimura, Y., Lyons, L., Zou, S., Angelopoulos, V. & Mende, S. Substorm triggering by new plasma intrusion: THEMIS all-sky imager observations. J. Geophys. Res. (Space Phys.) 115, A07222 (2010).
Tanaka, T. et al. Development of the Substorm as a Manifestation of Convection Transient. J. Geophys. Res. (Space Phys.) 126, e28942 (2021).
Angelopoulos, V. The THEMIS Mission. Space Sci. Rev. 141, 5–34 (2008).
Anderson, B. et al. Development of large-scale Birkeland currents determined from the active magnetosphere and planetary electrodynamics response experiment. Geophys. Res. Lett. 41, 3017–3025 (2014).
Chisham, G. et al. A decade of the super dual auroral radar network (superdarn): Scientific achievements, new techniques and future directions. Surv. Geophysics 28, 33–109 (2007).
Nishitani, N. et al. Review of the accomplishments of mid-latitude super dual auroral radar network (SuperDARN) hf radars. Prog. Earth Planet. Sci. 6, 1–57 (2019).
Greenwald, R. et al. Darn/superdarn: A global view of the dynamics of high-latitude convection. Space Sci. Rev. 71, 761–796 (1995).
Ruohoniemi, J. M. & Baker, K. B. Large-scale imaging of high-latitude convection with Super Dual Auroral Radar Network HF radar observations. J. Geophys. Res. 103, 20797–20811 (1998).
Thomas, E. G. & Shepherd, S. G. Statistical Patterns of Ionospheric Convection Derived From Mid-latitude, High-Latitude, and Polar SuperDARN HF Radar Observations. J. Geophys. Res. (Space Phys.) 123, 3196–3216 (2018).
Sato, T. & Iijima, T. Primary sources of large-scale Birkeland currents. Space Sci. Rev. 24, 347–366 (1979).
Ohtani, S., Sorathia, K., Merkin, V., Frey, H. & Gjerloev, J. External and internal causes of the stormtime intensification of the dawnside westward auroral electrojet. J. Geophys. Res. Space Phys. 128, e2023JA031457 (2023).
Acknowledgements
L.D is jointly supported by NSFC grants (42425404) and the National Key R&D Program of China 2025YFF0512100, NSFC grants (42527802,42188101), the Specialized Research Fund for State Key Laboratories of China, and the Strategic Pioneer Program on Space Science II, Chinese Academy of Sciences, grants XDA15350201, XDA15052500. M.H.Z. is supported by NSFC grants 42404178. We acknowledge the use of SuperDARN data. SuperDARN is a network of radars funded by national scientific funding agencies of Australia, Canada, China, France, Italy, Japan, Norway, South Africa, the United Kingdom, and the United States of America. We thank SuperMAG for providing geomagnetic station data and derived geomagnetic indices. We thank the AMPERE team and the AMPERE Science Data Center for providing data products derived from the Iridium Communications constellation. Thanks to the THEMIS mission for providing solar wind data in this event, the Kyoto World Geomagnetic Data Center for SYM-H data.
Author information
Authors and Affiliations
Contributions
L.D. conceptualized the study, analyzed and interpreted data, and wrote the manuscript. T.H.W. analyzed and interpreted data and contributed to manuscript writing. Y.R. collected and processed observational data and contributed to data interpretation. M.H.Z. and J.J.L. processed figure data. W.G., S.W., and C.P.E. contributed to data interpretation. C.W., X.W., and K.L.W. contributed to manuscript revision. All authors reviewed and approved the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Wang, T., Dai, L., Escoubet, C.P. et al. Substorm expansion embedded in a global cycle of field-aligned currents and auroral electrojets. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69753-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69753-x


