Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How vacuolar sugar transporters evolve and control cellular sugar homeostasis, organ development and crop yield

Abstract

Sugar exchange among different subcellular compartments is central for achieving cellular sugar homeostasis and directly affects the yield and quality of many horticultural and field crops. While a portion of photosynthesis-originated sugars is metabolized through glycolysis upon entering the cytosol, the remainder is reversibly channelled to the vacuole, mediated by different families of vacuolar sugar transporter (VST) located on the vacuolar membrane, the tonoplast. Historically, sugar transporters operating on plasma membranes have been studied more than those on tonoplasts. Recently, however, several breakthroughs have shed light on (1) the distinct roles of VSTs in plant development and stress responses and (2) how seemingly unrelated classes of VSTs act together to modulate sugar influx into and efflux from the vacuoles. Here we evaluate these advances, analyse the evolution of VSTs and identify knowledge gaps and future directions for better understanding and manipulation of cytosolic–vacuolar sugar exchange to optimize plant performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative VSTs operating on the tonoplasts across flowering plant species.
Fig. 2: Gene copy number variations and representative synteny networks of the VST family.
Fig. 3: Coordination between VST subfamilies and their regulation from transcriptional to post-translational levels.

Similar content being viewed by others

References

  1. Ruan, Y. L. Rapid cell expansion and cellulose synthesis regulated by plasmodesmata and sugar: insights from the single-celled cotton fibre. Funct. Plant Biol. 34, 1–10 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Martinoia, E., Massonneau, A. & Frangne, N. Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiol. 41, 1175–1186 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Martinoia, E., Meyer, S., De Angeli, A. & Nagy, R. Vacuolar transporters in their physiological context. Annu. Rev. Plant Biol. 63, 183–213 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Zhu, L. et al. MdERDL6-mediated glucose efflux to the cytosol promotes sugar accumulation in the vacuole through up-regulating TSTs in apple and tomato. Proc. Natl Acad. Sci. USA 118, e2022788118 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Hedrich, R., Sauer, N. & Neuhaus, H. E. Sugar transport across the plant vacuolar membrane: nature and regulation of carrier proteins. Curr. Opin. Plant Biol. 25, 63–70 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Ruan, Y. L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 65, 33–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Fernie, A. R. et al. Synchronization of developmental, molecular and metabolic aspects of source–sink interactions. Nat. Plants 6, 55–66 (2020).

    Article  PubMed  Google Scholar 

  8. Shen, S., Ma, S., Wu, L., Zhou, S. L. & Ruan, Y. L. Winners take all: competition for carbon resource determines grain fate. Trends Plant Sci. 28, 893–901 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Wen, S., Neuhaus, H. E., Cheng, J. & Bie, Z. Contributions of sugar transporters to crop yield and fruit quality. J. Exp. Bot. 73, 2275–2289 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Guo, W. J., Pommerrenig, B., Neuhaus, H. E. & Keller, I. Interaction between sugar transport and plant development. J. Plant Physiol. 288, 154073 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Ren, Y., Liao, S. & Xu, Y. An update on sugar allocation and accumulation in fruits. Plant Physiol. 193, 888–899 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Pommerrenig, B. et al. In concert: orchestrated changes in carbohydrate homeostasis are critical for plant abiotic stress tolerance. Plant Cell Physiol. 59, 1290–1299 (2018).

    CAS  PubMed  Google Scholar 

  13. Rodrigues, C. M. et al. Vernalization alters sink and source identities and reverses phloem translocation from taproots to shoots in sugar beet. Plant Cell 32, 3206–3223 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu, L. et al. The SnRK2.3–AREB1–TST1/2 cascade activated by cytosolic glucose regulates sugar accumulation across tonoplasts in apple and tomato. Nat. Plants 9, 951–964 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Braun, D. M. Phloem loading and unloading of sucrose: what a long, strange trip from source to sink. Annu. Rev. Plant Biol. 73, 553–584 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Büttner, M. The monosaccharide transporter(-like) gene family in Arabidopsis. FEBS Lett. 581, 2318–2324 (2007).

    Article  PubMed  Google Scholar 

  17. Chen, L. et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468, 527–532 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wei, X., Liu, F., Chen, C., Ma, F. & Li, M. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars. Front. Plant Sci. 5, 569 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wormit, A. et al. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. Plant Cell 18, 3476–3490 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aluri, S. & Büttner, M. Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering. Proc. Natl Acad. Sci. USA 104, 2537–2542 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Poschet, G. et al. A novel Arabidopsis vacuolar glucose exporter is involved in cellular sugar homeostasis and affects the composition of seed storage compounds. Plant Physiol. 157, 1664–1676 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schulz, A. et al. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2. Plant J. 68, 129–136 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Klemens, P. A. et al. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiol. 163, 1338–1352 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guo, W. J. et al. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiol. 164, 777–789 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, H. Y. et al. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. Plant J. 83, 1046–1058 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Khan, A. et al. Vacuolar sugar transporter EARLY RESPONSE TO DEHYDRATION6-LIKE4 affects fructose signaling and plant growth. Plant Physiol. 193, 2141–2163 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Li, B. et al. Effects of two apple tonoplast sugar transporters, MdTST1 and MdTST2, on the accumulation of sugar. Sci. Hortic. 293, 110719 (2022).

    Article  CAS  Google Scholar 

  28. Ma, Q. J. et al. Transcription factor AREB2 is involved in soluble sugar accumulation by activating sugar transporter and amylase genes. Plant Physiol. 174, 2348–2362 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng, R. et al. The gene PbTMT4 from pear (Pyrus bretschneideri) mediates vacuolar sugar transport and strongly affects sugar accumulation in fruit. Physiol. Plant. 164, 307–319 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Li, J. et al. Natural variations in the PbCPK28 promoter regulate sugar content through interaction with PbTST4 and PbVHA-A1 in pear. Plant J. 114, 124–141 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Ren, Y. et al. A tonoplast sugar transporter underlies a sugar accumulation QTL in watermelon. Plant Physiol. 176, 836–850 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Ren, Y. et al. Localization shift of a sugar transporter contributes to phloem unloading in sweet watermelons. New Phytol. 227, 1858–1871 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, T. et al. Potato tonoplast sugar transporter 1 controls tuber sugar accumulation during postharvest cold storage. Hortic. Res. 10, uhad035 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deng, J. et al. The calcium sensor CBL2 and its interacting kinase CIPK6 are involved in plant sugar homeostasis via interacting with tonoplast sugar transporter TST2. Plant Physiol. 183, 236–249 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ho, L. H. et al. GeSUT4 mediates sucrose import at the symbiotic interface for carbon allocation of heterotrophic Gastrodia elata (Orchidaceae). Plant Cell Environ. 44, 20–33 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Liang, Y. et al. Tomato sucrose transporter SlSUT4 participates in flowering regulation by modulating gibberellin biosynthesis. Plant Physiol. 192, 1080–1098 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xue, X., Wang, J., Shukla, D., Cheung, L. S. & Chen, L. Q. When SWEETs turn tweens: updates and perspectives. Annu. Rev. Plant Biol. 73, 379–403 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Chardon, F. et al. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Curr. Biol. 23, 697–702 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Wingenter, K. et al. Increased activity of the vacuolar monosaccharide transporter TMT1 alters cellular sugar partitioning, sugar signaling, and seed yield in Arabidopsis. Plant Physiol. 154, 665–677 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Klemens, P. A. W. et al. Overexpression of a proton-coupled vacuolar glucose exporter impairs freezing tolerance and seed germination. New Phytol. 202, 188–197 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Wieczorke, R. et al. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett. 464, 123–128 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Wan, H. et al. Evolution of sucrose metabolism: the dichotomy of invertases and beyond. Trends Plant Sci. 23, 163–177 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Wan, H. et al. Evolution of cytosolic and organellar invertases empowered the colonization and thriving of land plants. Plant Physiol. 193, 1227–1243 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sauer, N. Molecular physiology of higher plant sucrose transporters. FEBS Lett. 581, 2309–2317 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Eom, J. S. et al. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr. Opin. Plant Biol. 25, 53–62 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Patzke, K. et al. The plastidic sugar transporter pSuT influences flowering and affects cold responses. Plant Physiol. 179, 569–587 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Zhao, T. et al. Phylogenomic synteny network analysis of MADS-box transcription factor genes reveals lineage-specific transpositions, ancient tandem duplications, and deep positional conservation. Plant Cell 29, 1278–1292 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiao, Y. et al. Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97–100 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Vu, D. P. et al. Vacuolar sucrose homeostasis is critical for plant development, seed properties, and night-time survival in Arabidopsis. J. Exp. Bot. 71, 4930–4943 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Cao, Y. et al. Vacuolar sugar transporter TMT2 plays crucial roles in germination and seedling development in Arabidopsis. Int. J. Mol. Sci. 24, 15852 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, T. et al. Suppression of the tonoplast sugar transporter, StTST3.1, affects transitory starch turnover and plant growth in potato. Plant J. 113, 342–356 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Rashid, A., Ruan, H. & Wang, Y. The gene FvTST1 from strawberry modulates endogenous sugars enhancing plant growth and fruit ripening. Front. Plant Sci. 12, 774582 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Milne, R. J. et al. Sucrose transporter localization and function in phloem unloading in developing stems. Plant Physiol. 173, 1330–1341 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Payyavula, R. S., Tay, K. H., Tsai, C. J. & Harding, S. A. The sucrose transporter family in Populus: the importance of a tonoplast PtaSUT4 to biomass and carbon partitioning. Plant J. 65, 757–770 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Harding, S. A., Frost, C. J. & Tsai, C. J. Defoliation-induced compensatory transpiration is compromised in SUT4-RNAi Populus. Plant Direct 4, e00268 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Valifard, M. et al. Vacuolar fructose transporter SWEET17 is critical for root development and drought tolerance. Plant Physiol. 187, 2716–2730 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Aubry, E. et al. A vacuolar hexose transport is required for xylem development in the inflorescence stem. Plant Physiol. 188, 1229–1247 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Valifard, M. et al. Carbohydrate distribution via SWEET17 is critical for Arabidopsis inflorescence branching under drought. J. Exp. Bot. 75, 3903–3919 (2024).

    Article  CAS  PubMed  Google Scholar 

  59. Eom, J. S. et al. Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. Plant Physiol. 157, 109–119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang, M. Y. et al. OsTST1, a key tonoplast sugar transporter from source to sink, plays essential roles in affecting yields and height of rice (Oryza sativa L.). Planta 258, 4 (2023).

    Article  CAS  PubMed  Google Scholar 

  61. Leach, K. A. et al. Sucrose transporter2 contributes to maize growth, development, and crop yield. J. Integr. Plant Biol. 59, 390–408 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Okooboh, G. O. et al. Overexpression of the vacuolar sugar importer BvTST1 from sugar beet in Camelina improves seed properties and leads to altered root characteristics. Physiol. Plant. 174, e13653 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Dekkers, B., Schuurmans, J. & Smeekens, S. Glucose delays seed germination in Arabidopsis thaliana. Planta 218, 579–588 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Dekkers, B., Schuurmans, J. & Smeekens, S. Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis. Plant Mol. Biol. 67, 151–167 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Arenas-Huertero, F., Arroyo, A., Zhou, L., Sheen, J. & León, P. Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev. 14, 2085–2096 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shan, X., Yan, J. & Xie, D. Comparison of phytohormone signaling mechanisms. Curr. Opin. Plant Biol. 15, 84–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Kuang, L., Chen, S., Guo, Y. & Ma, H. Quantitative proteome analysis reveals changes in the protein landscape during grape berry development with a focus on vacuolar transport proteins. Front. Plant Sci. 10, 641 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mao, Z. et al. Vacuolar proteomic analysis reveals tonoplast transporters for accumulation of citric acid and sugar in citrus fruit. Hortic. Res. 11, uhad249 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhen, Q. et al. Developing gene-tagged molecular markers for evaluation of genetic association of apple SWEET genes with fruit sugar accumulation. Hortic. Res. 5, 14 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhu, L. et al. Comprehensive identification of sugar transporters in the Malus spp. genomes reveals their potential functions in sugar accumulation in apple fruits. Sci. Hortic. 303, 111232 (2022).

    Article  CAS  Google Scholar 

  71. Li, J. et al. Genome-wide function, evolutionary characterization and expression analysis of sugar transporter family genes in pear (Pyrus bretschneideri Rehd). Plant Cell Physiol 56, 1721–1737 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Zheng, Q., Tang, Z., Xu, Q. & Deng, X. Isolation, phylogenetic relationship and expression profiling of sugar transporter genes in sweet orange (Citrus sinensis). Plant Cell Tiss. Org. 119, 609–624 (2014).

    Article  CAS  Google Scholar 

  73. Afoufa-Bastien, D. et al. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling. BMC Plant Biol. 10, 245 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Vimolmangkang, S. et al. Assessment of sugar components and genes involved in the regulation of sucrose accumulation in peach fruit. J. Agric. Food Chem. 64, 6723–6729 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Iqbal, S. et al. Identification and expression profiling of sugar transporter genes during sugar accumulation at different stages of fruit development in apricot. Gene 742, 144584 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Liu, H. et al. The sugar transporter system of strawberry: genome-wide identification and expression correlation with fruit soluble sugar-related traits in a Fragaria × ananassa germplasm collection. Hortic. Res. 7, 132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Reuscher, S. et al. The sugar transporter inventory of tomato: genome-wide identification and expression analysis. Plant Cell Physiol. 55, 1123–1141 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Wei, H. et al. Sugar transporter proteins in Capsicum: identification, characterization, evolution and expression patterns. Biotechnol. Biotechnol. Equip. 34, 341–353 (2020).

    Article  CAS  Google Scholar 

  79. Zhang, Q. et al. Evolutionary expansion and functional divergence of sugar transporters in Saccharum (S. spontaneum and S. officinarum). Plant J. 105, 884–906 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Hu, B. et al. Molecular cloning and functional analysis of a sugar transporter gene (CsTST2) from cucumber (Cucumis sativus L.). Biotechnol. Biotechnol. Equip. 33, 118–127 (2019).

    Article  CAS  Google Scholar 

  81. Keller, I., Rodrigues, C. M., Neuhaus, H. E. & Pommerrenig, B. Improved resource allocation and stabilization of yield under abiotic stress. J. Plant Physiol. 257, 153336 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Li, B. et al. The MdCBF1/2–MdTST1/2 module regulates sugar accumulation in response to low temperature in apple. Plant J. 118, 787–801 (2024).

    Article  CAS  PubMed  Google Scholar 

  83. Kiyosue, T., Abe, H., Yamaguchi-Shinozaki, K. & Shinozaki, K. ERD6, a cDNA clone for an early dehydration-induced gene of Arabidopsis, encodes a putative sugar transporter. Biochim. Biophys. Acta 1370, 187–191 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Miao, X. et al. Molecular characterization and promoter analysis of novel sugar transporter gene ScERD6 in sugarcane. Sugar Tech 22, 686–696 (2020).

    Article  CAS  Google Scholar 

  85. Slawinski, L. et al. Responsiveness of early response to dehydration six-like transporter genes to water deficit in Arabidopsis thaliana leaves. Front. Plant Sci. 12, 708876 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhu, L. et al. Apple vacuolar sugar transporters regulated by MdDREB2A enhance drought resistance by promoting accumulation of soluble sugars and activating ABA signaling. Hortic. Res. 11, uhae251 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ku, Y. S. Be sweet, be strong, and be tolerant: ERDL4 regulates sugar transport and promotes cold tolerance in Arabidopsis. Plant Physiol. 193, 1727–1728 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Khan, M. et al. The transcription factor ERF110 promotes cold tolerance by directly regulating sugar and sterol biosynthesis in citrus. Plant J. 119, 2385–2401 (2024).

    Article  CAS  PubMed  Google Scholar 

  89. Harding, S. A. et al. Tonoplast sucrose trafficking modulates starch utilization and water deficit behavior in poplar leaves. Plant Cell Physiol. 63, 1117–1129 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liang, Y. et al. Alteration in the expression of tomato sucrose transporter gene SlSUT4 modulates sucrose subcellular compartmentation and affects responses of plants to drought stress. Environ. Exp. Bot. 215, 105506 (2023).

    Article  CAS  Google Scholar 

  91. Ma, Q. J. et al. Molecular cloning and functional characterization of the apple sucrose transporter gene MdSUT2. Plant Physiol. Biochem. 109, 442–451 (2016).

    Article  PubMed  Google Scholar 

  92. Ma, Q. J. et al. An apple sucrose transporter MdSUT2.2 is a phosphorylation target for protein kinase MdCIPK22 in response to drought. Plant Biotech. J. 17, 625–637 (2019).

    Article  CAS  Google Scholar 

  93. Ma, Q. J. et al. A CIPK protein kinase targets sucrose transporter MdSUT2.2 at Ser254 for phosphorylation to enhance salt tolerance. Plant Cell Environ. 42, 918–930 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Wang, L. et al. Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis. Plant Mol. Biol. 96, 577–592 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Yang, G. et al. The vacuolar membrane sucrose transporter MdSWEET16 plays essential roles in the cold tolerance of apple. Plant Cell Tiss. Org. 140, 129–142 (2020).

    Article  CAS  Google Scholar 

  96. Lu, J. et al. MdSWEET17, a sugar transporter in apple, enhances drought tolerance in tomato. J. Integr. Agric. 18, 2041–2051 (2019).

    Article  CAS  Google Scholar 

  97. Ruan, Y. L., Llewellyn, D. J. & Furbank, R. T. The control of single-celled cotton fibre elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansion. Plant Cell 13, 47–63 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Doidy, J. et al. The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrhizal fungi. Mol. Plant 5, 1346–1358 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Breia, R. et al. VvERD6l13 is a grapevine sucrose transporter highly up-regulated in response to infection by Botrytis cinerea and Erysiphe necator. Plant Physiol. Biochem. 154, 508–516 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Li, S. et al. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 602, 455–460 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Zhao, D. et al. The role of sugar transporter genes during early infection by root-knot nematodes. Int. J. Mol. Sci. 19, 302 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Misra, V. A., Wafula, E. K., Wang, Y., dePamphilis, C. W. & Timko, M. P. Genome-wide identification of MST, SUT and SWEET family sugar transporters in root parasitic angiosperms and analysis of their expression during host parasitism. BMC Plant Biol. 19, 196 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Peng, Q. et al. Functional analysis reveals the regulatory role of PpTST1 encoding tonoplast sugar transporter in sugar accumulation of peach fruit. Int. J. Mol. Sci. 21, 1112 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, Q. et al. Multi-omics approaches identify a key gene, PpTST1, for organic acid accumulation in peach. Hortic. Res. 9, uhac026 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, L. et al. Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively. Plant Physiol. 154, 744–756 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Peng, Q. et al. The sucrose transporter MdSUT4.1 participates in the regulation of fruit sugar accumulation in apple. BMC Plant Biol. 20, 191 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fujita, Y. et al. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol. 50, 2123–2132 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Wang, Z. et al. Variation in the promoter of the sorbitol dehydrogenase gene MdSDH2 affects binding of the transcription factor MdABI3 and alters fructose content in apple fruit. Plant J. 109, 1183–1198 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Liu, S. et al. Arabidopsis sucrose transporter 4 (AtSUC4) is involved in high sucrose mediated inhibition of root elongation. Biotechnol. Biotechnol. Equip. 36, 561–574 (2022).

    Article  CAS  Google Scholar 

  110. Long, X. et al. Characterization of a vacuolar sucrose transporter, HbSUT5, from Hevea brasiliensis: involvement in latex production through regulation of intracellular sucrose transport in the bark and laticifers. BMC Plant Biol. 19, 591 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chincinska, I. et al. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production. Front. Plant Sci. 4, 26 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Garg, V., Reins, J., Hackel, A. & Kühn, C. Elucidation of the interactome of the sucrose transporter StSUT4: sucrose transport is connected to ethylene and calcium signalling. J. Exp. Bot. 73, 7401–7416 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ren, Y. et al. Evolutionary gain of oligosaccharide hydrolysis and sugar transport enhanced carbohydrate partitioning in sweet watermelon fruits. Plant Cell 33, 1554–1573 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wingenter, K. et al. A member of the mitogen-activated protein 3-kinase family is involved in the regulation of plant vacuolar glucose uptake. Plant J. 68, 890–900 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Liao, S., Wang, L., Li, J. & Ruan, Y. L. Cell wall invertase is essential for ovule development through sugar signaling rather than provision of carbon nutrients. Plant Physiol. 183, 1126–1144 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yamada, K. et al. Functional analysis of an Arabidopsis thaliana abiotic stress-inducible facilitated diffusion transporter for monosaccharides. J. Biol. Chem. 285, 1138–1146 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Schneider, S. et al. Vacuoles release sucrose via tonoplast-localised SUC4-type transporters. Plant Biol. 14, 325–336 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Cho, J. I. et al. Expression analysis and functional characterization of the monosaccharide transporters, OsTMTs, involving vacuolar sugar transport in rice (Oryza sativa). New Phytol. 186, 657–668 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Tao, Y. et al. Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature 527, 259–263 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jung, B. et al. Identification of the transporter responsible for sucrose accumulation in sugar beet taproots. Nat. Plants 1, 14001 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the authors’ laboratories was supported by the following grants: Program for the National Key Research and Development Program of China (2023YFD2301000) to M.L.; National Natural Science Foundation of China (F2010123002) and Australian Research Council (DP180103834) to Y.-L.R.; and National Natural Science Foundation of China (32402537) and Young Elite Scientists Sponsorship Program by CAST (2023QNRC001) to L.Z.

Author information

Authors and Affiliations

Authors

Contributions

Y.-L.R. conceived the project and developed the conceptual framework of this article. J.L. and T.Z. prepared the section on evolution. L.Z., M.L. and Y.-L.R. drafted the manuscript. L.Z. and Y.-L.R. revised the manuscript with input from all authors.

Corresponding authors

Correspondence to Mingjun Li or Yong-Ling Ruan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Botao Song, Isabel Keller and Aigen Fu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, Table 1 and Methods.

Supplementary Databases

Supplementary Databases 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Lan, J., Zhao, T. et al. How vacuolar sugar transporters evolve and control cellular sugar homeostasis, organ development and crop yield. Nat. Plants 11, 1102–1115 (2025). https://doi.org/10.1038/s41477-025-02009-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41477-025-02009-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing