Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Substorm expansion embedded in a global cycle of field-aligned currents and auroral electrojets
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 February 2026

Substorm expansion embedded in a global cycle of field-aligned currents and auroral electrojets

  • Tonghui Wang1,2,
  • Lei Dai  ORCID: orcid.org/0000-0002-5122-30661,
  • C. Philippe Escoubet3,
  • Walter Gonzalez4,
  • Yong Ren1,
  • Minghui Zhu  ORCID: orcid.org/0000-0001-9606-92531,
  • Shan Wang  ORCID: orcid.org/0000-0002-6783-77595,
  • Chi Wang  ORCID: orcid.org/0000-0001-6991-93981,
  • Xu Wang1,2,
  • Kailai Wang1,2 &
  • …
  • Jinjuan Liu6 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Aurora
  • Magnetospheric physics

Abstract

Geomagnetic substorms transfer solar wind energy into the planetary magnetosphere and ionosphere, producing auroral displays and ground magnetic disturbances, particularly intense during the expansion phase. Despite decades of study, the mechanisms governing the expansion phase remain unresolved. Based on coordinated observations of storm-time intense substorms, we reveal that substorm expansion is temporally embedded within a global cycle of field-aligned currents and auroral electrojets, coupled to large-scale plasma convection. The cycle manifests as a coherent movement of current peaks across magnetic longitude and latitude—first antisunward and equatorward, then sunward and poleward—and coincides with enhanced sunward ionospheric convection. This cycle involves two components of the auroral electrojets: the convection-driven DP-2 current and the expansion-phase DP-1 substorm current. The antisunward-equatorward phase, corresponding to intervals of dominant dayside reconnection, begins with DP-2 and can stepwise transition into DP-1. During the subsequent sunward-poleward phase, reflecting intervals of dominant nightside reconnection, DP-1 either persists from the earlier interval or develops within this phase. These observations show that expansion onset can occur under dominance of either dayside or nightside reconnection, while the full development of DP-1 generally involves nightside reconnection, providing insight into substorm evolution.

Similar content being viewed by others

Network community structure of substorms using SuperMAG magnetometers

Article Open access 23 March 2021

Extreme two-phase change of ionospheric electron temperature overshoot during geomagnetic storms

Article Open access 11 February 2025

A unified framework for global auroral morphologies of different planets

Article 20 May 2024

Data availability

Source data are provided with this paper. OMNI and THEMIS data are available at NASA’s Coordinated Data Analysis Web (CDAWeb, https://spdf.gsfc.nasa.gov/pub/data/). The AMPERE field-aligned current is available on https://ampere.jhuapl.edu/browse/. The relevant geomagnetic indices of SuperMAG come from https://supermag.jhuapl.edu/indices/. SuperDARN data can be accessed at https://doi.org/10.20383/102.0447. Source Data are provided with this paper and available at 10.5281/zenodo.18493818.

Code availability

The radar software toolkit (RST) used to produce SuperDARN convection maps is available at https://doi.org/10.5281/zenodo.7467337, and reference therein. IDL SPEDAS used for analyzing data are freely available at https://themis.igpp.ucla.edu/software.shtml. IDL and Python code used for this study are available at 10.5281/zenodo.17776738.

References

  1. Akasofu, S.-I. The development of the auroral substorm. Planet. Space Sci. 12, 273–282 (1964).

    Google Scholar 

  2. Kennel, C. F.Convection and Substorms - Paradigms of Magnetospheric Phenomenology2 (Oxford University Press on Demand, 1996).

  3. Akasofu, S.-I. Auroral Substorms: Search for Processes Causing the Expansion Phase in Terms of the Electric Current Approach. Space Sci. Rev. 212, 341–381 (2017).

    Google Scholar 

  4. Bonfond, B. et al. Are dawn storms jupiter’s auroral substorms?. AGU Adv. 2, e2020AV000275 (2021).

    Google Scholar 

  5. Aizawa, S. et al. Direct evidence of substorm-related impulsive injections of electrons at mercury. Nat. Commun. 14, 4019 (2023).

    Google Scholar 

  6. Branduardi-Raymont, G. et al. Smile definition study report (red book). esa (2018).

  7. Wang, C., Branduardi-Raymont, G., Escoubet, C. P. & Forsyth, C. Solar wind magnetosphere ionosphere link explorer (smile): Science and mission overview. Space Sci. Rev. 221, 9 (2025).

    Google Scholar 

  8. Angelopoulos, V. et al. Tail Reconnection Triggering Substorm Onset. Science 321, 931 (2008).

    Google Scholar 

  9. Lui, A. T. Y., Chang, C. L., Mankofsky, A., Wong, H. K. & Winske, D. A cross-field current instability for substorm expansions. J. Geophys. Res. 96, 11389–11401 (1991).

    Google Scholar 

  10. Kalmoni, N. et al. A diagnosis of the plasma waves responsible for the explosive energy release of substorm onset. Nat. Commun. 9, 4806 (2018).

    Google Scholar 

  11. Panov, E. V. et al. Magnetotail energy dissipation during an auroral substorm. Nat. Phys. 12, 1158–1163 (2016).

    Google Scholar 

  12. Palmroth, M. et al. Magnetotail plasma eruptions driven by magnetic reconnection and kinetic instabilities. Nat. Geosci. 16, 570–576 (2023).

    Google Scholar 

  13. Lyons, L. R. et al. Coordinated observations demonstrating external substorm triggering. J. Geophys. Res. 102, 27039–27052 (1997).

    Google Scholar 

  14. Tsurutani, B. T., Hajra, R., Echer, E. & Gjerloev, J. W. Extremely intense (SML ≤-2500 nT) substorms: isolated events that are externally triggered?. Annales Geophysicae 33, 519–524 (2015).

    Google Scholar 

  15. Zong, Q. G., Yue, C. & Fu, S. Y. Shock Induced Strong Substorms and Super Substorms: Preconditions and Associated Oxygen Ion Dynamics. Space Sci. Rev. 217, 33 (2021).

    Google Scholar 

  16. Hajra, R., Tsurutani, B. T., Echer, E., Gonzalez, W. D. & Gjerloev, J. W. Supersubstorms (SML < -2500 nT): Magnetic storm and solar cycle dependences. J. Geophys. Res. (Space Phys.) 121, 7805–7816 (2016).

    Google Scholar 

  17. Dai, L. et al. Geoeffectiveness of Interplanetary Alfvén Waves. I. Magnetopause Magnetic Reconnection and Directly Driven Substorms. Astrophysical J. 945, 47 (2023).

    Google Scholar 

  18. Hsu, T.-S. & McPherron, R. L. An evaluation of the statistical significance of the association between northward turnings of the interplanetary magnetic field and substorm expansion onsets. J. Geophys. Res.: Space Phys. 107, SMP 31–1–SMP 31–15 (2002).

    Google Scholar 

  19. Boudouridis, A., Zesta, E., Lyons, R., Anderson, P. & Lummerzheim, D. Effect of solar wind pressure pulses on the size and strength of the auroral oval. J. Geophys. Res.: Space Phys. 108, 8012 (2003).

  20. Obayashi, T. & Nishida, A. Large-scale electric field in the magnetosphere. Space Sci. Rev. 8, 3–31 (1968).

    Google Scholar 

  21. Nishida, A. Coherence of geomagnetic dp 2 fluctuations with interplanetary magnetic variations. J. Geophys. Res. 73, 5549–5559 (1968).

    Google Scholar 

  22. Kamide, Y., Sun, W. & Akasofu, S.-I. The average ionospheric electrodynamics for the different substorm phases. J. Geophys. Res. Space Phys. 101, 99–109 (1996).

    Google Scholar 

  23. Kepko, L. et al. Substorm Current Wedge Revisited. Space Sci. Rev. 190, 1–46 (2015).

    Google Scholar 

  24. Keiling, A. et al. Substorm current wedge driven by plasma flow vortices: Themis observations. J. Geophys. Res. Space Phys. 114, A00C22 (2009).

  25. Orr, L., Chapman, S. C., Gjerloev, J. & Guo, W. Network community structure of substorms using supermag magnetometers. Nat. Commun. 12, 1842 (2021).

    Google Scholar 

  26. Milan, S. E. et al. Overview of solar wind–magnetosphere–ionosphere–atmosphere coupling and the generation of magnetospheric currents. Space Sci. Rev. 206, 547–573 (2017).

    Google Scholar 

  27. Lockwood, M., van Eyken, A. P., Bromage, B. J. I., Willis, D. M. & Cowley, S. W. H. Eastward propagation of a plasma convection enhancement following a southward turning of the interplanetary magnetic field. Geophys. Res. Lett. 13, 72–75 (1986).

    Google Scholar 

  28. Dai, L. et al. Global-scale magnetosphere convection driven by dayside magnetic reconnection. Nat. Commun. 15, 639 (2024).

    Google Scholar 

  29. Sonnerup, B. Ö Theory of the low-latitude boundary layer. J. Geophys. Res.: Space Phys. 85, 2017–2026 (1980).

    Google Scholar 

  30. Milan, S. E. Modeling Birkeland currents in the expanding/contracting polar cap paradigm. J. Geophys. Res. (Space Phys.) 118, 5532–5542 (2013).

    Google Scholar 

  31. Juusola, L., Milan, S. E., Lester, M., Grocott, A. & M. Imber, S. Interplanetary magnetic field control of the ionospheric field-aligned current and convection distributions. J. Geophys. Res. Space Phys. 119, 3130–3149 (2014).

    Google Scholar 

  32. Ebihara, Y. & Tanaka, T. Generation mechanism of region 1 field-aligned current and energy transfer from solar wind to polar ionosphere. Rev. Mod. Plasma Phys. 8, 20 (2024).

    Google Scholar 

  33. Zhu, M. et al. The Influence of Ionospheric Conductance on Magnetospheric Convection During the Southward IMF. J. Geophys. Res. (Space Phys.) 129, e2024JA032607 (2024).

    Google Scholar 

  34. Zhu, M. et al. Response of magnetospheric convection to the southward turning of the imf in fast and slow solar wind streams. J. Geophys. Res. Space Phys. 130, e2025JA034529 (2025).

    Google Scholar 

  35. Tanaka, T. et al. Substorm convection and current system deduced from the global simulation. J. Geophys. Res. Space Phys. 115, A05220 (2010).

  36. Iijima, T. & Potemra, T. A. The amplitude distribution of field-aligned currents at northern high latitudes observed by triad. J. Geophys. Res. 81, 2165–2174 (1976).

    Google Scholar 

  37. Iijima, T. & Potemra, T. A. Large-scale characteristics of field-aligned currents associated with substorms. J. Geophys. Res. Space Phys. 83, 599–615 (1978).

    Google Scholar 

  38. Coxon, J., Milan, S., Clausen, L., Anderson, B. & Korth, H. The magnitudes of the regions 1 and 2 Birkeland currents observed by Ampere and their role in solar wind-magnetosphere-ionosphere coupling. J. Geophys. Res.: Space Phys. 119, 9804–9815 (2014).

    Google Scholar 

  39. Cowley, S. W. H. & Lockwood, M. Excitation and decay of solar wind-driven flows in the magnetosphere-ionosphere system. Annales Geophysicae 10, 103–115 (1992).

    Google Scholar 

  40. Milan, S. E. & Grocott, A. Huang, C. & Lu, G. (eds) High Latitude Ionospheric Convection. (eds Huang, C. & Lu, G.) Ionosphere Dynamics and Applications, 3, 21 (2021).

  41. Newell, P. & Gjerloev, J. Substorm and magnetosphere characteristic scales inferred from the supermag auroral electrojet indices. J. Geophys. Res.: Space Phys. 116, A12232 (2011).

  42. Newell, P. & Gjerloev, J. Supermag-based partial ring current indices. J. Geophys. Res.: Space Phys. 117, A05215 (2012).

  43. Gjerloev, J. The supermag data processing technique. J. Geophys. Res.: Space Phys. 117, A09213 (2012).

  44. Gjerloev, J., Hoffman, R., Friel, M., Frank, L. & Sigwarth, J. Substorm behavior of the auroral electrojet indices. Annales Geophysicae 22, 2135–2149 (2004).

    Google Scholar 

  45. Fu, H., Yue, C., Zong, Q.-G., Zhou, X.-Z. & Fu, S. Statistical characteristics of substorms with different intensity. J. Geophys. Res. Space Phys. 126, e2021JA029318 (2021).

    Google Scholar 

  46. Milan, S. E., Boakes, P. D. & Hubert, B. Response of the expanding/contracting polar cap to weak and strong solar wind driving: Implications for substorm onset. J. Geophys. Res. (Space Phys.) 113, A09215 (2008).

    Google Scholar 

  47. Milan, S. E. et al. A superposed epoch analysis of auroral evolution during substorm growth, onset and recovery: open magnetic flux control of substorm intensity. Annales Geophysicae 27, 659–668 (2009).

    Google Scholar 

  48. Milan, S. E., Carter, J. A., Sangha, H., Bower, G. E. & Anderson, B. J. Magnetospheric Flux Throughput in the Dungey Cycle: Identification of Convection State During 2010. J. Geophys. Res. (Space Phys.) 126, e28437 (2021).

    Google Scholar 

  49. Forsyth, C. et al. A new technique for determining Substorm Onsets and Phases from Indices of the Electrojet (SOPHIE). J. Geophys. Res. (Space Phys.) 120, 10,592–10,606 (2015).

    Google Scholar 

  50. Bower, G. E. et al. Asymmetry in the Ring Current During Geomagnetic Disturbances. J. Geophys. Res. (Space Phys.) 130, 2024JA033492 (2025).

    Google Scholar 

  51. Walach, M.-T. & Milan, S. E. Are steady magnetospheric convection events prolonged substorms?. J. Geophys. Res. (Space Phys.) 120, 1751–1758 (2015).

    Google Scholar 

  52. Zou, Y. et al. Are supersubstorms substorms? Extreme nightside auroral electrojet activities during the may 2024 geomagnetic storm. J. Geophys. Res.: Space Phys. 130, e2024JA033303 (2025).

    Google Scholar 

  53. Wing, S. et al. Dayside field-aligned current source regions. J. Geophys. Res. (Space Phys.) 115, A12215 (2010).

    Google Scholar 

  54. Milan, S. E., Grocott, A. & Hubert, B. A superposed epoch analysis of auroral evolution during substorms: Local time of onset region. J. Geophys. Res. (Space Phys.) 115, A00I04 (2010).

    Google Scholar 

  55. Baker, D. N., Pulkkinen, T. I., Angelopoulos, V., Baumjohann, W. & McPherron, R. L. Neutral line model of substorms: Past results and present view. J. Geophys. Res. 101, 12975–13010 (1996).

    Google Scholar 

  56. Shiokawa, K. et al. High-speed ion flow, substorm current wedge, and multiple pi 2 pulsations. J. Geophys. Res.: Space Phys. 103, 4491–4507 (1998).

    Google Scholar 

  57. Birn, J., Hesse, M., Haerendel, G., Baumjohann, W. & Shiokawa, K. Flow braking and the substorm current wedge. J. Geophys. Res. Space Phys. 104, 19895–19903 (1999).

    Google Scholar 

  58. Weygand, J. M. et al. Relation of substorm onset to harang discontinuity. J. Geophys. Res. Space Phys. 113, A04213 (2008).

  59. Ebihara, Y. & Tanaka, T. Energy Flow Exciting Field-Aligned Current at Substorm Expansion Onset. J. Geophys. Res. (Space Phys.) 122, 12,288–12,309 (2017).

    Google Scholar 

  60. Ebihara, Y. & Tanaka, T. Substorm simulation: Formation of westward traveling surge. J. Geophys. Res.: Space Phys. 120, 10–466 (2015).

    Google Scholar 

  61. Nishimura, Y., Lyons, L., Zou, S., Angelopoulos, V. & Mende, S. Substorm triggering by new plasma intrusion: THEMIS all-sky imager observations. J. Geophys. Res. (Space Phys.) 115, A07222 (2010).

    Google Scholar 

  62. Tanaka, T. et al. Development of the Substorm as a Manifestation of Convection Transient. J. Geophys. Res. (Space Phys.) 126, e28942 (2021).

    Google Scholar 

  63. Angelopoulos, V. The THEMIS Mission. Space Sci. Rev. 141, 5–34 (2008).

    Google Scholar 

  64. Anderson, B. et al. Development of large-scale Birkeland currents determined from the active magnetosphere and planetary electrodynamics response experiment. Geophys. Res. Lett. 41, 3017–3025 (2014).

    Google Scholar 

  65. Chisham, G. et al. A decade of the super dual auroral radar network (superdarn): Scientific achievements, new techniques and future directions. Surv. Geophysics 28, 33–109 (2007).

    Google Scholar 

  66. Nishitani, N. et al. Review of the accomplishments of mid-latitude super dual auroral radar network (SuperDARN) hf radars. Prog. Earth Planet. Sci. 6, 1–57 (2019).

    Google Scholar 

  67. Greenwald, R. et al. Darn/superdarn: A global view of the dynamics of high-latitude convection. Space Sci. Rev. 71, 761–796 (1995).

    Google Scholar 

  68. Ruohoniemi, J. M. & Baker, K. B. Large-scale imaging of high-latitude convection with Super Dual Auroral Radar Network HF radar observations. J. Geophys. Res. 103, 20797–20811 (1998).

    Google Scholar 

  69. Thomas, E. G. & Shepherd, S. G. Statistical Patterns of Ionospheric Convection Derived From Mid-latitude, High-Latitude, and Polar SuperDARN HF Radar Observations. J. Geophys. Res. (Space Phys.) 123, 3196–3216 (2018).

    Google Scholar 

  70. Sato, T. & Iijima, T. Primary sources of large-scale Birkeland currents. Space Sci. Rev. 24, 347–366 (1979).

    Google Scholar 

  71. Ohtani, S., Sorathia, K., Merkin, V., Frey, H. & Gjerloev, J. External and internal causes of the stormtime intensification of the dawnside westward auroral electrojet. J. Geophys. Res. Space Phys. 128, e2023JA031457 (2023).

    Google Scholar 

Download references

Acknowledgements

L.D is jointly supported by NSFC grants (42425404) and the National Key R&D Program of China 2025YFF0512100, NSFC grants (42527802,42188101), the Specialized Research Fund for State Key Laboratories of China, and the Strategic Pioneer Program on Space Science II, Chinese Academy of Sciences, grants XDA15350201, XDA15052500. M.H.Z. is supported by NSFC grants 42404178. We acknowledge the use of SuperDARN data. SuperDARN is a network of radars funded by national scientific funding agencies of Australia, Canada, China, France, Italy, Japan, Norway, South Africa, the United Kingdom, and the United States of America. We thank SuperMAG for providing geomagnetic station data and derived geomagnetic indices. We thank the AMPERE team and the AMPERE Science Data Center for providing data products derived from the Iridium Communications constellation. Thanks to the THEMIS mission for providing solar wind data in this event, the Kyoto World Geomagnetic Data Center for SYM-H data.

Author information

Authors and Affiliations

  1. State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, China

    Tonghui Wang, Lei Dai, Yong Ren, Minghui Zhu, Chi Wang, Xu Wang & Kailai Wang

  2. University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China

    Tonghui Wang, Xu Wang & Kailai Wang

  3. European Space Research and Technology Centre, European Space Agency (ESA), Noordwijk, Netherlands

    C. Philippe Escoubet

  4. National Institute for Space Research (INPE), São José dos Campos, São Paulo, Brazil

    Walter Gonzalez

  5. Institute of Space Physics and Applied Technology, Peking University, Beijing, China

    Shan Wang

  6. CMA-USTC Laboratory of Fengyun Remote Sensing, University of Science and Technology of China, Hefei, China

    Jinjuan Liu

Authors
  1. Tonghui Wang
    View author publications

    Search author on:PubMed Google Scholar

  2. Lei Dai
    View author publications

    Search author on:PubMed Google Scholar

  3. C. Philippe Escoubet
    View author publications

    Search author on:PubMed Google Scholar

  4. Walter Gonzalez
    View author publications

    Search author on:PubMed Google Scholar

  5. Yong Ren
    View author publications

    Search author on:PubMed Google Scholar

  6. Minghui Zhu
    View author publications

    Search author on:PubMed Google Scholar

  7. Shan Wang
    View author publications

    Search author on:PubMed Google Scholar

  8. Chi Wang
    View author publications

    Search author on:PubMed Google Scholar

  9. Xu Wang
    View author publications

    Search author on:PubMed Google Scholar

  10. Kailai Wang
    View author publications

    Search author on:PubMed Google Scholar

  11. Jinjuan Liu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

L.D. conceptualized the study, analyzed and interpreted data, and wrote the manuscript. T.H.W. analyzed and interpreted data and contributed to manuscript writing. Y.R. collected and processed observational data and contributed to data interpretation. M.H.Z. and J.J.L. processed figure data. W.G., S.W., and C.P.E. contributed to data interpretation. C.W., X.W., and K.L.W. contributed to manuscript revision. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Lei Dai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Dai, L., Escoubet, C.P. et al. Substorm expansion embedded in a global cycle of field-aligned currents and auroral electrojets. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69753-x

Download citation

  • Received: 29 July 2025

  • Accepted: 06 February 2026

  • Published: 20 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69753-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing