Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Engineering biomimetic chloride channels in ultramicroporous hydrogen-bonded organic framework membranes for high-salinity wastewater valorization
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 February 2026

Engineering biomimetic chloride channels in ultramicroporous hydrogen-bonded organic framework membranes for high-salinity wastewater valorization

  • Suixin Zhang1 na1,
  • Zongliang Wan1 na1,
  • Xu Zhang1,
  • Guifeng Liang2,
  • Qinshan Zhu2,
  • Jin Ran  ORCID: orcid.org/0000-0003-4651-98201,
  • Peng Cui1,
  • Cen-feng Fu1,
  • Peipei Zuo  ORCID: orcid.org/0000-0001-5043-71882 &
  • …
  • Tongwen Xu  ORCID: orcid.org/0000-0002-9221-51262 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Bioinspired materials
  • Polymers
  • Porous materials

Abstract

Biological ion channels exemplify nature’s high-efficiency ion selectivity filters, yet replicating their functional architectures in synthetic membranes remains a fundamental challenge. Here, we report an ultramicroporous hydrogen-bonded organic framework membrane that structurally emulates the CLC chloride filter. Its channels exhibit size adaptability to anions and incorporate hydrogen-bond donors that provide “low-viscosity” compensatory interactions, thereby alleviating anion dehydration energy penalties. By leveraging differential dehydration and energy compensation between Cl− and larger anions such as SO42−, this bioinspired design achieves an exceptional Cl−/SO42− selectivity of over 400—several tens of times higher than those of existing counterparts—while maintaining a high Cl− permeation rate double that of the commercial Neosepta® ACS membrane, setting a new benchmark for advanced anion-sieving membranes. In electrodialysis (ED) for high-salinity wastewater valorization, our membrane enables higher NaCl product purity (99.62 wt% vs. 72.86 wt%) with 28.7% lower energy consumption than the Neosepta® ACS membrane. This work establishes a biomimetic design principle of biological anion channels that is potentially extendable to a wide range of selective and conductive membranes.

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary information. All data are available from the corresponding author upon request.

References

  1. Xie, X. et al. Microstructure and surface control of MXene films for water purification. Nat. Sustainability 2, 856–862 (2019).

    Google Scholar 

  2. Bolisetty, S. & Mezzenga, R. Amyloid–carbon hybrid membranes for universal water purification. Nat. Nanotechnol. 11, 365–371 (2016).

    Google Scholar 

  3. Huang, J. et al. Sustainable nanofiltration membranes enable ultrafast water purification. Nat. Water 3, 1048–1056 (2025).

    Google Scholar 

  4. Wang, Y., Lian, T., Tarakina, N. V., Yuan, J. & Antonietti, M. Lamellar carbon nitride membrane for enhanced ion sieving and water desalination. Nat. Commun. 13, 7339 (2022).

    Google Scholar 

  5. Zhang, X. et al. Electrodialytic crystallization to enable zero liquid discharge. Nat. Water 1, 547–554 (2023).

    Google Scholar 

  6. Xu, X. et al. Nanofiltration membranes with ultra-high negative charge density for enhanced anion sieving and removal of organic micropollutants. Nat. Water 3, 704–713 (2025).

    Google Scholar 

  7. Zhao, C. et al. Polyamide membranes with nanoscale ordered structures for fast permeation and highly selective ion-ion separation. Nat. Commun. 14, 1112 (2023).

    Google Scholar 

  8. Jentsch, T. J., Stein, V., Weinreich, F. & Zdebik, A. A. Molecular structure and physiological function of chloride channels. Physiol. Rev. 82, 503–568 (2002).

    Google Scholar 

  9. Miller, C. CLC chloride channels viewed through a transporter lens. Nature 440, 484–489 (2006).

    Google Scholar 

  10. Leisle, L. et al. Backbone amides are determinants of Cl− selectivity in CLC ion channels. Nat. Commun. 13, 7508 (2022).

    Google Scholar 

  11. Paulino, C., Kalienkova, V., Lam, A. K. M., Neldner, Y. & Dutzler, R. Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM. Nature 552, 421–425 (2017).

    Google Scholar 

  12. Dutzler, R., Campbell, E. B. & MacKinnon, R. Gating the selectivity filter in CLC chloride channels. Science 300, 108–112 (2003).

    Google Scholar 

  13. Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017).

    Google Scholar 

  14. Kang, Y. et al. Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving. Nat. Commun. 14, 4075 (2023).

    Google Scholar 

  15. Mo, R.-J. et al. Regulating ion affinity and dehydration of metal-organic framework sub-nanochannels for high-precision ion separation. Nat. Commun. 15, 2145 (2024).

    Google Scholar 

  16. Meng, Q.-W. et al. Guanidinium-based covalent organic framework membrane for single-acid recovery. Sci. Adv. 9, eadh0207 (2023).

    Google Scholar 

  17. Meng, Q.-W. et al. Optimizing selectivity via membrane molecular packing manipulation for simultaneous cation and anion screening. Sci. Adv. 10, eado8658 (2024).

    Google Scholar 

  18. Yan, T. & Liu, J. Transmembrane ion channels: from natural to artificial systems. Angew. Chem. Int. Ed. 64, e202416200 (2025).

    Google Scholar 

  19. Wu, Y. et al. 2D molecular sheets of hydrogen-bonded organic frameworks for ultrastable sodium-ion storage. Adv. Mater. 33, 2106079 (2021).

    Google Scholar 

  20. Chen, C. et al. Hydrogen-bonded organic frameworks for membrane separation. Chem. Soc. Rev. 53, 2738–2760 (2024).

    Google Scholar 

  21. Shang, X. et al. Chiral self-sorted multifunctional supramolecular biocoordination polymers and their applications in sensors. Nat. Commun. 9, 3933 (2018).

    Google Scholar 

  22. Feng, S. et al. Fabrication of a hydrogen-bonded organic framework membrane through solution processing for pressure-regulated gas separation. Angew. Chem. Int. Ed. 59, 3840–3845 (2020).

    Google Scholar 

  23. Yin, Q. et al. Hydrogen-bonded organic frameworks in solution enables continuous and high-crystalline membranes. Nat. Commun. 15, 634 (2024).

    Google Scholar 

  24. Wang, Y., Song, L.-N., Wang, X.-X., Wang, Y.-F. & Xu, J.-J. Hydrogen-bonded organic frameworks-based electrolytes with controllable hydrogen bonding networks for solid-state lithium batteries. Angew. Chem. Int. Ed. 63, e202401910 (2024).

    Google Scholar 

  25. Wang, J. et al. In situ assembly of hydrogen-bonded organic framework on metal–organic framework: an effective strategy for constructing core–shell hybrid photocatalyst. Adv. Sci. 9, 2204036 (2022).

    Google Scholar 

  26. Meng, W. et al. Three-dimensional cationic covalent organic framework membranes for rapid and selective lithium extraction from saline water. Nat. Water 3, 191–200 (2025).

    Google Scholar 

  27. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Google Scholar 

  28. Wang, H. et al. Covalent organic framework membranes for efficient separation of monovalent cations. Nat. Commun. 13, 7123 (2022).

    Google Scholar 

  29. Xu, R., Kang, Y., Zhang, W., Zhang, X. & Pan, B. Oriented UiO-67 metal–organic framework membrane with fast and selective lithium-ion transport. Angew. Chem. Int. Ed. 61, e202115443 (2022).

    Google Scholar 

  30. Hong, Z. et al. Rigid and flexible coupled micropore membranes enabling ultra-efficient anion separation. AlChE J. 71, e18803 (2025).

    Google Scholar 

  31. Lu, C. et al. Dehydration-enhanced ion-pore interactions dominate anion transport and selectivity in nanochannels. Sci. Adv. 9, eadf8412 (2023).

    Google Scholar 

  32. Richards, L. A., Richards, B. S., Corry, B. & Schäfer, A. I. Experimental energy barriers to anions transporting through nanofiltration membranes. Environ. Sci. Technol. 47, 1968–1976 (2013).

    Google Scholar 

  33. Zhou, X. et al. Intrapore energy barriers govern ion transport and selectivity of desalination membranes. Sci. Adv. 6, eabd9045 (2020).

    Google Scholar 

  34. Richards, L. A., Schäfer, A. I., Richards, B. S. & Corry, B. Quantifying barriers to monovalent anion transport in narrow non-polar pores. Phys. Chem. Chem. Phys. 14, 11633–11638 (2012).

    Google Scholar 

  35. Chandra, A. Effects of ion atmosphere on hydrogen-bond dynamics in aqueous electrolyte solutions. Phys. Rev. Lett. 85, 768–771 (2000).

    Google Scholar 

  36. Liu, M.-L. et al. Microporous membrane with ionized sub-nanochannels enabling highly selective monovalent and divalent anion separation. Nat. Commun. 15, 7271 (2024).

    Google Scholar 

  37. Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).

    Google Scholar 

  38. Ries, L. et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nat. Mater. 18, 1112–1117 (2019).

    Google Scholar 

  39. Kitto, D. et al. Fast and selective ion transport in ultrahigh-charge-density membranes. Nat. Chem. Eng. 2, 252–260 (2025).

    Google Scholar 

  40. Feng, L., Tian, B., Zhu, M. & Yang, M. Current progresses in the analysis, treatment and resource utilization of industrial waste salt in China: a comprehensive review. Resour. Conserv. Recycl. 217, 108224 (2025).

    Google Scholar 

  41. Wang, T. et al. Low-salt-rejection reverse osmosis membranes decrease energy consumption and economic cost in a wastewater zero liquid discharge system. Desalination 620, 119629 (2026).

    Google Scholar 

  42. Zhang, X. et al. Production of yellow iron oxide pigments by integration of the air oxidation process with bipolar membrane electrodialysis. Ind. Eng. Chem. Res. 53, 1580–1587 (2014).

    Google Scholar 

  43. He, D. et al. Bipolar membrane electrodialysis with isolation chamber enables high-purity LiOH production with ordinary membranes. AlChE J. 71, e18674 (2025).

    Google Scholar 

  44. Lu, D. et al. Impact of charge homogeneity on ion selectivity in polyamide membranes. Nat. Water 3, 978–991 (2025).

    Google Scholar 

  45. Zhang, Y. et al. Ice-confined synthesis of highly ionized 3D-quasilayered polyamide nanofiltration membranes. Science 382, 202–206 (2023).

    Google Scholar 

  46. Irfan, M., Ge, L., Wang, Y., Yang, Z. & Xu, T. Hydrophobic side chains impart anion exchange membranes with high monovalent–divalent anion selectivity in electrodialysis. ACS Sustain. Chem. Eng. 7, 4429–4442 (2019).

    Google Scholar 

  47. Xu, T. et al. Scalable and interfacial gap-free mixed matrix membranes for efficient anion separation. AlChE J. 70, e18242 (2024).

    Google Scholar 

  48. Liao, J. et al. Amphoteric ion-exchange membranes with superior mono-/bi-valent anion separation performance for electrodialysis applications. J. Membr. Sci. 577, 153–164 (2019).

    Google Scholar 

  49. Liao, J. et al. Monovalent anion selective anion-exchange membranes with imidazolium salt-terminated side-chains: Investigating the effect of hydrophobic alkyl spacer length. J. Membr. Sci. 599, 117818 (2020).

    Google Scholar 

  50. Li, J. et al. The endowment of monovalent anion selectivity and antifouling property to cross-linked ion-exchange membranes by constructing amphoteric structure. Sep. Purif. Technol. 328, 125104 (2024).

    Google Scholar 

  51. Xiao, X. et al. Anion permselective membranes with chemically-bound carboxylic polymer layer for fast anion separation. J. Membr. Sci. 614, 118553 (2020).

    Google Scholar 

  52. Li, M. et al. Polyvinyl alcohol-based monovalent anion selective membranes with excellent permselectivity in selectrodialysis. J. Membr. Sci. 620, 118889 (2021).

    Google Scholar 

  53. Wang, C. et al. Effect of microstructures of side-chain-type anion exchange membranes on mono-/bivalent anion permselectivity in electrodialysis. ACS Appl. Polym. Mater. 3, 342–353 (2021).

    Google Scholar 

  54. Lejarazu-Larrañaga, A., Zhao, Y., Molina, S., García-Calvo, E. & Van der Bruggen, B. Alternating current enhanced deposition of a monovalent selective coating for anion exchange membranes with antifouling properties. Sep. Purif. Technol. 229, 115807 (2019).

    Google Scholar 

  55. Liao, J. et al. Amphoteric blend ion-exchange membranes for separating monovalent and bivalent anions in electrodialysis. Sep. Purif. Technol. 242, 116793 (2020).

    Google Scholar 

  56. Liao, J. et al. Long-side-chain type imidazolium-functionalized fluoro-methyl poly(arylene ether ketone) anion exchange membranes with superior electrodialysis performance. J. Membr. Sci. 574, 181–195 (2019).

    Google Scholar 

  57. Yang, H. et al. Poly(alkyl-biphenyl pyridinium) anion exchange membranes with a hydrophobic side chain for mono-/divalent anion separation. Ind. Chem. Mater. 1, 129–139 (2023).

    Google Scholar 

  58. Li, J. et al. Revolutionary MOF-enhanced anion exchange membrane for precise monovalent anion separation through structural optimization and doping. Desalination 576, 117352 (2024).

    Google Scholar 

  59. Pan, J. et al. One-pot approach to prepare internally cross-linked monovalent selective anion exchange membranes. J. Membr. Sci. 553, 43–53 (2018).

    Google Scholar 

  60. Goel, P. et al. Di-quaternized graphene oxide based multi-cationic cross-linked monovalent selective anion exchange membrane for electrodialysis. Sep. Purif. Technol. 276, 119361 (2021).

    Google Scholar 

  61. Jiang, C. et al. Fouling deposition as an effective approach for preparing monovalent selective membranes. J. Membr. Sci. 580, 327–335 (2019).

    Google Scholar 

  62. Tekinalp, Ö, Zimmermann, P., Burheim, O. S. & Deng, L. Designing monovalent selective anion exchange membranes for the simultaneous separation of chloride and fluoride from sulfate in an equimolar ternary mixture. J. Membr. Sci. 666, 121148 (2023).

    Google Scholar 

  63. Afsar, N. U. et al. In-situ interfacial polymerization endows surface enrichment of -COOH groups on anion exchange membranes for efficient Cl−/SO42− separation. J. Polym. Sci. 60, 3022–3034 (2022).

    Google Scholar 

  64. Ahmad, M., Tang, C., Yang, L., Yaroshchuk, A. & Bruening, M. L. Layer-by-layer modification of aliphatic polyamide anion-exchange membranes to increase Cl−/SO42− selectivity. J. Membr. Sci. 578, 209–219 (2019).

    Google Scholar 

  65. You, X. et al. Charged nanochannels in covalent organic framework membranes enabling efficient ion exclusion. ACS Nano 16, 11781–11791 (2022).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2022YFB3805100 [J.R.]), the National Natural Science Foundation of China (No. 22278105 [J.R.]), the Fundamental Research Funds for the Central Universities (No. YD2060002046 [P. Z.]), and the Distinguished Young Scholars Program of Anhui Province (No. 2408085J010 [P. Z.]). The computation is completed on the HPC Platform of Hefei University of Technology. The analysis work of this article was partially carried out at the Instrumental Analysis Center, Hefei University of Technology.

Author information

Author notes
  1. These authors contributed equally: Suixin Zhang, Zongliang Wan.

Authors and Affiliations

  1. Anhui Key Laboratory of High Value Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Hefei University of Technology, Anhui, PR China

    Suixin Zhang, Zongliang Wan, Xu Zhang, Jin Ran, Peng Cui & Cen-feng Fu

  2. State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Anhui, PR China

    Guifeng Liang, Qinshan Zhu, Peipei Zuo & Tongwen Xu

Authors
  1. Suixin Zhang
    View author publications

    Search author on:PubMed Google Scholar

  2. Zongliang Wan
    View author publications

    Search author on:PubMed Google Scholar

  3. Xu Zhang
    View author publications

    Search author on:PubMed Google Scholar

  4. Guifeng Liang
    View author publications

    Search author on:PubMed Google Scholar

  5. Qinshan Zhu
    View author publications

    Search author on:PubMed Google Scholar

  6. Jin Ran
    View author publications

    Search author on:PubMed Google Scholar

  7. Peng Cui
    View author publications

    Search author on:PubMed Google Scholar

  8. Cen-feng Fu
    View author publications

    Search author on:PubMed Google Scholar

  9. Peipei Zuo
    View author publications

    Search author on:PubMed Google Scholar

  10. Tongwen Xu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.R., P.Z., and T.X. conceived the idea and designed the experiments. S.Z. carried out the material synthesis, characterization, and performance tests. Z.W. and C.F. performed the MD simulations. X.Z., G.L., Q.Z., and P.C. contributed to the data curation and investigation. S.Z. and Z.W. performed the data analysis. All coauthors discussed the results. S.Z. and P. Z. wrote the manuscript. J.R., P.Z., and T.X. revised the manuscript.

Corresponding authors

Correspondence to Jin Ran, Peipei Zuo or Tongwen Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Liguo Shen and the other, anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Wan, Z., Zhang, X. et al. Engineering biomimetic chloride channels in ultramicroporous hydrogen-bonded organic framework membranes for high-salinity wastewater valorization. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69947-3

Download citation

  • Received: 30 October 2025

  • Accepted: 13 February 2026

  • Published: 21 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69947-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing