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Rumen microbiotas are known to influence the fat deposition (FD) in sheep, but controversy over
causality remains unresolved. Here, we performed microbiome-wide association studies (MWAS),
microbiome genome-wide association analysis (mbGWAS) and bidirectional mendelian
randomization (MR) analyses on 1,150 sheep with genotype data fromwhole-genome resequencing,
16S rRNAsequencingandmultilevel FD-traits data.Wequantified theproportionof individual variation
in FD-traits explained by host genetics, rumen microbiota, and their interaction effects. We identified
32 rumen microbiota biomarkers including Bifidobacterium that were associated with FD-traits (Padj

<0.05). Further, utilizing five MR methods, we identified eight causal associations between marker
genera and FD-traits (Padj <0.05), including Butyrivibrio, Olsenella, p-2534-18B5 gut group,
Prevotellaceae UCG-003, and Pseudobutyrivibrio causing forward causal effects on FD, and changes
in Flexilinea and Suttonella induced by FD. To our knowledge, this is the inaugural attempt to employ
MR in sheep to investigate the causal relationships between gastrointestinal microbiota and complex
phenotypes, underscoring the potential for developing interventions related to adipose deposition in
sheep from the perspective of the rumen microbiome.

Fat is an essential nutrient in the human and animal bodies, playing a crucial
role in maintaining vital functions and overall health1. However, excessive
fat deposition (FD) in adipose tissue leads to obesity, a complex condition
associated with various serious health issues. Obesity not only increases the
risk of type-2 diabetes, cardiovascular diseases, and various cancers but also
poses significant challenges to socio-economic aspects andpublic health2. In
the livestock industry, sheep, known for their high FD capacity, cannot
overlook the FD status within their bodies3. Sheep’s excessive fat deposition
is predominantly evident in subcutaneous adipose tissues, particularly in the
tail and backfat, and in visceral fat, especially in the perirenal and caul fat
(greater omentum)3,4. The prevalent over-accumulation of fat in sheep
within the current intensive farming systems has adverse implications for
their health and welfare, predisposing them to metabolic disorders,
inflammation, and a reduced capacity to combat diseases4. The energy
storage in adipose tissues is also correlated with crucial economic traits

related to survival and production, such as feed efficiency, immune
response, reproductive performance, and meat quality5–8. Furthermore,
excessive FD influences consumer preferences for mutton and its by-
products. These issues are critical not only for the sustainable development
of the sheep industry but also pose health risks to human consumers.
Consequently, modulating fat deposition has become a key target for sheep
breeders around the world.

With the successful application of rumen microbiota transplantation
studies, modulation of the rumenmicrobiome has emerged as a significant
regulatory option for a variety of complex diseases and phenotypes in sheep,
including rumen acidosis9 and metabolic function10. As the most diverse
digestive ecosystem described in the animal kingdom, rumen microbiota
has functions such as cellulose and hemicellulose degradation11. Its fer-
mentation end products, volatile fatty acids (VFA), providemore than 70%
of the energy source for sheep12. These VFAs are mainly absorbed by the
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rumenepitheliumandconverted into acetyl-CoAandpropionyl-CoA in the
liver, which are then used as raw materials to participate in metabolic
processes such as glycogen synthesis, gluconeogenesis, and cholesterol
synthesis, ultimately affecting host FD13. In addition, the metabolites pro-
duced by rumenmicrobiota can promote rumen epithelial development by
regulatinghost gene expression,which is closely related tohost physiological
functions14. Currently, several microbial markers associated with the FD-
trait in sheep have been identified15–19. However, these studies have merely
established correlations, and it remains unclear whether these microbial
markers possess the potential for practical application in modulating fat
deposition. Therefore, elucidating the causal relationship between the
rumenmicrobiota and theFD-trait in sheep is an important and challenging
problem in agriculture and animal production fields.

Mendelian Randomization (MR) is a genetic variable analysis method
that follows Mendel’s laws of inheritance. It uses genetic variations as
instrumental variables to infer causal relationships between exposure factors
and outcomes20. In recent years, with the accumulation of data from
genome-wide association analysis (GWAS), MR analysis has become an
effective method for inferring causal relationships and has been widely
applied in studying the relationship between gut microbiota and fat
deposition, including childhood obesity21, abdominal fat22, and body fat
percentage23. Furthermore, the application of MR methods has extended
beyond human studies, particularly in the field of farm animal research,
such as inferring causal relationships between gene expression and complex
traits in pig and beef cattle24,25. Therefore, introducing MR studies to
investigate the causal relationship between rumen microbial communities
and FD in sheep is a novel and valuable approach.

In this study, our aims to systematically evaluate the rumen microbial
effects on multilevel or hierarchical FD-traits through large-scale single
homogenous sheep population (n = 1150), identify rumen microbiota
associated with FD-traits and their host genetic effects using microbiome-
wide association studies (MWAS), microbiome genome-wide association
analysis (mbGWAS), and finally performMR analysis to clarify the causal
relationship between specific rumen microbiota and FD. This may offer
valuable insights for regulating rumen microbiota transplantation and
improving optimalmicrobiome selection tomanipulate FD in sheep. This is
also the first attempt to explore causal associations between gastrointestinal
microbiome and complex traits usingMRanalysis in sheep, highlighting the
significant importance of host genetic data in guiding research on rumen
microbiome interventions.

Methods
Animals and sample collection
For this study, a total of 1150 healthy male Hu lambs (the most dominant
breed in China’s intensive sheep farming system) were randomly selected
and raisedunder standardized conditions (the studydesignflow:Fig. 1).The
lambs were housed with their natural mothers from birth until weaning at
56 days of age, after which they were moved to the Minqin experimental
farm of Lanzhou University and maintained in individual pens until
slaughter at 180 days of age. All lambs received the same feeding regimen
(Diet composition see Supplementary Table 1) and were not administered
any antibiotics or other antimicrobial substancesduring the studyperiod.At
180 days of age (standard commercial slaughter age), the animals were
fasted for 12 h and their weight, length, and body mass index (BMI; Body
Weight(kg)/[Body Length (m)]2) were measured. Whole blood was col-
lected fromthe jugular veinusing sodiumheparin anticoagulation tubesand
stored at –20 °C until further analysis.

Following the standard procedure practiced in commercial abattoirs,
all animals in this experiment were then slaughtered. The greater omen-
tum fat (Omentum-FW), the perirenal fat (Perirenal-FW) and tail fat
(Tail-FW) were removed from each animal and weighed using electronic
weigh scales with a precision of 0.01 kg. The detailed procedure for fat
tissue collection is as follows: (1) Greater omentum: Following slaughter,
the carcasses were suspended. An incision was made along the ventral
midline of the abdominal wall, extending from the pubic symphysis to the

xiphoid process of the sternum, to fully expose the viscera within the
abdominal cavity. The entire gastrointestinal tract was meticulously iso-
lated from the carcass and placed on a rectangular surgical tray. Surgical
scissors were carefully employed to dissect along the edge of the greater
omentum, sequentially separating it from the four-chambered stomach,
ceasing at the second segment of the duodenum and the greater curvature
of the abomasum. The weight of greater omentum was subsequently
determined using an electronic scale. (2) Perirenal fat: Utilizing a scalpel,
the entire renal systemwas isolated from the carcass along both sides of the
lumbar vertebrae and placed on a rectangular surgical tray. Subsequently,
the surgical blade was used to longitudinally section the perirenal adipose
tissue along the outer margin of the kidneys, achieving complete
separation of the kidneys from the adipose tissue. The weight of perirenal
fat was then ascertained using an electronic scale. (3) Tail fat: Using a
scalpel, the entire caudal vertebrae were carefully separated from the tail
fat by making a longitudinal incision along the caudal vertebrae starting
from the lumbar to caudal vertebral junction. The tail fat was subsequently
separated from the carcass by incision at the lumbar-caudal vertebral
junction. Weight of tail fat was measured using an electronic scale. The
total fat weight (Total-FW) was obtained by adding up all the above fat
tissues physical weight values. The relativeweight of each fat tissue (RFW)
was calculated by the percentage of total body weight occupied by the
tissue weight. The carcasses were then stored overnight for 12 h main-
tained at 4 °C prior to recording backfat thickness (BF) and rib fat
thickness (RFT) data. The BF was measured by cutting the carcass
transversely at the posterior end of the 12th rib and measuring the
thickness of the fat layer directly above the midpoint of the eye muscle
between the 12th and 13th ribs using a vernier calliper. The RFT was
assessed by measuring the thickness of adipose tissue at the 12th/13th rib
intersection 11 cm away from the midline using a vernier calliper, and is
used to represent the fat content of the carcass. All procedures of isolation
of the fat tissue were performed by certified veterinarians in animal
handling. Following slaughter, rumen fluid samples were promptly col-
lected from the rumen of each animal. The rumen contents were pro-
cessed through four layers of cheesecloth to separate the liquid
component, which was subsequently transferred to sterilized centrifuge
tube and cryopreserved at -80°C for 16S rRNA sequencing and VFA
profiling analyses.

Volatile fatty acid analysis
The concentration of rumenVFAs in ruminal chymewas determined using
gas chromatography, an adaptation of a previously publishedmethod26. For
theVFAassay, ruminalfluidwas centrifuged at 5400 rpm for 10min, with a
centrifugal radius of 14.5 cm and a relative centrifugal force of 4731 g.
Thereafter, 1.0ml of the supernatant was mixed with 0.2ml of a 25% (w/v)
metaphosphoric acid solution, which included 2-ethylbutyric acid as an
internal standard at a concentration of 2 g/L. This mixture was incubated at
4 °C for 30min, followed by a secondary centrifugation at 10,000 rpm, with
a centrifugal radius of 5 cm and a relative centrifugal force of 5595 g, for an
additional 10min at 4 °C. The supernatant was then carefully collected and
filtered through a 0.45 μm filter (0.45 μm Syringe Filters). The clarified
supernatant was subsequently transferred to a vial for gas chromatographic
analysis.

The quantification of VFA concentrations was executed using a
TRACE-1300 series gas chromatograph (TRACE 1300, Thermo Scientific,
Milan, Italy). The gas chromatographic conditions are delineated as follows:
A capillary column DB-FFAP with dimensions of 15 meters in length, 0.32
millimeters in internal diameter, and0.25micrometers infilm thicknesswas
employed. The sample injection volume was precisely set to 1 microliter
with a split ratio of 50:1. Both the injectionport and the detectorwere kept at
a constant temperature of 240 degrees Celsius. The flow rates for the carrier
and auxiliary gaseswere established at 35milliliters perminute for hydrogen
flame gas, 20 milliliters per minute for nitrogen carrier gas, and 350 milli-
liters per minute for air. The temperature gradient for the analysis was
programmed to commencewith an isothermalhold at 50degreesCelsius for
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a duration of 5min, followed by a linear ramp to 190 degrees Celsius over a
period of 2min at a rate of 25 degrees Celsius perminute. Subsequently, the
temperature was increased to 200 degrees Celsius over 5min at a rate of 10
degrees Celsius per minute, concluding with a final ramp to 220 degrees
Celsius,whichwas sustained for another5min at the same rateof 10degrees
Celsius per minute.

DNA extraction and quantification
Sheep genomic DNA was extracted from each animal blood sample using
the EasyPure Blood Genomic DNA Kit (Tiangen Bio Company, Beijing,
China) following the manufacturer’s instructions. For the extraction of
rumenmicrobial DNA, approximately 200mg of each rumen fluid sample
was thawed on ice and homogenized. Subsequently, rumen microbial
genomicDNAwas extractedutilizing theEasyPureStoolGenomicDNAKit
(TransGen Biotech, catalog number EE301-01, Beijing, China), following
the manufacturer’s prescribed protocol. The Nanodrop 2000 spectro-
photometer (Thermo Scientific) was employed to evaluate the concentra-
tion and purity of the DNA extract for successful DNA isolation, and 1%
agarose gel electrophoresis was used to assess the completeness of the DNA
sample. At this stage, no DNA samples were removed.

Genotyping
The sheep genomic DNA samples (n = 1150) were randomly fragmented
and sheared into fragments of ~350 bp in length using standard Covaris
sonication. The fragmented DNAs were end-repaired, dA-tailed, ligated

with Illumina adaptors, and amplified using PCR with 500 bp inserts for
library construction. All qualified libraries were then sequenced on an
Illumina HiSeq XTen platform with the PE150 mode. The quality
assessment of raw sequence data and deletion of low-quality sequences
was performed using FastQC (https://www.bioinformatics.babraham.ac.
uk/projects/fastqc/). The clean reads were mapped against the sheep
reference genome (Oar_rambouillet_v1.0, https://mart.ensembl.org/
Ovis_aries_rambouillet/Info/) by employing Burrows-Wheeler-
Alignment Tool. Subsequently, potential PCR duplicate reads were
marked and removed using SAMBAMBA (https://github.com/
lomereiter/sambamba) and indexed in SAMtools (http://github.com/
samtools/samtools). The variants were detected by Genome Analysis
Toolkit (GATK; https://software.broadinstitute.org/gatk/) Haplotype-
Caller and GenotypeGVCFs modules. To obtain high-quality Single
Nucleotide Polymorphisms (SNP), we initially applied the GATK Var-
iantFiltration module to rigorously filter the resulting VCF-dataset based
on the robust criteria: FS > 60.0; QD < 10.0; MQ < 40.0; Read-
PosRankSum < -8.0; MQRankSum< -12.5. Subsequently, we utilized
VCFtools to exclude Insertion/Deletion mutations (InDels), retaining
only bi-allelic genetic variations and removing SNPs with depths below 5.
Following this, we conducted further SNP refinement using PLINK,
setting the minor allele frequency threshold at 0.05 and a call rate of 70%.
Finally, 15,252,471 SNPs were obtained through these procedures,
spanning 27 chromosomes and encompassing 1150 animals, for sub-
sequent analyses (reached a 7.05-fold depth; Supplementary Table 2).

Rumen microbiome
from 1,150 lambs

Greater omentum fat Perirenal fat Tail fat
The weight of total fat (Total-FW)

The relative weight of total fat (Total-FRW) 

Body mass index
Rib fat thickness

Backfat thickness

Sheep Fat Deposition
11 FD phenotypes from 1150 lambs

MWAS:
Quantitative and binary models 

based on 5000 replacement tests.

Microbiability
Microbial correlation

One-sample Bi-directional Mendelian randomization

Sensitivity analyses Cochran's Q test 
leave-one-out analysis
MR-Egger regression method 

mbGWAS

Heritability
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We first employed five distinct methodologies for MR analysis: Inverse variance weighting 
(IVW), weighted mode (WM), MR-Egger regression, weighted median estimator (WME), and 
simple mode method (SM). 

heterogeneity and horizontal pleiotropy

Rumen

Screening threshold for IVs: 
1E-06, 6.56E-08 and 3.28E-09;
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the genetic distance to 10,000 kb;
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The mbGWAS for B-features used the 
Generalized Linear 
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Fig. 1 | Study design. Flowchart for the study of the casual association between rumen microbiota and fat deposition traits in sheep. LD linkage disequilibrium, SNP single
nucleotide polymorphism, MWAS microbiome-wide association studies, mbGWAS microbiome genome wide association study.
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Amplicon sequencing and data processing
For quality-assessed rumen microbial genomic DNA, dilution was per-
formed to serve as a template for amplification. We selected the V3-V4
hypervariable regions of the bacterial 16S rRNA gene for amplification,
utilizing specific primers 341 F/806 R (5ʹ-CCTAYGGGRBGCASCAG-3ʹ
and 5ʹ-GGACTACNNGGGTATCTAAT-3ʹ). To differentiate among var-
ious samples within the same library, a 12 bp unique barcode sequence was
incorporated at the 5’ end of the primers prior to amplification. After the
purification and quantification, the qualified amplicons were sequenced on
an Illumina NovaSeq PE250 platform according to the manufacturer’s
standard protocol. After sequencing, paired-end reads of each sample were
trimmed and assembled using FLASH software. After trimming control with
FastQC, chimerical reads were removed by UCHIME algorithm (http://
drive5.com/uchime). Following, the filtered sequences were processed using
the DADA2 pipeline to generate amplicon sequence variants (ASVs) and
taxonomic assignments were performed using the Naive Bayes pretrained
SILVA taxonomic data set (version 138). To eliminate potential false or low-
abundance ASVs resulting from sequencing errors or other sources of noise
and to avoid sequence artifacts, we employed the “filter-features” function in
the QIIME2 software to apply a threshold of presence in two or more
samples and aminimum total frequency greater than 10 for filtering out rare
features (--p-min-samples 2 and --p-min-frequency 10)27–29. Sequences
affiliated with “mitochondria” or “chloroplasts” were meticulously excluded
from the ASVs to ensure the accuracy of microbial community analysis. A
rarefied ASV count table was generated using the QIIME2 feature-table
rarefy commands with --p-sampling-depth 34,736 (the minimum library
size method). The preliminary ASV tables of rumen microbes contained
1,150 individuals and 14,679 ASVs (assigned 872 genera; Supplementary
Table 3). Alpha diversity indicators were calculated based onmicrobial ASVs
using the microeco R-package, and principal coordinate analysis (PCoA)
was performed using the vegan and ape packages.

Descriptive statistics, Spearman and Pearson correlation,
genetic correlation and microbial correlation between FD-
phenotypes
Descriptive statistics, Spearman and Pearson correlation were completed in
psychR-package, and the corrplot R-packagewas used for data visualization
purposes. The adjusted phenotypes were calculated by subtracting the
estimates of the fixed effects (birthplace and rearing season), which were
estimated using a linear least squares approach by linear fixed effectsmodel.
The principal component analysis (PCA) was performed using vegan
R-package. We also estimated genetic correlations (rG) and microbial cor-
relations (rM) of FD-traits using amulti-trait model inHIBLUP. Themodel
is as follows:

y ¼ Wbþ K1g þ e ð1Þ

y ¼ Wbþ K2mþ e ð2Þ

Where y is a vector of phenotypic values, b is a vector of fixed effects of
birthplace and rearing season, andW is the corresponding design matrix; g
is a vector of additive genetic effects following a distribution of Nð0;Gσ2

g Þ,
where G is GRM and σ2

g is the additive genetic variance; m is a vector of
rumenmicrobial effects following amultinomial distributionofNð0;Mσ2mÞ,
whereM is theMRMandσ2

m is the rumenmicrobial variance;K1 andK2 are
the incidence matrices corresponding to the g andm, and e is the residuals
following a distribution ofN 0; Iσ2e

� �
, where I is an identitymatrix and σ2

e is
the residual variance. Population structure was accounted for by incor-
porating the topfivehost genetic principal components (PC) as covariates in
the model. The rG and rM were calculated using the following formula:

rG ¼ COVGXYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
GX
σ2
GY

q ð3Þ

rM ¼ COVMXYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
MX

σ2
MY

q ð4Þ

where rG is the genetic correlation between traits X and Y; COVGXY
is the

genetic covariance matrix of traits X and Y; σGX
and σGY

are the genetic
standard deviation of traitsX andY; rM is themicrobial correlation between
traitsX andY;COVMXY

is themicrobial covariancematrix of traitsX andY;
σGX

and σGY
are the microbial standard deviation of traits X and Y.

Assessment of the overall relationship between the rumen
microbiome and host genetics
To assess the resemblance among sheep based on their rumen bacterial
abundance, we adopted five microbial similarity/relationship matrix con-
struction inference approaches, Euclidean, Bray-Curtis, Constrained Cor-
respondence Analysis (CCA), DetrendedCorrespondence Analysis (DCA)
andMicrobial RelationshipMatrix (MRM), using theASV abundance data.
Euclidean distance and Bray-Curtis dissimilarity were measured using the
vegdist function in vegan R-package. CCA and DCA were calculated using
the ordinate function with Bray-Curtis dissimilarity as the distance metric.
TheMRMwas created following the procedure reported byWen et al.30 and
Tang et al.31. For genetic relationship matrix (GRM), we used HIBLUP
software to create the matrix of all pairs of individuals within the animal
cohort based on all SNPs. In order to investigate whether host genetics have
an impact on rumen microbiota, Mantel test was done to evaluate simila-
rities of GRM and all microbial matrices with 1000 permutations.

Heritability, Microbiability and Holobiability
We estimated variance components and assessed the proportion of phe-
notypic variation explained by host genetics (G) and rumen microbiome
(M), i.e., heritability (h2), microbiability (m2), and genome-by-microbiome
interaction (G×M2) and holobiability (ho2)32 for all FD-traits (y), using a
model GMP (y =G+M+G×M) in HIBLUP (https://www.hiblup.com/).
In general, the contributions of theG andM to the phenotype are defined in
terms of h2 andm2, respectively. However, if bothG andMare included in a
model, then h2 and m2 can only reflect the contribution of direct genetic
effects and direct microbial effects, and the effect of the interaction between
G and M on the phenotype is quantified as G×M2. Concurrently, the
holobiont effect, which encapsulates the combined influence of G andMon
the phenotype, is quantified as ho2. The details of the GMP model are as
follow:

y ¼ Wbþ K1g þ K2mþ K3g ×mþ e ð5Þ
Where y is a vector of phenotypic values, b is a vector of fixed effects
including birthplace and rearing season, andW is the corresponding design
matrix; g is a vector of additive genetic effects following a distribution of
Nð0;Gσ2g Þ, where G is GRM and σ2

g is the additive genetic variance;m is a
vector of rumen microbial effects following a distribution of Nð0;Mσ2

mÞ,
where M is the MRM and σ2

m is the rumen microbial variance; g × m is a
vector of effects of host genetic and rumenmicrobiome interactions,K1,K2,
andK3 are the incidencematrices corresponding to the g,m, andg×m in the
model GMP, and e is the residuals following a distribution of N 0; Iσ2

e

� �
,

where I is an identitymatrix and σ2e is the residual variance. The phenotypic
variance (σ2

p) was the sum of all variance components:
σ2
p¼σ2gþσ2

mþσ2
gmþσ2

e . The σ2
g=σ

2
p, σ2

m=σ
2
p, σ2

gm=σ
2
p and

(σ2
gþσ2

mþσ2
gmÞ=σ2

p were defined as h2, m2, G×M2 and ho2, respectively.
Population structure was accounted for by incorporating the first five host
genetic PC as covariates in the model.

Microbiome-wide association studies (MWAS)
The associations between 7 diversity metrics (including Shannon, Simpson
indices, and the top 5 PCoA Axis) and FD-traits were first fitted and tested
using a linear model and permutation tests (5000 permutations) imple-
mented in the lmPerm R-package (https://CRAN.R-project.org/package=
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lmerPerm). Due to the low detection rate and taxonomic ambiguity of
certain taxa,whichprovided limited information for association analysis,we
excluded genera present in below 20% and unclassified taxa. In the end, 117
genera were utilized for further analysis, representing an average of 90.95%
of the total abundance per sample. We then employed a two-part MWAS
model described by Fu et al.33 and Wen et al.30 to ascertain associations
between sheep FD-traits and the quantitative features (abundance) and
binary features (presence/absence)of eachbacterial genus. The zero-inflated
nature of microbial abundance data presents a challenge in meeting the
normal distribution assumption required by the quantitative model. To
address this, we normalized the relative abundances using the centered log-
ratio (CLR) method. Details of the two-part model are given below:

y ¼ β1bþ e;

β2qþ e;

�
ð6Þ

let y denote the Total-FW and Total-RFW value after adjustment for
birthplace and rearing season; b be a binary feature of a specific genera,
which is recoded as 0 for absent or 1 for present for each individual; q be the
CLR transformed relative abundance of a specific genera. β1 and β2
represent the regression coefficients of the twomodels respectively, and e is
the intercept. P values were derived from sequential permutation tests
comprising 5000 permutations conducted using the lmPerm package. In
each permutation, the rumen microbial feature was randomized among
individuals, and the 2-part analysis was carried out on the permuted data.
Significance was maintained at Bonferroni-adjusted P values < 0.05.

This approach considers the intricate features of microbial data and
maximizes research efficiency. The association of each FD-trait with all
bacterial genera was examined using both binary (B) and quantitative (Q)
models, and ultimately each trait will yield 2 result sets, a binary analysis set
and a quantitative analysis set for that trait. If only the association P value in
the B model is below the cutoff threshold, it indicates that the influence is
solely due to the presence or absence of the taxon,making the abundance of
the taxon in the sample less significant. Conversely, if only the association P
value in the Qmodel is below the cutoff threshold, it suggests a relationship
between the abundance level of the taxonand theFD-trait,withno impact in
the absence of the taxon. The biological explanation is that there exists
another taxon with a similar function to it that has replaced it33. When the
associationP value is below the cutoff threshold in both the B andQmodels,
it signifies that both the presence/absence and abundance of the taxon affect
the phenotype.

Venn diagram was used to show each significant MWAS result set’s
shared and unique marker microbial features. The Pearson’s and Spear-
man’s correlation analyses was used to explore the relationship between
marker genera. After merging the two correlation coefficient matrices,
hierarchal clustering was conducted to identify potential taxa modules by
using pheatmap R-package. Spearman’s correlation analyses were also
conducted to reveal the correlations between marker genera and VFAs.

Microbiome genome-wide association study (mbGWAS)
To investigate the impact of host genetics on the FD-related rumen
microbiota, we performed ambGWAS analysis using all significant marker
microbial features that were identified by the MWAS. The input data used
for the mbGWAS were consistent with the MWAS, i.e., B-features were
coded as 1 (relative abundance > 0) or 0 (relative abundance = 0) based on
presence/absence; Q-features were normalized using the CLR method for
raw relative abundance to achieve a normal distribution. All genera were
categorized into the above microbial features for performing mbGWAS.

The mbGWAS for B-features used the Generalized Linear Mixed
Model (GLMM) in GCTA (https://yanglab.westlake.edu.cn), which is a
GWASmethod specifically for binary traits that better addresses the inflated
test statistic due to unbalanced case control. Nevertheless, considering that
the extremely small sample sizes in the case-controls would lead to unstable
values in the calculations, which would result in a negatively-defined Var-
iance-Covariance matrix (https://gcta.freeforums.net/thread/42/error-1-

matrix-invertible), we deleted the B-features of the marker genera with a
detection rate of over 90%. Genera with low detection rates have been
excluded from the upstream analysis (see Methods: MWAS). The
mbGWAS for Q-features used the mixed linear model (MLM) in GCTA.
For eachmbGWAS, the individual’s birthplace and rearing season, aswell as
the first 5 eigenvectors fromPCAwere used as covariates. Finally, we set the
genome-wide significance threshold at P < 3.28E–09 (0.05/NSNPs,
N = 15,252,471) and suggestive significance threshold at P < 6.56E–08 (1/
NSNPs) based on Bonferroni correction.

Bi-directional one-sample mendelian randomization (MR)
We evaluated the potential causal relationship between specific rumen
microbiota and sheep FD using MR analysis in the TwoSampleMR
R-package (https://mrcieu.github.io/TwoSampleMR) using 38 marker
rumenmicrobial features identified byMWAS as exposures, selecting SNPs
with significant associations with them as instrumental variables (IV), and
two FD-traits as outcome variables. Further, we conducted backward MR
analysis to investigate for reverse causation (FD-traits as exposure and
rumen microbial features as outcome). In MR, three hypotheses were
required to be satisfied for the genetic variant to be used as an IV: (1) the
hypothesis of relevance: the IV is associatedwith the exposure factor; (2) the
hypothesis of independence: the IV is unassociated with confounders; and
(3) a hypothesis of exclusivity: the IV has no direct association with the
outcome and only affects the outcome through the exposure factor. All the
scripts of the MR analysis were performed with slight modifications based
on https://github.com/Zukunft-Zhang/MendelRookie_English.

Data sources. Exposure and outcome data for MR analyses were
obtained from present large homogenous populations. The GWAS
summary statistics sets of FD-trait were obtained from our unpublished
study. The phenotypic GWAS was performed in GCTA using the same
1150 animals as in the present study, the same genetic variants, fixed
effect and the same mixed linear model as in the mbGWAS for quanti-
tative features.

Correction of thewinner’s curse inGWAS. To avoid the winner’s curse
of theGWAS on the causal relationships estimated using one-sampleMR
in the present study, we corrected the effect sizes of the GWAS summary
data with a Bootstrap method from the winnerscurse R-package (https://
amandaforde.github.io/winnerscurse/index.html), which is specially
designed for one-sample estimation, to produce more accurate estimates
of true associations. This method has demonstrated competitive per-
formance in a wide variety of simulations and realistic tests conducted
with the authors34.

The Selection of Instrumental Variables (IV). To ensure the accuracy
and validity of the causal relationship between the rumenmicrobiota and
fat deposition, our study employed the following criteria for IV selection:
(1) For forward MR, we employed three thresholds, strict and lenient, to
select IVs associated with the exposure.We first selected SNPs associated
with rumen microbial features using the more suggestive threshold
P < 1E–06, aiming for these SNPs to be representative of microbial fea-
tures. Furthermore, we validated these results by comparing the con-
sistency of direction between the compromised threshold and other two
strict thresholds [Genome-wide significant (6.56E–08) and significantly
suggestive (3.28E–09)]. Our choice of 1E–06 as the primary cutoff was
supported by two main reasons. The current study represents the first
application of MR to infer causal relationships between gastrointestinal
microbiota and complex phenotypes in sheep. Human microbiome
studies have suggested that a P value threshold below 1E–06 is more
suitable for MR analysis35–37, providing robust support for our choice of
critical value. As illustrated in Supplementary Table sets, we experi-
mented with various thresholds for IVs selection. However, we observed
that mbGWAS yielded a limited number of ‘hits’ (SNPs associated with
microbial features at P < 6.56E–08 or 3.28E–09). For several rumen
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microbiota, no variants showed significant associationwith themicrobial
features. Thus, we concluded that adopting amore lenient threshold such
as 1E–06 is a pragmatic strategy for the selection of MR IVs for rumen
microbiota. For the backwardMR, for consistency, we also used the same
three thresholds to select SNPs associated with two FD-traits. (2) To
ensure the independence of each IV and eliminate the influence of linkage
disequilibrium, we set the LD coefficient (R2) to 0.001 and the genetic
distance to 10,000 kb. (3) To ensure the strength of the association
between IVs and the exposure factor, weak IVs were excluded by calcu-
lating the F-statistic [F = R2(n-k-1)/k(1-R2), R2 represents the variance of
exposure explained by the IVs, n is the sample size of the GWAS, and k is
the number of IMs] and removing SNPs with F-values < 10. (4) To avoid
violating the third assumption ofMRanalysis, the “exclusion restriction”,
SNPs directly related to the outcome were removed. Furthermore, the
MR-PRESSO method was used to detect SNPs acting as outliers, and
causal relationship estimates were conducted after removing these
outliers.

Mendelian Randomization and sensitivity analysis. We first
employed five distinct MR methodologies to investigate whether the
significant associations identified by MWAS were causal: inverse var-
iance weighting (IVW)38, weighted mode (WM)39, MR-Egger
regression40, weighted median estimator (WME)41, and simple mode
method (SM)39. The IVW, proposed by Burgess et al. in 201338, is a
weighted linear regression model that combines the Wald estimates of
each SNP to obtain an overall estimate. The IVWmethod assumes that all
SNPs are valid instrumental variables with strong causal inference cap-
abilities, but the results may be influenced by horizontal pleiotropy.
Studies have shown that when there is an association between IVs and
exposure and no significant genetic heterogeneity, the IVW test is more
effective than othermethods41,42. Hence, in caseswith two ormore IVs, we
prioritized the IVW results. In cases with only a single IV, we employed

the Wald estimate method for testing43. In MR analysis, a Bonferroni-
correctedP value of <0.05 [0.05/N,whereN corresponds to the number of
tests below the SNP selection threshold (N1E–06 = 38, N6.56E–08 = 21, and
N3.28E–09 = 8 in the forward MR; all N = 38 in the backward MR)] indi-
cates statistical significance of the results. Sensitivity analyses include
tests for heterogeneity and horizontal pleiotropy. Cochran’s Q test was
employed to analyse heterogeneity among IVs, with P < 0.05 indicating
heterogeneity. Additionally, to determine if significant results are driven
by a single SNP, a leave-one-out analysis was conducted, systematically
removing each SNP, calculating the effect of the remaining SNPs, and
observing if the results change significantly after each SNP removal. MR-
Egger regression method was used to test for horizontal pleiotropy, with
P < 0.05 indicating the presence of horizontal pleiotropy. In cases of
heterogeneity and horizontal pleiotropy, the multiplicative random-
effects IVW model (MRE-IVW) was utilized for analysis, allowing for
overdispersion in the weighted linear regression, a statistical model
commonly used in meta-analysis and statistics to address heterogeneity.

Results
Characteristics of fat deposition phenotypes in the large-scale
sheep cohort
By meticulous dissection, we measured 11 FD-traits of 1150 sheep. All FD-
traits had coefficients of variation (CV) above 20%, with BMI being the
exception at 12%. Moreover, the absolute values of skewness and kurtosis
coefficients for all traits were less than 1, indicating a normal distribution
(Table 1 and Supplementary Table 4). Additionally, this Hu sheep popu-
lation, as a Chinese dominant local breed, has not been strongly selected for
any traits. These findings showed that the genetic background and gut
microbiota of this animal populationwere in a relatively unaltered state, free
from human intervention, and thus provide a suitable model for investi-
gating the impact of host genetics and gut microbiota on complex traits.

To comprehensively investigate the relationship between the FD-
traits, Pearson’s and Spearman’s correlation analysis was performed (Fig.
2a). All FD-traits were positively correlated and the average correlation
coefficients observed over all pairs of analyses were 0.51. Total-FW and
Total-RFW demonstrated moderate to strong positive correlation
(coefficients: 0.28–0.91) with all other traits, which was statistically sig-
nificant, suggesting that they may be used as representative indexes to
evaluate FD levels in this study. This was further supported by PCA,
which revealed respectively clear separations and gradual transition
colors in the score plot based on the categorical (Low-FD: trait <0.5 SD
below the mean; Medium-FD: trait ±0.5 SD above and below the mean;
and High-FD: trait >0.5 SD above the mean) and continuous data (Fig.
2b–e and Supplementary Fig. 1).

To investigate whether FD-traits are influenced by common genetic
factors and rumen microbial communities, we conducted genetic and
microbial correlation estimations (Fig. 2f). We observed that a substantial
proportion (80%) of the genetic correlation estimates between FD-traits
exhibited strong positive correlations (coefficients >0.5), whileweakpositive
genetic correlations were observed in only 7% of cases (coefficients <0.2;
mean: 0.70, range: 0.06–0.97). Additionally, microbial correlation estimates
also indicated a strong positive microbial relationship between FD-traits
(mean: 0.96, range: 0.36–0.99). Moreover, both Total-FW and Total-RFW
showed high positive genetic correlations (mean:0.83, range: 0.65–0.99) and
microbial correlations (mean: 0.99, range: 0.98–0.99) with other FD traits.
Therefore, FD-traits were influenced by some shared genetic factors and
rumen microbial taxa in sheep.

Variance of sheep fat deposition explained by host genetics and
rumen microbiota composition
In order to quantify the relative contribution of host genetics, rumen
microbiota, host genome-by-microbiome interaction and holobiont effects
to the FD traits, we calculated h2, m2, G×M2 and ho2 of the 11 FD-traits. The
ho2 ranged from 17.62 to 68.14% and consisted mainly of contributions
fromhost genetics and rumenmicrobiome,while interactions accounted for

Table 1 | Descriptive statistics for sheep fat deposition
phenotypes

Traits min max mean SE.mean CV

BW (kg) 28.00 65.05 46.25 0.19 0.14

BL (cm) 61.00 86.00 73.09 0.12 0.06

BMI (kg/m^2) 55.47 117.24 86.55 0.31 0.12

Total-FW (kg) 0.73 6.07 3.22 0.03 0.29

Total-RFW (%) 0.03 0.11 0.07 0.00 0.22

Tail-FW (kg) 0.37 2.90 1.50 0.01 0.31

Tail-RFW (%) 0.01 0.06 0.03 0.00 0.26

Perirenal-
FW (kg)

0.07 1.55 0.61 0.01 0.46

Perirenal-
RFW (%)

0.00 0.03 0.01 0.00 0.41

Omentum-
FW (kg)

0.15 2.37 1.08 0.01 0.39

Omentum-
RFW (%)

0.00 0.04 0.02 0.00 0.33

RFT (cm) 1.10 3.80 2.32 0.02 0.21

BF (cm) 0.10 1.30 0.59 0.01 0.35

Sample = the number of non-missing values [We removed the incorrect trials and outliers (–3SD,
+3 SD over the mean of each traits) from raw records];
CV coefficient, variationBW bodyweight at 180 d,BL body length at 180 d,BMIbodymass index at
180d,RFT rib fat thicknessat 180d,BFbackfat thickness at 180d,Total-FW theweight of total fat at
180 d,Total-RFW the relativeweight of total fat (Total-FW/BW) at 180 d, Tail-FW theweight of tail fat
at 180 d, Tail-RFW the relative weight of tail fat (Tail-FW/BW) at 180 d, Perirenal-FW the weight of
perirenal fat at 180 d, Perirenal-RFW the relative weight of perirenal fat (Perirenal-FW/BW) at 180 d,
Omentum-FW the weight of omentum fat at 180 d,Omentum-RFW the relative weight of omentum
fat (Omentum-FW/BW) at 180 d.
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a very low proportion of the total. The mean h2 was 35.92%, ranging from
12.94% for RFT to 53.61% for Perirenal-FW (Fig. 3a and Supplementary
Table 5). Most of the FD-traits (9/11) with a h2 greater than 30% (including
32.59% forTotal-FWand38.33% forTotal-RFW). The FD-traits had low to
moderate m2 with an average of 18.35% (Fig. 3a and Supplementary Table
5). BMI had the highest estimated m2 (32.62%) among the FD-traits mea-
sured, followed by the m2 of BF (26.08%), Tail-FW (21.11%), Total-FW
(19.75%), Omentum-RFW(18.29%), Perirenal-RFW (16.87%),Omentum-
FW (16.61%), Total-FW (15.91%), Tail-RFW (15.73%), Perirenal-FW
(14.24%) and RFT (4.68%). However, in our observations, the mean G×M2

value was only 0.028%, ranging from 0 to 0.30%, implying that the inter-
action effect has a limited effect on traits. To further investigate the extent to
which host genetics interact with the rumen microbiota, we assessed the
correlation between the host genetic kinship matrix and the rumen
microbial heterogeneity/relationship matrices using the mantel test. This
process was performed 1000 times and the average correlations were 0.0034
with MRM, 0.056 with DCA, 0045 with CCA, 0.0089 with Euclidean and
-0.0094 with Bray Curtis (Fig. 3b). This provides further evidence of a
limited interaction between the sheep genome and the rumenmicrobiome.

Association of rumen microbiota with sheep fat deposition
To investigate the relationship between the rumen microbiome and fat
deposition, we initially examined the association of the first five axis of a
principal coordinates analysis (PCoA) of Bray-Curtis dissimilarities,
representing global summary of variation in the sheep rumen microbiome
(explaining 29.42%, 20.75%, 14.24%, 11.38% and 5.76% of the variation,
respectively), with two FD representative indicators (Total-FW and Total-
RFW). We observed that the first four PCo axes (P < 0.001) were all asso-
ciated with Total-FW, while the first PCo axis (P = 0.046) was correlated
with Total-RFW. Furthermore, we also observed associations between the
Firmicutes: Bacteroidota ratio and Total-FW (P = 0.027), Simpson index
and Total-RFW (P = 0.034).

We next tested for association between the individual bacterial genera
and two FD representative indicators. We identified 32 bacterial genera
associated with two representative indicators at Bonferroni-adjusted P
values less than 0.05, 32 generawere associatedwithTotal-FW, and 5 genera
were associated with Total-RFW (Fig. 4a–d and Supplementary Table 6).
Themajority ofmarker genera belonged toFirmicutes (62.50%), followedby
Bacteroidota (21.88%), Actinobacteriota (6.25%), Proteobacteria (3.13%)
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Fig. 2 | Characteristics of fat deposition phenotypes. aThe correlation between the
phenotype of sheep fat deposition. All sheep fat deposition traits were classified into
two types: overall level and local level, based on their sources. The Spearman and
Pearson correlation methods were used above and below the diagonal, respectively.
The size and color of the squares, as well as the area and color of the pie chart,
represent the magnitude of the correlation coefficient. “*” represents P value < 0.05,
“**” represents P value < 0.01, and “***” represents P value < 0.001. b–e The
principal component analysis (PCA) analysis was performed on all adjusted data of
sheep fat deposition phenotypes to identify representative indicators. The horizontal
axis represents the first principal component (PC), the vertical axis represents the
second PC, and the percentage represents the contribution of the PC to the sample
differences. Each point represents a sample. Figure (b) show the PCA results
visualization based on the Total-FW grouping (categorical data). Samples in the
same group are represented by the same color. H_Total-FW represents individuals
with Total-FWvalues greater than “mean+ 3sd” (n = 178);M_Total-FW represents

individuals with Total-FW values between “mean + 3 SD” and “mean –3 SD”
(n = 770); L_Total-FW represents individuals with Total-FW values less than “mean
–3 SD” (n = 190). Figure (c) shows the PCA visualization based on the Total-RFW
grouping, using the same grouping method as Total-FW (H_Total-RFW: n = 174,
M_Total-RFW: n = 775, L_Total-RFW: n = 187). The figure (d, e) shows the PCA
visualization based on the continuous values of Total-FWandTotal-RFW,where the
color changes represent the magnitude of Total-FW and Total-RFW values. fAbove
and below the diagonal lines are the “microbial correlation” and “genetic correla-
tion” of sheep fat deposition phenotypes, respectively. All correlations were posi-
tively correlated. The size and color variation of the circles represent the high and low
values. BMI body mass index, BF backfat thickness, GR Rib thickness, FWAbsolute
weight of fat (Measured using an electronic scale), RFW relative weight of fat (FW/
body weight).
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andChloroflexi (3.13%), aswell asVerrucomicrobiota (3.13%).We found 17
significant associations (36%) of 14 marker genera with FD-traits detected
by the binary model, and a total of 30 significant associations (64%) of 28
marker generawith two FD-traits detected by the quantitativemodel; a total
of 10 bacterial genera were jointly detected in both the binary and quanti-
tative models (implying that both presence/absence and abundance affect
phenotype).Whilemostmarker generawere associatedwithTotal-FW,five
marker taxa were shared between all two FD-traits (Fig. 4e). In detail, the
binary (B) and quantitative (Q) features of Bifidobacterium, the B-features
of Defluviitaleaceae UCG-011 and Suttonella, and the Q-feature of Pre-
votellaceaeUCG-003were associatedwith all two FD-traits, and theB andQ
features of Alloprevotella were associated with Total-RFW and Total-FW,
respectively.

The interrelationships among marker microbiota and their cor-
relation with VFAs
We further investigated the average relative abundance of marker genera,
their detection rates, and potential interactions between them. The cumu-
lative abundance of marker genera was as high as 20.27% and the average
detection rate was 75%. The highest taxa (Rikenellaceae RC9 gut group)
abundance totaled 6.32% and was present in all animals, while the lowest
taxa (Suttonella) abundance was 0.01% and was observed in 25.04% of
individuals (Fig. 4f and Supplementary Table 6). We observed that the
higher cumulative abundance was mainly contributed by the 17 marker
bacterial genera with a detection rate of >90% (occurring in at least 1035 or
more individuals), which amounted to 19.17%, especially the four bacteria
Rikenellaceae RC9 gut group, F082 (5.76%), Erysipelatoclostridiaceae UCG-
004 (1.45%), and Lachnospiraceae ND3007 group (1.14%), which appeared
in all animals. It is worth noting the potential false positives that can result
from extremely imbalanced quantitative proportions in binary analysis
models. Hence, caution about those B-features of marker taxa (Moryella,
Defluviitaleaceae UCG-011, Veillonellaceae UCG-001 and Anaerovibrio)
with detection rates greater than 90% is required, although they may be
interesting candidates for further research.

We conducted Pearson’s and Spearman’s correlation analyses and
identified 468 (45.70%) and 714 (69.73%) pairs of relationships between
marker bacterial genera, respectively (excluding self-pairings). The average

correlation coefficients were 0.12 and 0.19, respectively (Fig. 4g). In the
significant Pearson’s relationships, the highest correlation coefficient was
observed betweenF082 andRikenellaceaeRC9 gut group at 0.45, while in the
significant Spearman’s relationships, it was between Pseudobutyrivibrio and
Butyrivibrio at 0.68. We further divided the marker bacterial genus into six
modules by hierarchical clustering, and taxawithin themoduleswere highly
positively correlated.Modules1–3werepredominantlypositively correlated
with FD (83%), whereas modules 4–6 were predominantly negatively cor-
related (86%). Interestingly, we observed a higher detection rate (87.22% vs.
63.73%) and average abundance (17.6% vs. 2.64%) for modules 4–6 com-
pared tomodules 1–3; in particular,module 4was present in all animals and
had a cumulative abundance of 17.6%.

The VFAs, produced through the fermentation process by rumen
microbiome, serve as a significant source of energy acquisition for sheep.
Consequently, we have also investigated the relationship between the
identified marker genera and the VFAs (Fig. 4h and Supplementary Table
7). Among the 224 microbiota-VFA relationship pairs, a total of 117 sig-
nificant relationship pairs were observed (62 positive and 55 negative cor-
relations; P < 0.05), accounting for 52.23% of the total. Except for Flexilinea,
the remainingmarker genera were associated with at least one type of VFA.
The Ruminococcaceae UCG-001 and Erysipelatoclostridiaceae UCG-004
were associated with all VFA. The VFA with the highest number of sig-
nificant correlations with themarker genera was Isobutyric acid proportion
(26), followed by Isovaleric acid proportion (22), Acetic acid proportion
(18), and Propionic acid proportion (16); while the least number of taxa
were significantly associated with Total-VFA content, with only 11 rela-
tionship pairs. Interestingly, we observed that the direction of correlation of
modules 1–3 with VFA is reversed from the direction of correlation of
modules 4–6 with VFA. For example, the significant correlation between
Acetic acid proportion and marker taxa is positive in Modules 1–3 and
negative in Modules 4 to 6, and the significant correlation between Iso-
butyric acid proportion, Isovaleric acid proportion and marker taxa is
negative in Modules 1–3, and positive correlation in Modules 4 to 6. In
addition, FDphenotypes weremost associatedwithValeric acid proportion
and Isovaleric acid proportion in the present animal population, with the
presence of specific marker genera associated with these two VFAs in each
module at the 0.1% significant level.
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The effect of host genetics on fat deposition-associated
microbiota
To study the effect of host genetics on marker microbiota, we performed
mbGWAS on 38 microbial features associated with two FD representa-
tive indicators, using 15,252,471 SNPs from 1150 individuals (Supple-
mentary Table 8). These 38 microbial features were identified by the two-
part model MWAS after 5000 permutation tests, including 10 features
with less than 90% detection rate out of 14 B-features and 28 Q-features.
At the genome-wide significance level (P < 3.28E–09), we observed 77
associations of 76 genomic variants with 15 microbial features (including
only one B-feature: Lachnospiraceae FD2005). Interestingly, among the
above SNPs, we observed one SNP showing pleiotropy (a T-substitution
to C variant, named here as Chr15:43988256 since no Reference SNP ID
was assigned), associated with two microbial features. These two
microbial features were all from the marker genus Lachnospiraceae
FD2005, meaning that both B and Q-features of this taxon are associated
with Chr15:43988256. Moreover, Chr15:43988256 was also the lead SNP
inmbGWAS for these two bacterial features. At a more lenient suggestive
significance threshold (P < 6.56E–08), we investigated a total of 401
associations from 397 SNPs and 33 microbial features, of which 391
associations were from 26 Q-features and a further 10 associations were
from 7 B-features (Supplementary Table 9). As well, we also observed
pleiotropy for four SNPs including Chr15:43988256, particularly

Chr13:8302677 (within MACROD2 gene; C/T) and Chr16:19845722 (T/
A), which were associated with all two features (B and Q-features) of
genus Ruminococcaceae CAG-352 and Alloprevotella, respectively. Also,
Chr21:52930312 was associated with all of the Q-features of Butyrivibrio
and RF39.

Thecausal relationshipbetween rumenmicrobiotaandsheep fat
deposition
To investigate the potential causal relationship between rumen microbiota
and fat deposition in sheep, we attempted to further assess potential causal
relationship using bi-directional MR. In our study, a total of 38 microbial
features were included in the MR analysis (Supplementary Table 8). To
mitigate potential effects of the winner’s curse, all effect sizes were corrected
(Supplementary Table 9). Following rigorous IV screening, we retained
1031 (all 38 features), 249 (only 21 features), and 56 (only 8 features) non-
redundant SNPs associatedwithmicrobial features for forwardMRanalysis
using three threshold lines of 1E–06, 6.56E–08, and 3.28E–09, respectively.
Consistently, we also used the above 3 thresholds to identify 44 (NTotal-

FW = 20; NTotal-RFW = 26), 10 (NTotal-FW = 5; NTotal-RFW = 6), and 1 (only
from Total-RFW) non-redundant SNPs associated with the two FD-traits
for reverse causal inference, respectively. All SNPs had F-statistic values
(Fval) above 10, ranging from 10 to 1,723, indicating a low risk of weak
instrumental bias.
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Fig. 4 | Association of rumen microbiota with sheep fat deposition traits. a–d
Microbiome-wide association studies (MWAS). Identification of rumen microbial
features associated with fat deposition phenotypes using MWAS. The results were
visualized using Manhattan plots. Each circle represented a genus, and the X-axis
indicated that all the genera were sequenced at the phylum level, and the Y-axis
indicated the relevant statistical significance. Solid red lines and dashed red lines
indicate Bonferroni corrected P value = 0.01 and 0.05, respectively. e Venn diagram
depicting unique and shared marker rumen microbial features among four MWAS
outcome datasets (2 Traits × 2 models). The box plots on the left show details of the
distribution of marker microbial features among the four MWAS outcome datasets.

f The bar graphs illustrate the detection rate and average relative abundance of
marker microbiota. g Pearson (lower diagonal) and Spearman (upper diagonal)
correlations between the rumen microbial genera associated with fat deposition in
sheep. Blue and red indicated positive and negative correlations, respectively; The
gray background labels represent the modules divided by clustering. h The Sperman
correlation betweenmarker genera related to fat deposition and rumen VFA profile.
The size and color of the circle indicated the size of the correlation coefficient, while
red and blue indicated positive and negative correlation, respectively. The square
color block in the background indicated the P value of correlation test.

https://doi.org/10.1038/s41522-024-00606-5 Article

npj Biofilms and Microbiomes | (2024)10:129 9

www.nature.com/npjbiofilms


In the forward MR analysis, we identified eight potential causal rela-
tionships (Bonferroni-corrected P < 0.05) between five microbial features
and two FD-traits (Fig. 5). Notably, the Q-features of Butyrivibrio and p-
2534-18B5 gut group exhibited negative causal effects on all FD-traits (Fig.
6a, b, e, f). Additionally, the Q-features of Prevotellaceae UCG-003 and
Pseudobutyrivibrio also showed negative causal associations with Total-FW
(Fig. 6g, h). Specifically, we found that the Q-features of Olsenella were
positively causally associated with all FD-traits (Fig. 6c, d). An increase of
one standard deviation inOlsenella abundance led to approximately a 1.13-

fold increase in Total-FW (OR= 1.13, 95% CI: 1.08–1.18) and a 1.17-fold
increase in Total-RFW (OR= 1.17, 95% CI: 1.09–1.26). The estimated
effects of the causal associations between microbial features and FD-
phenotypes were consistent in direction and magnitude across different
methods, indicating the reliability of the results. In the backward MR ana-
lysis (with FD-phenotype as exposure and microbial features as outcomes),
we did not detect potential causal effects of FD-phenotype on the five
microbial features (Bonferroni-corrected P > 0.05) similar to those identi-
fied in the forwardMR analysis. Interestingly, we found some evidence for a
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Fig. 5 | Mendelian Randomization analysis of the effect of marker rumen
microbiota on fat deposition in sheep. Forest plot comparing results from inverse
variance weighting (IVW)38, weighted mode (WM)39, MR-Egger regression40,

weighted median estimator (WME)41, simple mode method39, and multiplicative
random-effects IVW model [IVW (muti−random)].
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causal association of sheep FD leading to changes in the rumen microbiota
in the backwardMR(Bonferroni-correctedP < 0.05;Fig. 5). Total-RFWwas
negatively causally associated to both B and Q features of Flexilinea, which
means that an increase in Total-RFW causes a decrease in abundance and
absence of Flexilinea (Fig. 6i, j). A positive causal association betweenTotal-
RFWandB-features of Suttonellawas demonstrated (Fig. 6k). Here, we also
found no evidence of a potential causal effect of these three microbial fea-
tures on the FD-phenotype. In the leave-one-out analysis, no single SNP
strongly drove the overall estimates (Supplementary Tables 34–43). Among
the identified causal relationships, we observed heterogeneity and hor-
izontal pleiotropy only in the causal association between Butyrivibrio and
two FD-traits (Supplementary Tables 11–12, 15–16, 19–20, 24–25, 28–29,
32). Therefore, we selected the results of the MRE-IVW model. Further-
more, we also compared the MR results which were obtained with IVs at
different association thresholds (including 6.56E–08, and 3.28E–09) and
found that the relationship between Butyrivibrio and Total-FW had a
consistent direction (Bonferroni-correctedP < 0.05). The fullMR result sets
for both instrumental variable selection and MR analysis were reported in
the Supplementary Tables 10–43.

Discussion
Emerging evidence suggests that rumen microbiota plays a crucial role in
sheep fat deposition. The metabolites generated by the rumen microbiome
serve as signals or substrates that modulate the host’s absorption, storage,
and energy acquisition, thereby participating in fat metabolism. However,
the causal relationships of rumen microbial taxa and FD remain elusive.
Here, we characterized 11 fat deposition traits and rigorously determined a
series of rumenmicrobiota associatedwith twoFD representative indicators
(Total-FW and Total-RFW) in sheep. We identified genomic variations
associated tomarkermicrobes and employedone-sample bi-directionalMR
to unveil 11 causal relationships between rumenmicrobial features and two
FD indicators, indicating the potential utility of microbial interventions in
fat deposition. While mechanistic studies with rumen fluid transplantation

and direct-fed microbials have been popular, our data-driven analysis
underscored the relevance of rumenmicrobes that have not yet beenwidely
cultured and characterized for reducing sheep FD, which may be particu-
larly relevant toEastAsiaundergoing a transition fromgrazing to large-scale
intensive sheep production (house feeding) system.

Fat deposition in sheep is not limited to a specific site, but rather exists
inmultiple sites suchas the visceral fat44. The amount anddistribution of FD
in different sites vary, making it difficult to evaluate the overall level of FD45.
Therefore, it is necessary to consider the FD in multiple sites comprehen-
sively. The BMIwas initially designed as an indicator to assess obesity status
and health risks in humans. Due to its low cost, simplicity, and non-invasive
nature, it has gradually been introduced into the comprehensive evaluation
of whole-body FD in sheep46,47. However, due to significant physiological
and biological differences between sheep and humans, the limitations of
BMI in assessing sheep FDhave become apparent. Sheep exhibit substantial
differences in body size, skeletal structure, muscle mass, and FD compared
to humans questioning the stability and accuracy of BMI as an evaluation
tool. Similar shortcomings in assessing obesity using BMI have been
observed in human studies as it fails to accurately distinguish between lean
muscle and fat48. Therefore, direct measurements of total fat mass and its
proportion in total body mass are considered a more authentic assessment
of whole-body fat composition and amore accurate standard formeasuring
FD48. In recent years, researchers have begun using new technologies and
methods to evaluate animal’s body-fat levels such as dual-energy X-ray
absorptiometry technology, bioelectrical impedance analysis, 3D body
scanning, magnetic resonance imaging, and computed tomography scan-
ning. These novel technologies canmore precisely measure the levels of FD
in various animal tissues and provide a more comprehensive assessment of
whole-body FD levels.

m2 estimation is a quantitative genetic concept introduced in micro-
biome analysis, which is a tool used to quantify the impact of gutmicrobiota
abundance on host phenotypes49. In humans, Fu et al.33 used cross-
validation and additive model regression to evaluate the contribution of gut
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microbiota. In addition, Difford et al. constructed an MRM based on the
structural features of metagenomics and 16S data and used variance com-
ponent analysis to estimate the proportion of phenotype variation inferred
from gut microbiota, drawing on the estimation method of host SNP
heritability50,51. Currently, this method has been widely applied in farm
animal research, including complex traits in pigs, chickens, and cattle30,31,52.
Our m2 estimates suggest that the rumen microbial communities have an
impact on various FD-phenotypes, but the extent of their contributions
shows distinct tissue specificity.

Although the association between rumen microbial communities
and FD-traits in sheep has been extensively studied in recent years, MR
analysis, as a valuable method for assessing causal relationships, is being
attempted for the first time in sheep. In human studies, obesity is defined
as the excessive accumulation of body fat. A substantial number of MR
studies have already identified causal relationships between human
obesity and gut microbiota, particularly using measures such as fat mass
and body fat percentage (reflecting total fat accumulation in adipose
tissue) as phenotypic assessment indicators for obesity22,23. This insight
from human studies has inspired our current research, suggesting that
similar tasks in the field of animal science could be a significant direction
for MR studies. Conducting MR analysis on gut microbiota and pro-
ductivity phenotypes may stimulate further mechanistic and intervention
studies.

The microbial genera Butyrivibrio, Pseudobutyrivibrio, Pre-
votellaceae UCG-003, and p-2534-18B5 gut group have been shown to
have a protective effect against excessive FD, while Olsenella may be a
potential risk factor for FD. Butyrivibrio and Pseudobutyrivibrio,
which evolved from a common ancestor53, have been previously
reported to be associated with intramuscular fat phenotype54. As
dominant genera in the rumen ecosystem, they form an important
group of butyrate-producing bacteria, playing a crucial role in
acquiring energy from food in the rumen55. The carbohydrate-active
enzymes of these taxa mainly belong to the glycoside hydrolase
families 2, 3, 5, 13, and 43, with many intra-family isoforms, con-
tributing to metabolic plasticity and resilience in response to dietary
changes55. Prevotellaceae UCG-003 is important in regulating host
metabolic functions, actively participating in hemicellulose degrada-
tion and playing an important role in protein and starch
degradation56,57. Similarly originating from the phylum Bacteroidota,
the p-2534-18B5 gut group may also be involved in protein degra-
dation. Its relationship with FD is a new finding, and its function in
the gastrointestinal tract of ruminants is not yet clear. Olsenella is
also a dominant rumen bacterial genus, producing lactic acid and
succinic acid, which are related to fatty acids and feed efficiency in
sheep58,59. Studies in chickens60, pigs61, mice62, and humans23 support
the positive correlation of this taxa with host FD. Particularly in
human gut microbiota MR studies investigating the relationship
between Olsenella and body fat percentage23, a positive forward causal
relationship with body fat percentage was observed, consistent with
the MR results of the current study. The interaction between Olse-
nella and host fat metabolism may have similar biological mechan-
isms across different species, indicating evolutionary conservation.
Although a causal relationship between Bifidobacterium and two FD-
traits was not observed at the current corrected MR P value. (PQ
feature→Total-FW: 0.02, PB feature→Total-FW: 0.18, PQ feature→Total-RFW:
0.007, PB feature→Total-RFW: 0.22), the association of all features of this
taxon with all traits is encouraging. This outcome may highlight the
efficacy of the present study and the generalizability of our findings.
Bifidobacterium is ubiquitously present in the rumen of ruminant
animals, and probiotic strains of Bifidobacterium have been devel-
oped for use in humans to control FD63. These applications have
begun to extend to farm animals, including sheep64,65.

The reverse MR revealing the impact of Flexilinea is an intri-
guing discovery. An increase in individual adiposity leads to a
decrease in the abundance of this taxon, as well as leading to

disappearance. A randomized controlled trial (RCT) in sheep con-
firmed a reduction in Flexilinea abundance in response to higher
dietary metabolic loads66. Another reverse causality involves Sutto-
nella. A RCT study indicates that severe feed restriction leads to a
decrease in sheep body weight (with the accompanying loss of body
fat). This decrease in body weight is also accompanied by a reduction
in ruminal Suttonella abundance67. Furthermore, the feed restriction
increases the relative abundance of gene families involved in lipid
metabolism67. These RCT provide indirect support for our observed
potential causal relationships, demonstrating that there may be
underlying biological facts behind inferred causal relationships.

This study has several limitations. (1) The restriction in the number of
SNPsmay have led to IV bias. A stringent threshold was applied during the
SNPselectionprocess, resulting in the exclusion of certain taxa from theMR
analysis. To encompass a broader range of SNPs, wemoderately relaxed the
significance threshold for the association between instrumental variables
and exposure factors. Nevertheless, the F-statistics values for the SNPs
included in this studywere all greater than10,which effectivelymitigates the
potentialweak instrument bias inMRanalysis. (2) Following thefindings by
Sanna and colleagues in human studies68, current sample size is not suffi-
cient to fully capture the genetic effects of the majority of the rumen
microbiota in sheep. (3) Certain findings from our present research on Hu
sheep, the predominant breed in intensive sheep farming in China,may not
be generalizable to other breeds. Additionally, the housing of all animals in
individual pens hinders the transfer of gut microbiota between individuals,
complicating a comprehensive understanding of sheep microbial diversity.
(4) The study’s exclusive use of male samples introduces a gender bias, and
the universality of these results in the female population requires further
investigation. Future research will employ a variety of methods, including
multi-omics analysis, confounding factor studies, and even wet-lab
experiments, to more comprehensively elucidate the interplay between
the rumen microbiota and FD.

In conclusion, through estimation of microbiability in a large-scale
homogeneous population, as well as MWAS, mbGWAS, andMR analyses,
we observed that specific rumen microbial taxa are potential causal agents
for sheep FD. Further investigation is needed in the future to delineate the
biologicalmechanismsunderlying thesepresumedcausal relationships.Our
data-driven methodologies highlight the immense potential of mbGWAS
andMR in attaining a comprehensive understanding of the microbiome in
agricultural animals. These approaches are adept at elucidating the intrinsic
mechanisms and at informing interventions from the perspective of gas-
trointestinal microbiota, thereby enhancing the health status and growth
performance of animals.

Data availability
All results data analysed during this study are included in this published
article and its supplementary information files. Individual-level raw data
including host genetics and 16S rRNA sequencing data have been uploaded
to the Genome Sequence Archive (GSA) database (https://ngdc.cncb.ac.cn/
gsa/). Whole genome resequencing data numbers are CRA019576 (https://
ngdc.cncb.ac.cn/gsa/s/4Ae3cx2L) and CRA019589 (https://ngdc.cncb.ac.
cn/gsa/s/ueg474Z4), and 16S rRNA sequencing data accession number is
CRA019574 (https://ngdc.cncb.ac.cn/gsa/s/5H8V3Xu2). Any other ques-
tions can be directed to the corresponding author
(wangweimin@lzu.edu.cn).

Code availability
The underlying code for this study is available in GitHub and can be
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Additional visualization code can be obtained from the corresponding
author (wangweimin@lzu.edu.cn) upon reasonable request.
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