Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Forest-linked livelihoods in a globalized world

Abstract

Forests have re-taken centre stage in global conversations about sustainability, climate and biodiversity. Here, we use a horizon scanning approach to identify five large-scale trends that are likely to have substantial medium- and long-term effects on forests and forest livelihoods: forest megadisturbances; changing rural demographics; the rise of the middle-class in low- and middle-income countries; increased availability, access and use of digital technologies; and large-scale infrastructure development. These trends represent human and environmental processes that are exceptionally large in geographical extent and magnitude, and difficult to reverse. They are creating new agricultural and urban frontiers, changing existing rural landscapes and practices, opening spaces for novel conservation priorities and facilitating an unprecedented development of monitoring and evaluation platforms that can be used by local communities, civil society organizations, governments and international donors. Understanding these larger-scale dynamics is key to support not only the critical role of forests in meeting livelihood aspirations locally, but also a range of other sustainability challenges more globally. We argue that a better understanding of these trends and the identification of levers for change requires that the research community not only continue to build on case studies that have dominated research efforts so far, but place a greater emphasis on causality and causal mechanisms, and generate a deeper understanding of how local, national and international geographical scales interact.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changes in key socioeconomic and biophysical trends.
Fig. 2: Dam construction in forest-rich regions.
Fig. 3: Forest-livelihood linkages in a globalized world.

Similar content being viewed by others

References

  1. Timko, J. et al. A policy nexus approach to forests and the SDGs: tradeoffs and synergies. Curr. Opin. Env. Sust. 34, 7–12 (2018).

    Article  Google Scholar 

  2. Katila, P. et al. Sustainable Development Goals: Their Impacts on Forests and People (Cambridge Univ. Press, 2019).

  3. Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 7, 220–226 (2017).

    Article  Google Scholar 

  4. Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Con. Lett. 8, 329–337 (2015).

    Article  Google Scholar 

  5. Zero Draft of the of post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2020).

  6. Suding, K. et al. Committing to ecological restoration. Science 348, 683–640 (2015).

    Article  Google Scholar 

  7. Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (2019).

  9. Miller, D. C. & Hajjar, R. Forests as pathways to prosperity: empirical insights and conceptual advances. World Development (in the press).

  10. Liu, J. et al. Systems integration for global sustainability. Science 347, 1258832 (2015).

    Article  PubMed  CAS  Google Scholar 

  11. Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Sheldon, T. & Sankaran, C. The impact of Indonesian forest fires on Singaporean pollution and health. Am. Econ. Rev. 107, 526–529 (2017).

    Article  PubMed  Google Scholar 

  13. Sutherland, W. J., Fleishman, E., Mascia, M. B., Pretty, P. & Rudd, M. A. Methods for collaboratively identifying research priorities and emerging issues in science and policy. Methods Ecol. Evol. 2, 238–247 (2011).

    Article  Google Scholar 

  14. Cabinet Office. Horizon Scanning Programme: a New Approach for Policy Making (UK Government Office for Science, 2013).

  15. Sutherland, W. J. et al. Ten years on. A review of the first global conservation horizon scan. Trends Ecol. Evol. 34, 139–153 (2019).

    Article  PubMed  Google Scholar 

  16. Bengston, D. N. Horizon Scanning for Environmental Foresight: a Review of Issues and Approaches Report No. GTR-NRS-121 (U. S. D. A. Forest Service, 2013).

  17. Statement on the Status of the Global Climate in 2018 (World Meteorological Organization, 2018).

  18. Millar, C. I. & Stephenson, N. L. Temperate forest health in an era of emerging megadisturbance. Science 349, 823–826 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Hubbart, J. A., Guyette, R. & Muzika, R. M. More than drought: precipitation variance, excessive wetness, pathogens and the future of the western edge of the eastern deciduous forest. Sci. Total Environ. 566, 463–467 (2016).

    Article  PubMed  CAS  Google Scholar 

  20. Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 334–348 (2015).

    Article  CAS  Google Scholar 

  21. Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).

    Article  Google Scholar 

  22. IPBES. Summary for Policymakers. In The Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019).

  23. Smith, A. M. S. et al. The science of firescapes: achieving fire-resilient communities. BioScience 66, 130–146 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Olivero, J. et al. Recent loss of closed forests is associated with Ebola virus disease outbreaks. Sci. Rep. 7, 142971 (2017).

    Article  CAS  Google Scholar 

  25. De Pinto, A. et al. The role of crop production in the forest landscape restoration approach – assessing potential benefits of meeting the Bonn Challenge. Front. Sustain. Food Syst. 4, 61 (2020).

    Article  Google Scholar 

  26. Hecht, S. et al. People in motion, forests in transition: trends in migration, urbanization, and remittances and their effects on tropical forests (Center for International Forestry Research (CIFOR), 2015).

  27. Knight, J. & Gunatilaka, R. Great expectations? The subjective well-being of rural-urban migrants in China. World Dev. 38, 113–124 (2010).

    Article  Google Scholar 

  28. Oldekop, J. A., Sims, K. R. E., Whittingham, M. J. & Agrawal, A. An upside to globalization: International migration drives reforestation in Nepal. Glob. Environ. Chang. 52, 66–74 (2018).

    Article  Google Scholar 

  29. Robson, J. & Berkes, F. How does out-migration affect community institutions. A study of two indigenous municipalities in Oaxaca, Mexico. Hum. Ecol. 39, 179–190 (2011).

    Article  Google Scholar 

  30. Montefrio, M. J. F., Ortiga, Y. Y. & Josol, M. R. C. B. Inducing development: social remittances and the expansion of oil palm. Int. Migr. Rev. 48, 216–242 (2014).

    Article  Google Scholar 

  31. Van Hear, N., Bakewell, O. & Long, K. Push-pulls plus: reconsidering drivers of migration. J. Ethn. Migr. Stud. 44, 927–944 (2018).

    Article  Google Scholar 

  32. Fischer, J. et al. Land sparing versus land sharing: moving forward. Conserv. Lett. 7, 149–157 (2014).

    Article  Google Scholar 

  33. Davis K. F. et al. Tropical forest loss enhanced by large-scale land acquisitions. Nat. Geosci. (in the press).

  34. Pezzini, M. An emerging middle class. OECD Observer http://oecdobserver.org/news/fullstory.php/aid/3681/An_emerging_middle_class.html (2012).

  35. Alexander, P. et al. Drivers for global agricultural land use change: the nexus of diet, population, yield and bioenergy. Glob. Environ. Chang. 35, 138–147 (2015).

    Article  Google Scholar 

  36. Borras, S. M. Jr, Hall, R., Scoones, I., White, B. & Wolford, W. Towards and better understanding of global land grabbing: and editorial introduction. J. Peasant Stud. 38, 209–216 (2011).

    Article  Google Scholar 

  37. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. City slickers on the farm: Africa’s real land grab. The Economist https://www.economist.com/middle-east-and-africa/2016/07/21/africas-real-land-grab (2016).

  39. Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).

    Article  PubMed  CAS  Google Scholar 

  40. Willet, W. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article  Google Scholar 

  41. Rowland, D., Ickowitz, A., Powell, B., Nasi, R. & Sutherland, T. Forest foods and healthy diets: quantifying the contributions. Environ. Conserv. 44, 102–114 (2017).

    Article  Google Scholar 

  42. Digital Dividends (World Bank, 2016).

  43. Castrén, T. & Pillai, M. Information and Communication Technology for Forest Law Enforcement and Governance (Program on Forests (PROFOR), 2015).

  44. Wright, T. How many drones are smuggling drugs across the U. S. Southern Border? Air & Space Magazine https://www.airspacemag.com/flight-today/narcodrones-180974934/ (2020).

  45. Gardner, T. A. et al. Transparency and sustainability in global commodity supply chains. World Dev. 121, 163–177 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Agrawal, A., Brown, D. G. & Sullivan, J. A. Are global land grabs ticking socio-environmental bombs or just inefficient investments. One Earth 1, 159–162 (2019).

    Article  Google Scholar 

  47. le Polain de Waroux, Y. et al. The restructuring of South American soy and beef production and trade under changing environmental regulations. World Dev. 121, 188–202 (2019).

    Article  Google Scholar 

  48. Bebbington, A. J. et al. Resource extraction and infrastructure threaten forest cover and community rights. Proc. Natl Acad. Sci. USA 115, 13164–13173 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Coenen, J. et al. Environmental governance of China’s Belt and Road Initiative. Environ. Policy Gov. (in the press).

  50. Laurance, W. F. et al. A global strategy for road building. Nature 513, 229–232 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Lees, A. C., Peres, C. A., Fearnside, P. M., Schneider, M. & Zuanon, J. A. S. Hydropower and the future of Amazonian biodiversity. Biodivers. Conserv. 25, 451–466 (2016).

    Article  Google Scholar 

  52. Golden Kroner, R. E. et al. The uncertain future of protected lands and waters. Science 364, 881–886 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Asner, G. P., Llactayo, W., Tupayachi, R. & Luna, E. R. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proc. Natl Acad. Sci. USA 110, 18454–18459 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bebbington, A. J. et al. Priorities for governing large-scale infrastructure in the tropics. Proc. Natl Acad. Sci. USA 117, 21829–21833 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Walker, R. & Simmons, C. Endangered Amazon: an indigenous tribe fights back against hydropower development in the Tapajós valley. Environment: Science and Policy For Sustainable Development 60, 4–15 (2018).

    Google Scholar 

  56. Kolstad, I. & Søreide, T. Corruption in natural resource management: implications for policy makers. Resour. Policy 34, 214–226 (2009).

    Article  Google Scholar 

  57. Cheng, S. H. et al. A systematic map of evidence on the contribution of forests to poverty alleviation. Environ. Evid. 8, 3 (2019).

    Article  CAS  Google Scholar 

  58. Oldekop, J. A. et al. Reductions in poverty and deforestation from decentralized forest management in Nepal. Nat. Sustain. 2, 421–428 (2019).

    Article  Google Scholar 

  59. Ferraro, P. J., Hanauer, M. M. & Sims, K. R. E. Conditions associated with protected area success in conservation and poverty reduction. Proc. Natl Acad. Sci. USA 108, 13913–13918 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ferraro, P. J., Sanchirico, J. N. & Smith, M. D. Causal inference in coupled human and natural systems. Proc. Natl Acad. Sci. USA 116, 5311–5318 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Miller, D. C., Mansourian, S. & Wildburger, C. (eds) Forests, Trees and the Eradication of Poverty: Potential and Limitations. A Global Assessment Report Vol. 39 (IUFRO World Series, 2020).

  62. Sloan, S. The development-driven forest transition and its utility for REDD. Ecol. Econ. 116, 1–11 (2015).

    Article  Google Scholar 

  63. Gelman, A. & Imbens, A. Why ask why? Forward causal inference and reverse causal questions. National Bureau of Economic Research Working Paper 19614 (National Bureau of Economic Research, 2013).

  64. Noyes, J. et al. In Cochrane Handbook for Systematic Reviews of Interventions (eds Higgins, J. P. T. et al.) 525–545 (Wiley & Sons, Ltd., 2019).

  65. Rana, P. & Miller, D. C. Machine learning to analyze the social-ecological impacts of natural resource policy: insights from community forest management in the Indian Himalaya. Environ. Res. Lett. 14, 024008 (2019).

    Article  Google Scholar 

  66. Ferraro, P. J. et al. Estimating the impacts of conservation on ecosystem services and poverty by integrating modeling and evaluation. Proc. Natl Acad. Sci. USA 112, 7420–7425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jayachandran, S. et al. Cash for carbon: a randomized trial of payment for ecosystem services to reduce deforestation. Science 357, 267–273 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. World Bank Microdata Library. World Bank https://microdata.worldbank.org/index.php/home (2020).

  69. Shepherd, G., Kazoora, C. & Mueller, D. Forest Livelihoods and Poverty Alleviation: The Case of Uganda. Forestry Policy and Institutions Working Paper 32 (FAO, 2013).

  70. Jean, N. et al. Combining satellite imagery and machine learning to predict poverty. Science 353, 790–794 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Butt, N., Lambrick, F., Menton, M. & Renwick, A. The supply chain of violence. Nat. Sustain. 2, 742–747 (2019).

    Article  Google Scholar 

  72. Toumbourou, T., Muhdar, M., Werner, T. & Bebbington, A. J. Political ecologies of the post-mining landscape: activism, resistance, and legal struggles over Kalimantan’s coal mines. Energy Res. Soc. Sci. 65, 101476 (2020).

    Article  Google Scholar 

  73. World Bank Open Data. World Bank https://data.worldbank.org (2019).

  74. Africa in 50 Year’s Time (African Development Bank, 2011).

Download references

Acknowledgements

This work was funded by the UK’s Department for International Development (grant no. 203516-102) and governed by the University of Michigan’s Institutional Review Board (HUM00092191). J.A.O. acknowledges the support of a European Union FP7 Marie Curie international outgoing fellowship (FORCONEPAL). L.V.R. was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement no. 853222 FORESTDIET). A.J.B. acknowledges the support of an Australian Research Council Australia Laureate Fellowship (grant no. FL160100072). L.B.F. acknowledges support from the European Union Marie Curie global fellowship (CONRICONF). P.M. was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 677140 MIDLAND). R.N. was supported by the CGIAR Research Programme on Forests, Trees and Agroforestry. This Perspective contributes to the Global Land Programme (https://glp.earth).

Author information

Authors and Affiliations

Authors

Contributions

J.A.O., L.V.R., A.A., C.W. and S.J.W. designed the horizon scan and convened the panel. J.A.O., L.V.R., A.A., A.J.B., P.M., D.N.B., A.B., S.B., I.D.H., P.D., S.C.D., L.B.F., T.G., C.K., K.K., D.M., T.H.M., R.N., M.N., M.A.P.V., J.M.R., W.J.S., C.W. and S.J.W. took part in the horizon scan. J.A.O. and L.V.R. drafted the initial manuscript with input from A.A., A.J.B. and P.M., which was then finalized by D.N.B., A.B., S.B., I.D.H., P.D., S.C.D., L.B.F., T.G., C.K., K.K., D.M., T.H.M., R.N., M.N., M.A.P.V., J.M.R., W.J.S., C.W. and S.J.W.

Corresponding author

Correspondence to Johan A. Oldekop.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Robert Kozak and Pamela McElwee for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oldekop, J.A., Rasmussen, L.V., Agrawal, A. et al. Forest-linked livelihoods in a globalized world. Nat. Plants 6, 1400–1407 (2020). https://doi.org/10.1038/s41477-020-00814-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41477-020-00814-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing