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Early detection of Alzheimer’s disease remains complex and costly despite advancements in
neurobiological markers. We propose an innovative approach based on the topological and kinetic
analysis of verbal exchanges to distinguish patients from healthy individuals. Without requiring full
transcription, we leverage a convolutional network capable of identifying discursive patterns indicative
of cognitive impairments. Our experiments, conducted with 80 participants, demonstrate
performance levels exceeding 95% in cross-validation, comparable to computational approaches
relying on biological markers. This robust and minimally invasive methodology could be easily
integrated into clinical protocols, enhancing current diagnostics. It also holds the promise of cost-
effectively extending monitoring to other neurodegenerative or psychiatric diseases.

As of today, Alzheimer’s disease (AD) remains a substantial public health
and social challenge, given its high incidence of 1-3% and a prevalence of
10-30% in the population aged over 65 years'™.

Disease detection generally relies on the identification of abnormal
protein deposits (tau, p-amyloid), biomarkers in cerebrospinal fluid, or
brain imaging (amyloid aggregation, cortical atrophy), explaining why most
contemporary algorithms (supervised or unsupervised) are based on these
signals for early screening or tracking disease progression’'”.

However, despite their technical qualities and precision, these
methods appear to face major limitations that can be categorized into
two groups: (a) challenges related to the quality and reproducibility
of the data, as well as the identification of consensual Regions-Of-
Interest, thereby limiting performance'’; and (b) limited accessibility,
as many clinics may lack the necessary infrastructure to produce
comparable data, restricting the broader application of these models.
Faced with these technical and logistical constraints, exploring sim-
ple, non-invasive, or ecological markers could represent a relevant
avenue to complement existing methods.

Typically associated with memory and cognitive declines, some studies
have already successfully focused on training detection models using neu-
ropsychological parameters, thus distinguishing acquired pathology from
milder forms (ie., mild cognitive impairment)'*". Nevertheless, more
ecological and easily accessible assessment approaches could readily be
imagined. For instance, the disease also appears to profoundly impair
patients’ ability to engage in everyday conversations: individuals with AD

may produce excessive speech, repeat themselves, or even lose the thread of
conversations'”", as evidenced by recent studies identifying connected
speech as a valuable psychomarker for tracking the progression of Alzhei-
mer’s disease'””. Such impairments likely reflect disrupted synaptic
homeostasis within key functional networks, such as the default mode
network (DMN)*, leading to cascading dysfunction from posterior cortical
regions to medial temporal and prefrontal areas implicated in language,
behavior and memory”* .

Following these observations, we propose a novel methodological
framework focused on the topological and kinetic architecture of con-
versations. Its originality lies in the fact that it does not rely on transcribed
textual data, representing a qualitative leap in terms of practicality and ease
of implementation in routine clinical settings—since transcription and
annotation of corpora often constitute a burden for traditional Natural
Language Processing methods.

This approach was applied to data from 40 individuals diag-
nosed with AD and 40 matched healthy controls, collected by a team
from the University of Montpellier (France)”. In this study, Parti-
cipants were required to complete two autobiographical recall tasks
in a dialogical setting: one task focused on recounting their most
cherished memory, while the other explored their most unpleasant
one. The exercise was conducted in dyads with a linguist, who pro-
vided thematic prompts to mimic a natural interaction akin to a
clinical consultation, thus constituting a low-cost and easy-to-
implement setup.
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Fig. 1 | Topological mapping of conversation and progression probabilities.

a, b Example of statements (i.e., speech acts) mapped onto the topological space
(x, y): incrementing along x represents the opening or reiteration of a theme, while
incrementing along y indicates the elaboration of a sub-theme. ¢, f Progression
probabilities along the x-axis (blue) and y-axis (red) for both recall tasks (Task 1:
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most pleasant memory; Task 2: least one). Patients with Alzheimer’s disease (solid)
display slower decay rates and more dispersed peaks in transition probabilities
compared to controls (dashed). d, e, g, h Visualization of aggregated (x,,.c: Vnax)
topological matrices: in Alzheimer’s patients, a more diffuse distribution in topo-
logical positions is observed compared to controls.

Encoding was achieved using the Trognon Topological and
Kinetic Model of dialogue (2TK)***’. This framework operates
through a modular and parametric function, the interaction function,
denoted as ¥(¢,¢,0,), where & = (x,y) represents the topological
position of a speech act, € represents the incremental temporal
marker, and o, (not used in this study) refers to a set of parameters
describing metrics such as the type of speech act or alignment
measures between interlocutors.

In this specific model, speech acts are mapped onto a hierarchical
representation where conversational topics progress along the x-axis,
representing the emergence of a theme or its elaboration into sub-discursive
themes (e.g. « I was about to marry » [x = 1] : « At the town hall » [x=1] + «
In a beautiful city » [x = 2]; Fig. 1a, b). Meanwhile, the elaboration of specific
information is represented by an increment along the y-axis (e.g. « In a
beautiful city » [y = 2] -> « Which city? » [y = 3]; Fig. 1a, b). Thus, this
formalism captures conversational dynamics by focusing on thematic
development rather than detailed annotated transcription, offering a less
resource-intensive alternative to classical NLP methods.

After encoding all corpora topologically, we aggregated all the resulting
structures into a (X, , Y.y ) Matrix. Visual observation suggested that AD
patients seemed to exhibit unique discursive patterns compared to control
subjects, characterized by localized transitions (“stepwise”) along the xand y
axes (Fig. 1d, e, g, h).

To validate this impression, we computed the transition probabilities
from each position (x, y) to neighboring positions (x + 1, y) or (x,y + 1).

For example, for the x-axis:

N,

P(x—>x—l—l):NLZP(x,y).P(x—i—l,y) (1)
Y y=0

where N, is the number of rows (i.e. values of y) in the matrix, P (x,y) is the
probability at position (x,y) and P(x + 1,y) is the probability at posi-
tion (x + 1, ).

Asshown in Fig. 1¢, f, the controls (dashed lines) display a rapid decline
in progression probabilities as the index rises. Conversely, AD patients (solid
lines) exhibit two notable differences: (a) the decrease is less pronounced,
and (b) peaks in progression probabilities are observed both at the beginning
of the task (low indices, Fig. 1c) and later in the conversation (medium
indices, Fig. 1f). These observations thus suggest a strong tendency for
digression in AD patients, as frequently reported by previous studies'"*.

Based on these results, we aimed to develop a simple and reproducible
approach to encode transition probabilities for training a decision-making
algorithm. Based on the topological structure of the exchange (Fig. 2a), we
generated a visual representation of the (X, V., Mmatrices, where a
colored box marks the topological position of the exchange at a specific time
point & Fig. 2b). Then, for each patient, we sequentially concatenated all the
unit images, thereby creating a “film strip” that reflects both the topological
architecture and the kinetics of the exchange (Fig. 2c).
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Fig. 2 | Spatiotemporal encoding procedure and
classification performance. a Schematic depiction
of four speech acts in the (x, y) matrix. b At each
temporal increment ¢, the cell (highlighted in yel-
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(1) I was about to mamy

low) corresponding to the topological position at
that moment is selected, generating a sequence of
“snapshots”. ¢ The snapshots are then concatenated
to form a “filmstrip” (horizontal axis) that simulta-
neously encodes topological structure (x, y) and
kinetic progression ¢. d Results (percentage accu-
racy) comparing the “Experimental” condition (real
dataset: AD vs. HC) and the “Control” condition
(artificially mixed groups). e Boxplots illustrating
the model’s sensitivity (blue) and specificity
(orange) for the same comparison. The higher scores
for the experimental condition confirm the algo-
rithm’s ability to effectively distinguish AD patients.
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Table 1| Example corpus for the segmentation of speech turns
into speech acts

Locutor Enunciation €
E1 (...) would you mind sharing your most cherished memory? 1
P2 Um, I’'m not sure... [pause] | feel a bit caught off guard. 2

Table 2 | Example segmentation of a speech turn into
speech acts

Locutor Enunciation €
P2a Um, I’'m not sure...
P2b | feel a bit caught off guard. 3

Table 3 | Example corpus for the topological encoding of
speech acts

Locutor Enunciation 3 X y
E1 (...) could you tell me about your best memory? 1 1 1
P2a | won’t say our wedding 2 1 2
P2b I’d rather say, uh, the liberation 3 2 2
E3 Liberation from? 4 2 3
P4 Well, the war. 5) 2 4

To capitalize on the spatial and temporal dynamics encoded in these
filmstrips we trained a convolutional neural network (CNN) within the
Teachable Machine 2.0 environment, a web-based platform with no coding
required”. Designed initially for visual tasks, CNNs apply sliding con-
volutional filters to automatically detect and integrate local features, forming
a representation optimized for classification tasks™. In our case, the

Table 4 | Example of topological encoding within the
2TK model

x=1 x=2
y=1 E1(1)
= P2a(2) P2b(3)
_ E3(4)
-4 P4(5)

convolutional architecture identifies the spatial and temporal regularities of
the horizontally concatenated (x,y, &) matrix, thus revealing thematic
progression patterns specific to AD patients. Through this process, we
achieve a decision-making algorithm capable of accurately distinguishing
conversational profiles between healthy individuals and people with Alz-
heimer’s disease.

Aligned with practices in computational psychometrics’™, we
implemented a two-step procedure to assess the model’s robustness. On the
one hand, an “Experiment” condition where each filmstrip was associated
with its true class (AD vs. HC); on the other hand, a “Control” condition
where we created two artificial groups (A and B), each containing a mix of
50% AD and 50% HC. This setup follows the principle of a “positive control”
(capable of revealing an effect) and a “negative control” (excluding the
possibility of genuinely distinguishing the two groups) to ensure that the
observed classification does not result from random events or background
noise (Tables 1-6).

We performed an analysis of variance on detection metrics derived
from 8-fold cross-validation to evaluate significant differences between the
two experiments. Regarding accuracy, after a Shapiro test confirmed the
non-normal distribution of the data [p=0.37], we conducted a
Kruskal-Wallis test (Experiment x Accuracy), which confirmed the dif-
ference in measured accuracy between the two conditions (Experiment :
bace = 0.95,SD = 0.06; Control : g, = 0.62, SD = 0.09; [(1) = 15, p < 0.001];
Fig. 2d). Similarly, the Scheirer-Ray-Hare test applied to specific metrics
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Table 5 | Example corpus for resolving topological ambiguity and proveability matrix of the exchange

€ Speech Act I have a car Itis red Itis a Ford To be more precise It is magenta Itis a Ford Fiesta

1 I have a car X 1 1 1 1 1
2 Itisred 1 X 0 1 1 0
3 Itis a Ford 1 0 X 1 0 1
4 To be more precise 0 1 1 X 1 1
5 It is magenta 1 1 0 1 X 0
6 It is a Ford Fiesta 1 0 1 1 0 X

Table 6 | Topological grid of the exchange disease from healthy subjects. Moreover, given that our system only

exploits the spatial and temporal progression of the conversation, it

2450 S eliminates the need for complete textual transcription and thus reduces

y=1 I'have a car the technical complexity often associated with traditional NLP

= Itis red Itis a Ford approaches. Statistical analyses conducted across both experimental

y-= To be more precise ltis a Ford Fiesta  and control conditions confirmed the robustness of our model, with

V-4 itis magenta ~ high accuracy, sensitivity, and specificity scores. This performance is

(Experiment x Metric x Value) demonstrated a significant difference in
performance between the two experiments (Experiment : g, = 0.96, SD =
0.009, fispe = 0.94, SD = 0.009; Control : i, = 0.64, SD =032, sy, = 0.57,
SD =0.33; [H;) = 11.64, p < 0.001]; Fig. 2e). These results suggest that our
analytical system can produce computational decisions on dialogically
encoded topological data with high performance in screening clinical con-
ditions such as Alzheimer’s disease.

To determine whether the topological-kinetic alterations captured by
our CNN map onto usual clinical markers of cognitive decline, we com-
puted each (x,y, ¢) trajectory into eight complementary human-readable
metrics and correlated them with the Mini Mental-State Examination
(MMSE) score, a test widely used in clinical routine. Among these metrics,
the lateral-to-vertical ratio R;, = M (2) quantifies the prevalence of

xy—y+1
thematic jumps relative to thematic elaborations. The transition entropy
H = -3, p;;logp;(3) captures the unpredictability of successive moves

N
across the grid, while the back-tracking index B = %(4) isolates

explicit returns to abandoned themes. A linear slope fitted to the x ;e (€)

(cumulative count of over time) provides a novelty gradient, and the mean

E
Ze:l [l(xs =X Xpq ] =]
NX

thematic dwell time T, = L (5) records how long a topic is

sustained.  In  parallel, the topological  dispersion d =

o (Axs)2 + (Ay€)2(6) estimates the average spatial amplitude of

successive steps, whereas the lag-1 autocorrelation p, (1) and the vertical
9ay "Ha,
9a,FHa,

burstiness coefficient B, = (7) index, respectively, short-range the-

matic persistence and intermittent bursts of detail along the y-axis.

All eight markers were significantly associated with the MMSE score
(Ir] € [0.18, 0.36], p, <0.001). The strongest signals came from the back-
tracking index (r = 0.36) and topological dispersion (r = 0.27), consistent
with the clinical picture of patients drifting across themes, revisiting aban-
doned ones, and describing an increasingly scattered conversational path as
cognition wanes. Even subtler metrics (such as dwell time or burstiness)
retained weaker but reliable links (with r>0.24), suggesting that dete-
rioration permeates many facets of discourse organization rather than a
single dominant feature.

In conclusion, our work demonstrates that a topological and
kinetic encoding of dialogical data, combined with a convolutional
architecture, can accurately distinguish individuals with Alzheimer’s

particularly notable as it relies on a simple, cost-effective, and easily
reproducible protocol—a short, guided interview followed by minimal
topological encoding—indicating its potential applicability in various
contexts, including teleconsultations or hospital settings.

Moreover, the strong distinction observed in the topological-kinetic
profiles between the two groups highlights the interest in further exploring
discursive dynamics as a potential psychomarker. In the long term, our
approach could be integrated into low-cost early screening or longitudinal
monitoring systems, complementing current imaging or biomarker-based
methods. Additionally, this approach could be tested on other categories of
patients with cognitive or psychiatric disorders, with the aim of developing a
panel of characteristic conversational signatures.

Methods

University of Montpellier dataset

A total of 80 native French speakers were included in this archival dataset,
consisting of 40 individuals clinically diagnosed with Alzheimer’s disease
(AD) and 40 healthy controls. All participants were recruited in the Mon-
tpellier region from healthcare facilities (for the AD group) or community
organizations (for controls). Clinical diagnoses of AD conformed to the
standard NINCDS-ADRDA criteria™, targeting the most frequent amnestic
hippocampal form of the disease. Control participants were selected to
match the AD group on age, sex distribution and sociocultural level,
ensuring comparable demographic profiles (age range: 64-89 years for AD
versus 65-85 years for controls, p: n.s.; sex ratio: AD group, 28 females and
12 males versus controls, 20 females and 20 males, p: n.s.; sociocultural level:
mean + SD, 2.5 +1.01 for AD group versus 2.9 + 1.14 for controls, range 1-4
for both groups, p: n.s.). Each participant was screened for significant
neurological or psychiatric history apart from AD. The Mini Mental State
Examination (MMSE) was used to confirm cognitive status (mean MMSE
score: 21.53 £2.81 for AD versus 30+ 0 for controls, p <0.001). Most
patients (34 of 40) were at a mild disease stage (MMSE between 20 and 25).
Informed consent was systematically collected from participants or their
legal representatives when required, and the study was deemed observa-
tional by the relevant ethics committee (Comité de Protection des Personnes
de Montpellier Sud Méditerranée IT), negating further regulatory filing. All
interviews were carried out in a quiet setting (hospital unit, care facility or
community center) and digitally recorded (44 kHz, 16-bit, mono). Partici-
pants were asked to describe salient life events, with a focus on (a) their most
positive and (b) most unpleasant autobiographical memories. Interviewers
used thematic prompts to encourage detailed narration. The entire set of
audio files was subsequently transcribed using CHAT convention in the
CLAN software™, yielding a corpus of 54,454 total word tokens. No sig-
nificant difference in corpus size was detected between AD and control
groups (p = 0.155).
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Assessor background and preparation

The original interviews were conducted by a doctoral researcher
holding a Master’s degree in Linguistics, and subsequent 2TK
annotation was carried out by two first-year clinical-psychology
master’s students who had received a single three-hour lecture on the
2TK framework during the preceding semester. A final examination
was carried out by an experienced 2TK analyst to ensure annotation
fidelity.

Data preprocessing
Segmentation of speech turns into speech acts
Within the 2TK framework, conversational analysis involves breaking down
speech turns into minimal units of information (i.e. speech acts). This means
that each speech act is considered as a small, semantically coherent block,
distinct from a purely syntactic sentence. For instance, consider the following
dialogue between the interviewer (E) and the participant (P ; Table 1):
In this case, the participant’s turn (P2) can be segmented into two
separate speech acts (Table 2):
Where:
- P2a corresponds to an initial act reflecting the participant’s hesitation
and uncertainty (« Um, I'm not sure...»).
- P2b constitutes a separate act emphasizing a sense of surprise or lack of
readiness (“I feel a bit caught off guard.”).

Topological encoding

In the 2TK model, each speech act « is assigned an address ¢, defining its

position within the exchange. Expressed as & = (x, y), this address captures

two key dimensions:

- x:the axis of thematic progression, which indicates when a new theme/
sub-theme is introduced, or a transversal link to an already-discussed
theme is made.

- y: the informational depth axis, marking instances where clarifications,
details, or examples are requested for an ongoing topic.

In parallel, the € index provides a temporal marker, organizing speech
acts in their chronological order of occurrence.
Let us consider the following dialogue between the interviewer (E) and

the participant (P ; Table 3):

In this example:

- El introduces the request to mention “the best memory,” initiating a
new theme; it is thus associated with (x = 1,y = 1).

- P2a continues the same theme (x = 1) by mentioning a first idea (“I
won't say our wedding”), hence the incrementing of y to (y = 2) to
signify further elaboration.

- P2b introduces a new perspective (“the liberation”), at the same degree
of elaboration: so x shifts from 1 to 2, while keeping y at (y = 2).

- E3 seeks clarification (“Liberation from?”), refining the current theme
(x = 2) and increasing the degree of elaboration on this topic, advan-
cing y to (y = 3).

— P4 responds (“Well, the war”), adding another layer of depth (y = 4)
within the same theme (x = 2).

Matrix conversion

Once each speech act is positioned in the topological space via its address
& =(x,y), exchange is converted into a matrix. Specifically, a two-
dimensional matrix is constructed, where the columns correspond to the
different values of x (i.e. thematic progression) and the rows correspond to
the different values of y (i.e. elaboration).

In each cell, the speaker’s identifier is stored, followed by the temporal
position (¢) of the speech act. For instance, in the precedent exchange where
x et y respectively take the values {1,2} and {1, 2, 3, 4}, the resulting matrix
could appear as follows (Table 4):

In this example:

— The cell (x=1,y=1) contains «E1(1)», which signifies that the
speech act performed at (¢ = 1) by investigator E is mapped to the

address & = (1,1).

- The cell (x =2,y =2) corresponds to “P2b(3)”, representing the
speech act carried out at (¢ = 3) by participant P.

- The absence of explicit speech acts in empty cells is particularly sig-
nificant. These voids highlight thematic coherence: if (x = 2,y = 2) is
populated while (x = 2,y = 1) remains empty, this signals that sub-
theme (x = 2) ties back to a thread initiated at (x = 1,y = 1) rather
than indicating a radical thematic shift requiring a speech act
at(x=2,y=1).

In this sense, this annotated topological matrix allows for a structural
mapping of the conversation: rather than retaining the entire verbatim
transcript, it captures only the thematic anchoring (x) and the degree of
elaboration (y) for each speech act, as well as the chronological order (¢).
This abstraction makes it possible (i) to dispense with a literal transcription
of the discourse and (ii) to facilitate automated analysis, whether for cal-
culating transition probabilities or constructing image representations for a
convolutional neural network.

Resolving topological ambiguity

The 2TK framework typically resolves ambiguity by appealing to a purely

topological criterion, independent of any discursive annotation. Concretely,

the first act that substantiates its super-ordinate element is placed at (x, y +

1) with respect to that anchor; the second corroborative act is mapped to

(x + 1,y + 1), the third to (x 4 2, y + 1), and so forth. In other words, the

proof chain fans out laterally while remaining on the same depth line,

guaranteeing a deterministic placement even under strong pragmatic
ambiguity.

In a minority of exchanges, two successive speech acts may simulta-
neously refine a previously established theme and open a collateral sub-
theme, thereby blurring the customary “vertical-versus-horizontal” decision
rule. When uncertainty persists, we build a proveability matrix (ie. a
symmetric table whose cells encode the presence (1) or absence (0) of a
justificatory link between every pair of speech acts). The example below
(Table 5) illustrates the procedure on a six-turn micro-dialogue taken
from ref. 28:

Applying the rule step-by-step:

- &= 1. Anchor of the discourse = (x = 1,y = 1).

- &= 2. Single high link with € = 1 (“colour” qualifies the car) = vertical
elaboration — (x = 1,y = 2).

- & = 3. High affinity with &€ = 1 but none with & = 2; introduces a brand
attribute = lateral shift at same depth — (x = 2,y = 2).

- & =4. Ties equally to colour and brand branches; meta-comment
requesting further precision = transversal elaboration anchored to the
branch clarified next (colour) — (x = 1,y = 3).

- &= 5. Precision on colour only = remain in colour branch, increase
depth — (x =1,y = 4).

— &= 6. Precision on brand branch = remain in brand branch, increase
depth — (x =2,y = 3).

The resulting grid is therefore (Table 6):

Filmstrip generation. Filmstrip creation was performed using Python
(v3.12.4) to translate each participant’s topological matrix into a
sequence of images that jointly encode temporal (¢) and spatial (x, y)
progression. First, the maximum values of x and y (X,;,,, Vinax) Were
determined from the Excel file storing the topological matrices.
Next, for each participant and each non-empty cell (x,y) in the
matrix, the temporal index e was extracted, and a single-frame
matrix of size (X,y, Vo) Was generated. All entries were initialized
to zero, except for the cell at (x, y), which was set to one, indicating
that at time e, the conversation occupied position (x,y). The
resulting frames—one per speech act—were ordered chronologically
according to their ¢ values. Finally, each single-frame matrix was
saved as a PNG image (axes and annotations removed) and
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concatenated horizontally to create a single filmstrip that captures
the spatiotemporal evolution of the conversation. For each partici-
pant, one filmstrip was generated per autobiographical recall task,
leading to a total of 143 filmstrips across all participants (4 parti-
cipants did not complete task 1 and 15 participants did not complete
task 2 in the original dataset).

Model and training. Filmstrips were processed through Teachable
Machine v2.0, a MobileNet-V2 (width-multiplier = 1.0,
input = 224 x 224 x 3) CNN automatically instantiated in the no-code
environment proposed by Google to process image data™. All depth-wise
separable convolutional blocks are frozen; only the global-average-
pooling output (1280 units) feeds a new dense layer (soft-max, 2 classes)
that is fine-tuned. Learning is performed for 50 epochs, batch-size = 16,
with adam optimiser, and initial learning-rate =1 x 10>, All 143
filmstrips (two per participant when available) were pooled and labelled
AD or HC. For each of eight independent repetitions, Teachable Machine
applied its built-in stratified hold-out (85% training, 15% test) at the
image level; the test subset was never accessed during training. Because
the partition occurs per image, the two autobiographical tasks of a given
participant can appear in different splits. This choice was intentional:
positive- and negative-memory recalls engage distinct autobiographical
networks and exhibit non-redundant neurophysiological pathways**'.

Computational psychometrics experiment. To evaluate the robust-
ness of our approach, we implemented a procedure inspired by com-
putational psychometrics™, based on the positive/negative control
principle commonly used in animal experiments®”. Specifically, we
defined two conditions: in the “Experiment” condition, the topological
profiles were associated with their true group (AD vs. HC), whereas in the
“Control” condition, we artificially created two mixed groups (each
containing 50% AD profiles and 50% HC profiles). This second condition
aimed to estimate the “background noise,” as no class difference was
actually expected. In both conditions, we then applied the same predic-
tion protocol (convolutional network within the Teachable Machine 2.0
environment and 8-fold cross-validation) to calculate sensitivity, speci-
ficity, and accuracy. The performance gap between the “Experiment” and
“Control” conditions thus provides information on the model’s effective
validity, distinguishing true signals from random noise®.

Progression probabilities. To estimate the probability of occurrence of
each topological position (x, y) in the conversations, we first grouped the
matrices derived from the 2TK encoding for each of the two groups (AD
patients and controls) and for each segment of the interview (best
memory or most unpleasant). Specifically, for each group, we listed all the
matrices produced and then determined the maximum size (in terms of
rows and columns) among them. Smaller matrices were then resized into
this larger grid by filling empty areas with zeros. Next, we stacked all the
adjusted matrices (i.e., now sharing the same dimensions) before calcu-
lating the mean occupation at each position (x,y) of the grid. This
operation produced a probability map quantifying, for each topological
coordinate, the average frequency of a speech act within the group
considered. Finally, the aggregated probability maps were saved as a
DataFrame to facilitate subsequent statistical analyses and visualization.

Metrics calculation. For each conversation, topological and kinetic
metrics were computed using custom Python functions applied to the
encoded trajectories stored in DataFrames. Specifically, the lateral-to-
vertical ratio was determined by counting lateral movements (increments
along the x-axis only) versus vertical movements (increments along the
y-axis only), calculating their ratio. Transition entropy was obtained by
counting unique pairs of sequential topological transitions and com-
puting the Shannon entropy to quantify unpredictability in conversa-
tional structure. The back-tracking index measured how often
conversation returned explicitly to previously visited themes by assessing

decreases in x-axis positions. The thematic novelty slope was computed
by fitting a linear regression to the cumulative number of unique themes
introduced over time (¢). Mean thematic dwell time and mean horizontal
run length were calculated by identifying continuous sequences with
constant x or y values and averaging their durations. Topological dis-
persion quantified the average spatial distance between consecutive
speech acts, measured as the mean Euclidean distance across (x, y)
coordinates. Lag-1 autocorrelation assessed short-term thematic persis-
tence along the x-axis, while vertical burstiness captured variability in
vertical elaborations on the y-axis, computed as the normalized differ-
ence between standard deviation and mean of vertical increments.

Data availability

The raw data used in this study are openly available in the online archives of
the University of Montpellier (Lee™). The preprocessed data and the film-
strips can be obtained alongside the present manuscript. The code used in
this study is openly available alongside the manuscript on the Code Ocean
platform
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