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Cardiometabolic disease risk in gorillas is
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Cardiometabolic disease is the leading cause of death in zoo apes; yet its etiology remains unknown.
Here, we investigated compositional and functional microbial markers in fecal samples from 57 gorillas
across U.S. zoos, 20 of which are diagnosed with cardiovascular disease, in contrast with 17
individuals from European zoos and 19 wild gorillas from Central Africa. Results show that zoo-housed
gorillas in the U.S. exhibit the most diverse gut microbiomes and markers of increased protein and
carbohydrate fermentation, at the expense of microbial metabolic traits associated with plant cell-wall
degradation. Machine learning models identified unique microbial traits in U.S. gorillas with
cardiometabolic distress; including reduced metabolism of sulfur-containing amino acids and
hexoses, increased abundance of potential enteric pathogens, and low fecal butyrate and propionate
production. These findings show that cardiometabolic disease in gorillas is potentially associated with
altered gut microbial function, influenced by zoo-specific diets and environments.

Cardiovascular disease is a major cause of death in western lowland gorillas
(Gorilla gorilla gorilla) in zoo-settings'™*. In humans, congestive heart fail-
ure, also a leading cause of mortality, is mainly a vascular disease (athero-
sclerosis) related to diet and sedentarism’. In gorillas, fibrosing
cardiomyopathy leads to cardiac disease primarily in adult males, with
stiffening of heart muscles leaving the heart unable to effectively contract*”.
However, disease etiology in gorillas remains unknown. Recent microbiome
associations have pointed to protein-rich diets and microbiome-associated
metabolites that lead to atherothrombosis and cardiovascular disease risk in
humans®"’. For example, the conversion of dietary phosphatidylcholine and
L-carnitine into trimethylamine (TMA) by the human gut microbiome
leads to the formation of circulating TMA-oxide (TMAO), which induces
atherosclerosis development'®".

However, studies revealing associations between gut microbial meta-
bolism and cardiometabolic health in nonhuman primates remain limited.

The only available study performed in gorillas with heart disease (1 =4),
points to some taxonomic markers that distinguish affected from unaffected
lowland gorillas™. Still, the metabolic and functional significance of altera-
tions at the taxonomic level remains unclear. In the absence of functional
data specific to the gut microbiomes of gorillas with cardiac disease and
given recent evidence in humans showing altered microbial function in
those with heart pathologies, we sought to investigate whether microbial and
metabolic markers can differentiate affected gorillas and predict cardiac
disease risk.

To this end, our study employed a multi-OMIC approach, including
16S rRNA, and shotgun metagenomics sequencing data, in tandem with
Nuclear Magnetic Resonance (NMR)-based metabolomics (Fig. 1a) in fecal
samples from zoo-housed adult western lowland gorillas in Europe and the
U.S. diagnosed with Cardiometabolic disease (CMD) status was assessed
through routine examinations only in U.S. zoos, as these examinations are
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not routinely conducted in Europe. Baseline comparisons were made with
wild individuals from the Dzanga Sangha Protected Areas, Central African
Republic, across two seasons of variable dietary intake.

To assess baseline ecological or environmental factors potentially
associated with CMD status, we first examined microbial and metabolomic
differences between all gorillas in European and U.S zoos, and gorillas in

free-range or wild conditions in Central Africa. These analyses confirmed a
substantial effect of environmental setting in microbial and metabolomic
profiles, highlighting increased bacterial diversity and abundance of diet-
derived metabolites associated with zoo-housing conditions. Subsequently,
we investigated specific microbial and metabolomic markers associated with
CMD status in U.S. zoo-housed gorillas, which was the primary scope of this
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Fig. 1 | Microbiome and metabolome analyses in feces of zoo-housed and wild
western low-land gorillas. a Experimental design, and timeline. A total of 350 fecal
samples from 93 western adult lowland gorillas, including zoo-housed gorillas from
the U.S. with classification as either cardiometabolic disease (CMD) affected or
unaffected, gorillas from European zoos, and wild gorillas in wet and dry seasons.
Analysis consisted in gut microbial profiling using 16S rRNA gene Miseq sequencing
(V4 region), shotgun metagenomics sequencing, pathway prediction, and fecal
metabolite mapping via "H NMR. b world map of sample collection sites. Wild
individuals were from the habituated groups in the Dzanga Sangha Protected Areas,
Central African Republic, whereas zoo-housed individuals were from eleven U.S.
based zoos and five European zoos. ¢ Boxplot showing 16S taxonomic richness
(rarified ASVs) between the different groups. d Boxplot showing 16S taxonomic

diversity using the Simpson’s diversity index. e Bray-Curtis-based principal coor-
dinate analysis showing different bacterial community composition in fecal samples
of all gorillas analyzed at the ASV level. Box plots on top show differences in
ordination scores. f Principal component analysis biplot showing metabolomic
composition in fecal samples of all gorillas analyzed. In (f), ellipses the 95% con-
fidence intervals for each group in multivariate space. The boxplots in (¢, d, f) show
the median as center line, box sizes indicate the lower (Q1) and upper (Q3) quartiles,
whiskers indicate extreme values within 1.5x the interquartile range and dots beyond
the whiskers indicate outliers. Different letters above the box plots indicate sig-
nificant differences (g < 0.05) between groups, as determined by Kruskal-Wallis
one-way analysis of variance followed by Dunn’s test. Exact individual P values are
available in Supplementary Table 1.

work. These analyses revealed that gorillas with CMD can be accurately
distinguished by the increased abundance of specific gut bacterial taxa but
also by decreased abundance of specific microbial metabolites and pathways
associated with the processing of dietary protein and carbohydrates, which
are found in higher abundance unaffected counterparts. By identifying
specific microbial biomarkers, metabolites and pathways associated with
CMD in zoo-housed apes, this study aims at enhancing our understanding
of this common primate disease. Furthermore, we propose that this study
provides critical information that contributes to maintaining healthy wes-
tern lowland gorilla populations in zoos, strengthening conservation stra-
tegies for this critically endangered species.

Results

First, we generated information covering 580 bacterial amplicon sequence
variants (16S rRNA) and 21 fecal metabolites from 350 gorilla fecal samples
collected from wild and zoo-housed gorillas (See Fig. 1a, b and Supple-
mentary Fig. 1 for details). This dataset was generated from 57 zoo-housed
adult western lowland gorillas in the U.S. across 11 zoos that underwent
repeated sampling across four weeks, with some exceptions (214 fecal
samples). Twenty of these U.S. gorillas (73 samples) were diagnosed with
cardiometabolic disease (CMD), widely spread across most U.S. zoos. CMD
status was determined by veterinarians at each zoo, following clear, estab-
lished protocols used in the United States, according to Boyd et al. (2020)".
We classified the remaining U.S. zoo-housed gorillas as unaffected. Seven-
teen individuals (67 samples) were included for gorillas in individual zoos
across Europe, also sampled across four weeks for most individuals; how-
ever, one individual from an European zoo (four samples) had to be
excluded for fecal metabolomic analyses due to insufficient material. Eur-
opean zoos do not assess for CMD status; thus, cardiometabolic health in
these individuals was unknown, and hence, we could not make any CMD-
based analyses with samples from Europe.

All zoo-housed gorillas were under nutritional recommendations of
the AZA Nutrition Advisory Group' and EAZA Nutrition Group".
Although all the zoo-housed subjects were under the same nutritional
regime, the analysis of qualitative data provided by the zookeepers revealed
that European and U.S. dietary patterns differ significantly across various
food macro classes. For example, in Europe, unique dietary items include
greens like cabbage (chinese, savoy), Lettuce (chinese or unspecified), and
herbs like parsley and chives. Vegetables such as sweet corn, kohlrabi, and
jerusalem artichoke are also more common in Europe, along with fruits like
lemons and pomegranates, root vegetables like beets and parsnips, and
specific foods like puffed rice and browser pellets. Conversely, the US diet
includes items such as kale, iceberg lettuce, green beans, rutabaga, jicama,
and a wider variety of berries and tropical fruits like mangoes and blue-
berries. Nuts like sunflower seeds and almonds, along with commercial
foods like Mazuri® biscuits and Centrum Silver™ supplements, are also
commonly fed to gorillas in the U.S. No differences in food items provided
by zookeepers in U.S. zoos were reported between CMD-affected and
unaffected gorillas, most of which are housed in the same zoos. Dietary data
provided by zoos is only qualitative, actual individual consumption data, in
terms of quantities, was not collected as this determination is not part of the

standard operating procedures of the zoos included in this study (See
Supplementary Table 1 for zoo dietary info).

This study also included 19 wild individuals from four social groups
at the Dzanga Sangha Protected Areas, Central African Republic. While
most zoo-housed gorillas in the U.S. and Europe, were sampled across four
time points, generally on a weekly basis, wild gorilla samples were col-
lected twice—once during the wet season (33 samples), when they con-
sume a high-energy diet rich in ripe fruits, and once during the dry season
(36 samples), when highly fibrous herbs, leaves and other low energy foods
are emphasized™ (see Fig. 1a, b and Supplementary Fig. 1 for sampling
details).

Gut microbiome composition reflects differences between wild,
U.S., and EU zoos

Analyses of alpha and beta diversity based on 16S rRNA gene MiSeq
-V4 sequencing, revealed significant microbiome differences between zoo-
housed gorillas in Europe and the U.S., and wild gorillas. These differences
were evident in terms of microbiome richness (number of amplicon-
sequence variants-ASVs  (rarefied reads), Kruskal-Wallis test
P=2.10x%10"") and diversity (Simpson’s diversity Index, Kruskal-Wallis
test, P=7.14 x 107" for all comparisons) (Fig. 1c-d). Specifically, we show
lower bacterial diversity in all wild samples regardless of season, compared
with zoo-housed gorillas across Europe and the U.S., regardless of health
status.

Greater diversity in zoo-housed great apes (gorillas and chimpanzees),
in contrast with wild individuals, has been observed in other datasets'’,
which generates questions regarding microbial selection pressures in both
z0o and wild settings. Statistical comparisons including all wild and zoo-
housed gorillas revealed no significant differences in alpha diversity between
CMD affected and unaffected U.S. zoo-housed gorillas in terms of richness
or evenness (Dunn’s test: P> 0.05, Fig. 1c). Remarkably, however, all zoo-
housed gorillas in the U.S,, regardless of health status, showed higher
diversity when compared with gorillas from European zoos (Simpson’s
diversity index, Dunn’s test: P = 0.002 and P < 0.0001 for comparisons with
CMD affected and unaffected gorillas respectively, Fig. 1d). Indeed, alpha
diversity patterns in gorillas from European zoos were similar to those seen
in free-range individuals. P values for global test and pairwise comparisons
can be seen in Supplementary Table 2.

Significant differences in bacterial community composition between
gorillas in zoo or wild settings were evident in multivariate ordination
(Principal coordinates), and were captured via permutational multivariate
analysis of variance (PERMANOVA, R*=0.244, P=0.001 controlling for
wild social group and zoo membership) and confirmed by testing differ-
ences in ordination scores along Principal Coordinate (PCo) axes one and
two (Dunn’s test, P < 0.05, box plots appended to Fig. le). However, the
largest effect was attributed to individual gorilla identity, given our repeated
sampling (R*=0.46, P=0.001). Minor but significant effects were also
observed for age (R* =0.004; P=0.001), sex (R*=0.032, P=0.001), inter-
actions between group and sex and interactions between group and indi-
vidual. Detailed statistics of these effects can be seen in Supplementary
Table 3.
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These analyses mainly revealed two highly separated clusters com-
posed by wild and U.S. zoo individuals (regardless of health status or sea-
son), with gorillas in European zoos in a midpoint of that gradient, sharing
more similarity, to some extent, with the wild individuals. The existence of
the widely discriminating wild and zoo-housed clusters indicates that
potential compositional differences in the context of CMD were con-
founded by the strong effect of environmental setting in shaping beta
diversity.

The strong effect of individual gorilla on microbiome composition,
given weekly fecal collection is noteworthy. This individualized nature of the
gut microbiome has been widely reported in humans'; but in gorillas as
well, also denoting a strong influence of individualized microbiome patterns
within specific zoo setting". To assess the effect of ecological setting, inde-
pendent from individual gorilla, we ran a parallel PERMANOVA control-
ling for individual repeated sampling (via the strata function), showing that
the wild and zoo-setting effect still persisted (R*=0.24, P=0.001). This
parallel model also indicated a moderate effect of wild social group and zoo
membership (R*=0.219, P=0.001). Age, sex and their interactions with
group of interest and wild social group or zoo membership also showed
minor but significant effects (see Supplementary Table 4 for specific stats).

To produce a stronger model, given significant differences in sample
sizes (degrees of freedom), we determined unbiased effect sizes. This
unbiased estimation of effect sizes still shows that, regardless of the com-
position of an individual’s gorilla gut microbiome, zoo or wild setting still
drove most of the microbiome variation (w*=0.059, P=0.001). This
unbiased PERMANOVA model also indicated a minor, but significant
effect of age (w” = 0.03, P = 0.001), but not of sex (P = 1). Variance and effect
sizes for group of interest, sex, age, wild social group or zoo membership and
their interactions, for both PERMANOVA and its unbiased model, when
controlling for repeated individual sampling, can be seen in Supplementary
Table 4.

The fecal metabolome also follows environmental setting
differences

The 21 NMR-fecal metabolites identified belonged to broad categories
showing active metabolism of amino acids, short-chain fatty acids (SCFAs),
phenolic compounds and organic acids. Fecal metabolome profiles largely
followed the patterns observed with the 16S rRNA data, in terms of envir-
onmental setting differences (U.S zoo-housed, Europe zoo-housed, wild
African gorillas). For example, the fecal metabolome reflected dissimilarities
between wild and zoo-housed gorillas, accounting for 56.7% of the cumu-
lative variance explained by component one (38.9%) and two (17.8%) in a
principal component analysis (PCA) (Fig. 1f). Just as with microbial com-
position, samples from European zoos lay in the midpoint of the two
extremes composed by U.S. and wild gorillas. PCA loadings showed that
zoo-housed gorillas in the U.S. exhibit higher amounts of all amino acids,
SCFAs and the organic acid phenylacetate (Fig. 1f, Supplementary Fig. 2,
Supplementary Table 5). In contrast, 3-(3-hydroxyphenyl) propionic acid,
methanol, formate and ethanal were predominant in feces from wild gorillas
(Fig. 1f, Supplementary Fig. 2, Supplementary Table 5).

Remarkably, the abundance of some of these metabolites in European
z0o-housed gorillas reflected, to some extent, the patterns observed in wild
individuals. In essence, the magnitude of change detected was lower than
that seen when comparing U.S. zoo-housed and wild gorillas. For example,
fecal acetate, a SCFA that would denote high fermentative activity in the
colon, is highest in gorillas from U.S. zoos and significantly lower in both
wild and European zoo-based individuals (Supplementary Fig. 2, Supple-
mentary Table 5). The same patterns were observed with other metabolites
such as the amino acids alanine, lysine, aspartate, methionine, tyrosine,
phenylalanine, as well as the branched chain fatty acids valerate and iso-
valerate, and the compound p-cresol, observations that denote active colonic
fermentation of dietary protein in zoo-housed individuals, particularly in
U.S. settings””' (Supplementary Fig. 2, Supplementary Table 5). These
observations corroborate a nutrient-rich and active colonic fermentation
environment in zoo settings, but specifically in U.S. individuals. Still,

potential distinctions between gorillas with CMD, and unaffected coun-
terparts are obscured by the significant effect driven by free range or zoo
environments.

Specific taxa, pathways and metabolites distinguished zoo-
housed gorillas with CMD

Because of the strong effect of environmental setting on gut microbiome
composition, that is, the two extreme clusters driven by zoo-housing or
wild conditions (Fig. 1e), we explored whether potential differences driven
by CMD status in U.S. gorillas could be masked by such environment-
driven ordination. Therefore, we selected all samples from affected and
unaffected U.S. gorillas and determined differences in alpha and beta
diversity based on 16S rRNA data. These analyses indicated that CMD
affected gorillas tended to have lower microbiome richness (number of
rarefied ASVs, Wilcoxon rank sum test, P=0.06), and lower diversity
according to the Simpson index (P=0.08, Supplementary Fig. 3a-b).
Moreover, although clustering by CMD status was not completely clear
according to PCoA (Supplementary Fig. 3c), PERMANOVA indicated
significant but minor compositional differences between affected and
unaffected individuals (R* = 0.009, P = 0.006).

Therefore, we aimed at uncovering gut microbial biomarkers distin-
guishing CMD with increased resolution via shotgun metagenomics
sequencing; to that end, we selected a subset of U.S. samples reflecting high
compositional differences according to CMD status, and based on 16S
rRNA- Bray-Curtis, PCoA ordination scores (Supplementary Fig. 4). This
selection resulted in 75 samples from 20 U.S.-based adult western lowland
gorillas, 33 of which were from 9 CMD affected individuals and 42 samples
from 11 unaffected individuals (Fig. 1a and Supplementary Fig. 1). 16S
rRNA analyses in the subset of samples selected revealed that the tendency
for lower alpha diversity in CMD affected gorillas is maintained (Rarefied
number of ASVs, p=0.08), while clustering or discrimination between
CMD affected and unaffected samples was increased (R*=0.06, P<0.001,
Supplementary Fig. 5).

High-depth shotgun sequencing (8-10 million reads per sample) in
these subset of samples covered 8831 identified metagenomic taxa and 369
predicted microbial pathways. Taxon-based, shotgun comparative analyses
of selected CMD versus unaffected gorillas, revealed that affected individuals
showed significantly lower taxonomic diversity (Simpson’s diversity index,
Wilcoxon rank sum test: P = 4.377 x 107?) despite no differences detected in
taxonomic richness (species rarified, Wilcoxon rank sum test: P=0.1)
(Fig. 2a, b).

Bray-Curtis PCoA showed significant taxon-based metagenomic
differences based on CMD status, which was confirmed via PERMA-
NOVA (R’=0.042, P<0.001 controlling for zoo membership). Compo-
sitional microbiome differences between CMD affected and unaffected
individuals were also confirmed by comparing ordination scores along
component one of the PCoA (Wilcoxon rank sum test, PCo 1 P=0.02,
PCo 2 P> 0.05, box plot appended to Fig. 2¢). This model did not find a
significant effect of sex or age and their interactions, but showed that
individual gorilla ID still contributes to the largest variation (R*=0.54,
P <0.001). An unbiased PERMANOVA model to determine effect sizes
(w?) of each variable shows that although the individual effect size of
health status increases (w* = 0.19, P = 0.001), individual gorilla ID remains
the strongest determinant of microbiome composition (w’=0.45,
P =0.002). This unbiased model also shows a minor, but significant effect
size of age (w’=0.01, P=0.01). All statistical metrics for the PERMA-
NOVA models and their unbiased estimators can be seen in Supple-
mentary Table 6.

A combined biomarker detection strategy based on indicator species
analyses (IndVal)** and Multivariable Association Discovery in Population-
scale Meta-omics Studies (MaAsLin2)” (Indval >0.4, fold change (FC)
score> 3.0, q < 0.01) identified Chromatiaceae, Corynebacterium mustelae,
and Rothia kristinae as the best distinguishing taxonomic features in CMD
affected individuals. We showed similar trends with Eubacterium mal-
tosivorans, Campylobacter coli, and unknown Verrucomicrobia. On the
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Fig. 2 | Taxon based metagenomic analyses as markers of cardiometabolic health.
a Boxplot showing shotgun metagenomic species richness rarified between CMD

affected and unaffected group. b Boxplot showing shotgun metagenomic taxonomic
diversity using the Simpson’s diversity index. ¢ Bray-Curtis-based principal coor-

dinate analysis showing different bacterial community composition in fecal samples
of CMD affected and unaffected group. Box plots on top show differences in ordi-
nation scores. d Bar chart of the 20 highest log2 fold change (FC) scored taxa selected
based on significant indicator species (IndVal) and MaAslin2, with false discovery
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rate (FDR) threshold=0.05 comparing unaffected and CMD affected individuals.

e Stacked bars showing the relative abundance of these taxa, with key color read from
left to right. The box plots in (a, b) show the median as center line, box sizes indicate
the lower (Q1) and upper (Q3) quartiles, whiskers indicate extreme values within
1.5x the interquartile range and dots beyond the whiskers indicate outliers. Different
letters above the box plots indicate significant differences (g < 0.05) between groups,
as determined by Kruskal-Wallis one-way analysis of variance followed by
Dunn’s test.

other hand, unclassified Podoviridae, Acidaminococcus fermentans DSM
20731, and Phocaeicola coprophilus were the best discriminators of unaf-
fected gorillas. Figure 2d, e shows differential fold changes and relative
abundance of these taxa.

To determine how CMD-related taxa varied in European and wild
gorillas during wet and dry season, we performed shotgun sequencing in
randomly selected samples from these groups, resulting in 21 samples from

7 gorillas in European zoos, and 11 samples from 6 wild individuals collected
during wet and dry seasons (Fig. 1a, Supplementary Fig. 1). Boxplots in
Supplementary Fig. 6 and related P values in Supplementary Table 7 show
distribution of CMD associated metagenomic taxa across all interest groups,
also pointing that the abundance of taxa discriminating CMD affected vs.
unaffected gorillas, for most cases, was higher in U.S. compared with Eur-
opean or wild samples. These taxonomic distinctions may support
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Fig. 3 | Function-based based metagenomic analyses as markers of cardiometa-
bolic health. a Boxplot showing richness (rarified) of predicted metagenomic
pathways between CMD affected and unaffected groups. b Boxplot showing pre-
dicted pathway diversity using the Simpson’s diversity index. ¢ Bray-Curtis-based
principal coordinate analysis based on pathway presence and abundance in fecal
samples of CMD affected and unaffected groups. Box plots on top show differences
in ordination scores. Different letters above the box plots indicate significant dif-
ferences (g < 0.05) between groups, as determined by Kruskal-Wallis one-way

analysis of variance followed by Dunn’s test. d Bar chart of the log2 fold change (FC)
of discriminant pathways selected based on significant indicator value (IndVal), and
MaAsLin2, with false discovery rate (FDR) threshold = 0.05, comparing unaffected
and CMD affected individuals. e ROC curve showing the predictive power of the
selected discriminant pathways for classification of CMD and unaffected indivi-
duals. L-Met biosynthesis: L—methionine biosynthesis by sulthydrylation, PPG
maturation: peptidoglycan maturation meso—diaminopimelate, CMD cardiome-
tabolic disease.

differential dietary exposures characterizing these two groups (Supple-
mentary Table 1).

We used the 29 metagenomic taxa identified as potential CMD bio-
markers in U.S. individuals, to build a 10 k-fold cross-validated, partial least
squares-discriminant analysis (PLS-DA) model predictive of health status.
We repeated a validation method, based on randomly selecting 70% of the
samples for training, and using 30% of the remaining samples for validation
testing 10 times, showing clear capabilities in predicting health status.
Specifically, the machine learning model based on metagenomic taxa pre-
dicted health status with an average accuracy of 91.02%, balanced error rate
of 14.58%, specificity of 91.60%, sensitivity of 90.31%, precision 73.89%, and
F1 score 80.35% (AUC = 0.96, Supplementary Fig. 7). Additional validation
using leave-one-out cross-validation (LOOCV) is reported in Supplemen-
tary Table 8.

We used HUMANN 3.0 to assess the functional potential of the meta-
genomic sequence reads. Both pathway richness (Number of pathways, rar-
ified, Wilcoxon rank sum test: P =0.004) and diversity (Simpson’s diversity

index, Wilcoxon rank sum test: P = 0.048) were significantly lower in affected
individuals (Fig. 3a, b). Bray-Curtis PCoA ordination of pathways also showed
significant stratification of samples based on CMD status (Fig. 3c), which was
confirmed via PERMANOVA (R*=0.054, P=1.00 x 107*). Age (R’ =0.06,
P=0.001) and sex (R* = 0.02, P=0.03) also had minor but significant effects,
but individual gorilla ID still explains the greatest variation in microbial
functional pathways between CMD affected and unaffected gorillas (R’ = 0.4,
P=0.001). Functional microbiome differences between CMD-affected and
unaffected individuals were confirmed by comparing ordination scores along
components one and two of the PCoA in Fig. 3¢ (Wilcoxon rank sum test,
PCol P =0.008, PCo2 P =0.008, boxplots appended to Fig. 3c).

The unbiased PERMANOVA analyses, corroborate a significant effect
of health status on microbial functions (w* = 0.040, P = 0.001), as well an
effect of age (w’=0.074, P=0.001) and individual gorilla ID (w*=0.038,
P=0.001), but not of sex. All statistical metrics for the PERMANOVA
models and their unbiased estimators for the pathways data can be seen in
Supplementary Table 9.
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Fig. 4 | Comprehensive metabolomic profiling and cardiometabolic health.

a Principal component analysis of fecal metabolites in unaffected and CMD affected
individuals. b Volcano plot significantly showing discriminant metabolites between
unaffected and CMD affected individuals. ¢ ROC curve from the PLS-DA model

implemented using the selected metabolites, and predicting CMD status. CMD
cardiometabolic disease. Exact individual P values are available in Supplementary
Table 9.

To detected discriminant microbial pathways discriminating CMD
affected and unaffected gorillas, we also used a combined biomarker
detection strategy (Indval>0.4, MaAsLin fold change (FC) score>1.0,
q<0.05) as with the metagenomic taxa. These analyses showed significant
depletion of assimilatory sulfate reduction I (SO, reduction I), superpath-
way of hexuronide and hexuronate degradation, superpathway of sulfate
assimilation and cysteine biosynthesis, superpathway of L—methionine
biosynthesis by sulfhydrylation (L-met biosynthesis) and peptidoglycan
maturation meso—diaminopimelate (PPG maturation) (Fig. 3d) in CMD
affected gorillas. There were no significantly enriched pathways associated
with CMD (Fig. 3d). Health status prediction models using the selected
predicted pathways scored an average accuracy of 75.13% and balanced
error rate of 22.44%, specificity of 92.06%, sensitivity of 52.50%, precision
82.5% and F1 score of 67.05% (AUC = 0.91, Fig. 3e). Supplementary Table 8
reports further validation using LOOCV.

PCA on the whole fecal metabolome showed no clear distinctions
based on health status in U.S. zoo-housed gorillas (Fig. 4a); however, pair-
wise comparisons based on individual metabolites showed that five out of
twenty-one identified metabolites were significantly different between CMD
affected and unaffected individuals. These markers mainly revealed lower
abundance of methionine, lysine, propionate and butyrate in gorillas
affected with CMD, who in turn, showed higher abundance of ethyl acetate
(q <0.05, Fig. 4b, Supplementary Table 10). We repeated a PLS-DA model
created from a 10 k-fold cross validation method 10 times for prediction
accuracy of health status in U.S. zoo-housed gorillas based on these dis-
criminant metabolites. The prediction method was done by randomly
selecting 70% of the samples for training, using the 30% of the remaining
samples for validation and repeated 10 times. This metabolite-based model
predicted disease status with average accuracy of 79.96%, balanced error rate
of 45.22%, specificity of 83.36%, sensitivity of 41.32%, precision of 15.16%
and F1 score of 21.05% (AUC=0.69, Fig. 4c). Supplementary Table 8
reports on further validation using LOOCV.

Integrated metaOMIC analyses predicted cardiometabolic dis-
ease with decreased error rate

Based on the detection of compositional and functional biomarkers
potentially distinguishing CMD in U.S. zoo-housed gorillas, we applied an
integrative, multiOMIC predictive model using k-fold cross validation, with
10 iterations. This model, which considered the three datasets combined,
showed average cross-validation accuracy of 90.98%, balanced error rate of
14.35%, specificity of 91.85%, sensitivity of 88.03%, precision of 74.72% and
F1 score of 80.0%. Indeed, the AUC for the predictive power of each dataset,
in association with the remaining two, increased overall prediction accuracy
compared with when datasets were used alone. For example, the AUC for

metagenomic taxa, metagenomic pathways and metabolites, when con-
sidering the remaining two datasets were 0.95 (Fig. 5a), 0.84 (Fig. 5b) and
0.83, (Fig. 5¢), respectively.

We used a multi-block partial least-squares analysis (multi-block PLS-
DA) to indicate significant associations between the pathways, taxa and
metabolites involved in our classification models. For instance, the pro-
duction of propionate and butyrate corresponded with the abundance of
genes involved sulfate assimilation and cysteine biosynthesis, assimilatory
sulfate reduction I, L-methionine biosynthesis (L-met biosynthesis) and
degradation of hexoses. Abundances of lysine and methionine corre-
sponded with the processing pathways for peptidoglycan (PPG maturation)
and the abundance of Acidaminococcus fermentans DSM 20731, all of which
characterized unaffected gorillas. All of these markers, more prevalent in
unaffected individuals, confirmed a depletion in the abundance of genes and
metabolites involved in the metabolism of sulfur-containing amino acids
and short chain fatty acids in gorillas diagnosed with CMD (Fig. 5d). The
multi-block discriminant analysis corroborated significant associations
between the metagenomic taxa, metagenomic pathways and metabolomic
data, along with a significant predictive power of the multiOMIC associa-
tions in discriminating samples based on CMD status (Fig. 5e, all correla-
tions 0.45-0.62, P < 0.01).

Discussion

We examined the composition and function of the microbiome of zoo-
housed and wild western lowland gorilla cohorts to study associations
between gut microbiome composition and function and cardiometabolic
disease (CMD). Outside of the expected microbiome differences between
zoo-housed and wild cohorts, which have been widely reported”*, these
microbiome and metabolome data revealed significant differences between
CMD affected and unaffected gorillas. The purpose of including wild
samples, despite the known differences between zoo-housed and wild
gorillas, was to establish a baseline measurement of gut microbial diversity
and function that would allow us to better understand ecological correlates
of CMD in gorillas.

Zoo-housing induces a rich gut microbiome and metabolome in
gorillas

One of the most remarkable characteristics of zoo-housed gorillas, regard-
less of health status, was the high gut microbial diversity and a gut metabolic
environment more associated with increased fermentation of simple car-
bohydrates and in particular, dietary protein, mainly in U.S. individuals.
This observation may reflect, to some extent, the dietary qualitative data
provided by U.S. zoos (Supplementary Table 1). This included a great
variety of ripe fruits, cereal, zoo-biscuits, low-fiber greens and vegetables,
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(bottom diagonal plot). AUC area under the curve, CMD cardiometabolic disease.
All associations P < 0.05.

protein-dense foods such as peanuts, walnuts, sunflower seeds, protein
shakes, lentils and yogurt and miscellaneous foods such as eggs, bread,
honey, popcorn, and sugary rice bars among many others in a very eclectic
diet. Based on metabolome distinctions with wild individuals, and previous
reports of higher microbiome diversity in zoo-housed compared with free-
range gorillas'”’, we can speculate that U.S. zoo settings may provide an
environmental and nutritional niche that amplifies compositional and
functional microbial diversity. Zoo diets may also result in a metabolically-
rich gut where short chain and branched chain fatty acids predominate as
products of active amino acid and sugar fermentation. It is likely that the
metabolite richness observed in zoo settings is associated with the meta-
bolism of less fibrous and more easily fermentable foods.

For example, although these data cannot show that U.S. zoo-housed
gorillas actually consume less fiber, the qualitative dietary differences pre-
sented in Supplementary Table 1, do indicate differential exposure to fibrous
foods between U.S. European and wild gorillas. Furthermore, the complete
absence of metabolites such as 3-(3-hydroxyphenyl) propionic acid in U.S.
gorillas, compared with wild individuals, may denote lack of highly lignified
fibers in their diets. This metabolite is one of the main end products of the
degradation of hydroxycinnamic acids (e.g., ferulic and caffeic acid),
abundant in the hemicellulose and cellulose cell walls of fibrous plant
materials™. The degradation of high cellulose substrates is also associated
with production of formate, ethanal and methanol*”*, metabolites that were
also depleted in zoo-housed gorillas, particularly in U.S. settings. Indeed,

fecal methanol can be derived from methoxylated carbohydrates, such as
pectin or lignin”~*". The higher presence of formate, ethanal and methanol
in gorillas from European zoos, along with the lower abundance of acetate,
propionate, and butyrate they showed, in levels that resemble those seen in
wild individuals, may indicate more emphasis on highly lignified or pectin-
rich diets in European settings. Still, the gut microbiome of affected gorillas
showed unique taxonomic and functional profiles in association with
impaired fermentation capacity.

CMD is associated with abundance of potentially inflammatory
bacteria and lower SCFA production

Here, we report gut biomarkers that may help in identifying the etiology of
CMD gorillas, possibly showing parallels with heart disease in humans. For
instance, it is remarkable that, compared with unaffected individuals, the
fecal microbiome of CMD affected individuals showed lower taxonomic
and functional diversity, along with decreased fecal levels of butyrate and
propionate. This observation may denote altered or reduced capacity for the
microbial metabolism of dietary carbohydrates and proteins, contrary to
what we observed in unaffected U.S. zoo-housed gorillas. Reduced microbial
diversity and different microbiome profiles have previously been reported in
humans with heart failure™. Additionally, and in line with these results, low
microbiome diversity in heart disease in humans can coincide with lower
capacity to produce short chain fatty acids, and particularly butyrate™™".
Previous reports have also suggested that reduced fecal butyrate in patients
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with heart failure is associated with low fiber intake®, in line with the
absence of metabolites associated with the processing of highly lignified
plants as aforementioned for U.S. zoo-housed gorillas. Moreover, depletion
of the microbial superpathway of hexuronide and hexuronate degradation
in gorillas with CMD may indicate that these gorillas’ microbiomes are not
as efficient in fermenting sugars as their unaffected counterparts. Depletion
of this pathway in the gut microbiome has been recently associated with low
SCFA production in diseases associated with gut and systemic
inflammation®”".

In humans, propionate, which was also depleted in CMD subjects
compared with unaffected individuals, has been shown to play a protective
role from cardiac hypertrophy, fibrosis and hypertension™. The roles of
propionate and butyrate as inducers of insulin sensitivity (through agonism
with the hormones peptide YY and GLP-1) are widely known™*. This is an
interesting observation given that adiposity, along with high leptin and low
adiponectin have been associated with CMD in gorillas'. Indeed, previous
studies have demonstrated that both obesity and insulin resistance occur in
zoo-housed gorillas*, and that butyrate and propionate can activate adi-
ponectin to alleviate insulin resistance™*’. Among the taxonomic markers
distinguishing unaffected zoo-housed gorillas and in concordance with our
multi-OMIC association analysis, Phocaeicola coprophilus and Acid-
aminococcus fermentans are reported to efficiently produce propionate and
butyrate by metabolizing sugars, but specially amino acids particularly in the
former****. These observations shed light on a potential role of impaired gut
butyrate and propionate production in gorillas with CMD, showing possible
parallels with the disease as observed in humans with myocardial fibrosis*.

In this regard, the increased abundance of the typical enteric pathogen,
Campylobacter coli, in gorillas with CMD is noteworthy. Capacity to induce
intestinal damage has been observed in animal models of Campylobacter
infection”; in turn, intestinal barrier dysfunction has been linked to cardi-
ovascular disease in humans'®*. In this scenario, the lipopolysaccharide
(LPS) endotoxin encoded by enteric pathogens such as Campylobacter
would induce bacterial translocation from gut to systemic circulation with
subsequent release of proinflammatory cytokines, which has been observed
in human chronic heart failure®'. Remarkably, LPS has been proven to
enhance collagen production by fibroblasts™”, the main hallmark of the
kind of CMD seen in gorillas". Infections with enteric pathogens such as
Campylobacter are also reported to lead to cardiovascular complications via
hemolytic uremic syndrome™*. Importantly, the role that butyrate has on
inhibiting the growth of potential enteric pathogens that cause inflamma-
tion has been highlighted before™. In light of the role that SCFAs, and
butyrate in particular, have on protecting intestinal barrier integrity”’, it can
be hypothesized that altered intestinal integrity triggered by potential gut
pathogens, in tandem with reduced capacity to produce butyrate and pro-
pionate, may be another potential mechanistic parallel characterizing CMD
in both humans and gorillas™.

Hypotheses of a potentially dysregulated or pro-inflammatory intest-
inal environment in gorillas with CMD, besides increased presence of
Campylobacter coli, can be pursued along with analyzing other taxonomic
markers. For instance, although we did not find the genus Treponema to be
enriched in gorillas with CMD as reported previously”, there were several
rare taxa characterizing the CMD group and that have been associated with
adverse health outcomes. Such is the case of Chromaticeae, a representative
of the Gammaproteobacteria previously linked to intestinal inflammation,
hypercholesterolemia, and metabolic syndrome™*. Other taxa character-
izing the CMD group, and also not typically reported to be part of the core
gut microbiome in wild gorillas, have been linked to sepsis (Corynebacter-
ium mustelae)® and  obesity-related asthma (Dehalobacterium
formicoaceticum)®. Opitutae, another rare taxon more abundant in gorillas
with CMD, has been seen to increase in the gut of black howler monkeys
living in forest fragments, who also exhibit low butyrate production capacity
and high abundance of bacterial genes potentially associated with intestinal
inflammation (hydrogen sulfide production)”. The high abundance of
Verrucomicrobia observed in CMD gorillas is noteworthy, given reports of
increases in the proportion of members of this phylum (e.g., A. muciniphila)

in conditions where the intestinal mucus layer is eroded, leading to systemic
inflammation®*. However, contrary to what has been reported in
humans®, higher abundance of systemic inflammatory markers such as
TNF-a does not predict CMD in gorillas®.

The abundance of other rare taxa characterizing gorillas with CMD is
hard to explain (e.g., Acholeplasma, Planctomycetes, Chloroflexi, Caproci-
producens, Jeotgalibaca, Mahella, Rickettsiales, Rothia and Tenuifolium),
beyond the associations previously stated. However, it is interesting that
several of these taxa are also abundant in the gut of wild gorillas during the
wet season (see Fig. 2e and Supplementary Fig. 6), where in theory, emphasis
is made on foraging for ripe fruits with high sugar content”. This obser-
vation generates questions regarding the intersections between consump-
tion of energy dense diets, the proliferation of potentially pathogenic
bacteria and a compromised intestinal barrier integrity as potentially con-
vergent triggers of CMD in zoo settings.

Gorillas with CMD show different gut metabolism of amino acids
In humans, one of the main mechanisms by which gut microbes affect CMD
risk involves intake of high protein foods rich in phosphatidylcholine and L-
carnitine, and subsequent gut bacterial conversion to trimethylamine
(TMA). TMA is further transformed by the host into TMA-oxide (TMAO),
which  induces cholesterol —accumulation and  atherosclerosis
development'®'"'. Although CMD in gorillas has not been related to
atherosclerosis', TMA-O has been involved in the myocardial fibrosis that
typically characterizes apes via inflammation””". Interestingly, TMA pro-
duction capacity from L-carnitine has been identified in typical enteric
pathogens of the Proteobacteria phylum such as Campylobacter’>”, one of
the main taxonomic markers of gorillas with CMD as shown here. However,
these data provide no evidence that microbial TMA may be potentially
associated with CMD in gorillas. In theory, the observed predominance of
Eubacterium maltosivorans in gorillas with CMD could prevent the for-
mation of TMA by demethylating carnitine as it has been proposed
recently”.

Instead, one of the main gut metabolic signatures of gorillas with CMD
was the lower abundance of the sulfur-containing amino acid methionine
and cysteine, and the microbial pathways associated with their generation,
namely L—methionine biosynthesis by sulfhydrylation (L-met biosynth-
esis), sulfate assimilation and cysteine biosynthesis, and assimilatory sulfate
reduction. Collectively, these markers would indicate that fecal bacterial
communities in gorillas with CMD have lower capacity to synthesize
methionine and cysteine”. The role of sulfur-containing amino acids in
heart disease, as produced by fecal bacteria, is hard to assess, given that the
colon is not an active site for amino acid absorption.

However, impaired methionine and cysteine metabolism in human
subjects with cardiovascular disease and cardiac fibrosis has been reported
previously’®”, including a predicted inability to synthesize methionine or
cysteine from homocysteine by the fecal microbiome™. In this process,
systemic homocysteine accumulation would result in a risk factor for heart
disease. Although these data cannot prove that an inability to synthesize
methionine at gut level would result in greater homocysteine levels in cir-
culation, work with germ-free animal models has shown that intestinal
levels of methionine correlate, inversely, with the levels of homocysteine in
serum. This means that the gut microbiome can actively contribute to the
systemic metabolism and turnover of methionine and homocysteine”.

Remarkably, all fecal amino acids were depleted in gorillas with CMD.
The reasons for this depletion are not immediately clear, but their low
abundance in the distal gut may signal less availability, as substrates, for
SCFA generation. This is because, although carbohydrates are the main
substrates for SCFA synthesis in the gut, undigested amino acids and protein
can also be a significant substrate for the generation of SCFAs". For
example, lysin, which was detected in higher abundances in unaffected
gorillas can serve as a substrate for butyrate production®'. In this regard and
as mentioned previously, it is interesting that our meta-OMIC, multi-block
discriminant analysis shows high correspondence between all amino acids
and Acidaminococcus fermentans, a bacterium significantly depleted in
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CMD subjects and that uses amino acids as a sole energy source or fer-
mentation substrate to mainly produce butyrate and propionate®, both
depleted in gorillas with CMD. Conversely, amino acid depletion in CMD
gorillas could also signify active conversion to other metabolites with
potential proinflammatory roles in the gut and systemically, such as
hydrogen sulfide, ammonia, or p-cresol. However, we detected no CMD-
specific profiles regarding these byproducts. Given that gut amino acid
homeostasis may be a potential promising biomarker with diagnostic and
prognostic values for heart failure”, the significance of fecal markers that
denote impaired metabolism of amino acids in gorillas with CMD needs to
be assessed from a systemic perspective.

Strength and limitations of the study

Although our results support that fecal biomarkers can be used in tandem to
predict CMD health status in zoo-housed gorillas, our data has specific
limiting factors that future studies should account for. One example is the
limited number of zoo-housed individuals we could sample, including those
with diagnosed cardiometabolic disease. Increasing the number of indivi-
duals would increase statistical power and improve depth for machine
learning training analyses. Another limitation related to the sample size is
the application of the machine learning prediction models. Although we
performed both k-fold and leave one out cross validation (LOO) models for
verifying accuracy, LOO accuracy needs to be interpreted carefully because
each individual has four samples from different time points. However,
because population sizes within each cohort were relatively small for these
kinds of analyses, the LOO model is more appropriate in this case since it
uses more training samples in each iteration, compared, for instance, with
k-fold cross validation®. Given a more robust population size, an alternative
model can focus on double blind testing to confirm that our model is not
biased by repeated sampling input.

Likewise, testing the model on a bigger population of undiagnosed,
non-U.S. individuals would help identify if this prediction model is
applicable to other zoo environments. Unfortunately, this procedure
cannot be done in European zoos since they do not routinely record
cardiometabolic data due to concerns of health risk from anesthesia.
Therefore, although attempting double-blind testing using European zoo-
housed gorillas was beyond the scope of this study, we acknowledge that
the fact that some of the European zoo-housed gorillas may also be
afflicted by CMD is a limitation of the study. Another important limita-
tion focuses on the dietary information collected by collaborating zoos.
The exact amounts of foods individual gorillas consumed is not recorded
routinely by zoo staff due to logistic limitations. This knowledge would
allow a fourth quantifiable variable that could be used to assess gorilla
CMD from a dietary standpoint and improve the predictive power of
machine learning algorithms.

Despite all these limitations, ours is the most powered study conducted
so far on the microbiome of gorillas diagnosed with cardiometabolic issues,
including wild and zoo-housed gorillas. Additionally, while the use of
machine learning for understanding gut microbiome and metabolomic
markers of heart disease has been substantially explored in humans***,
these analyses have not been applied to assess microbiome-based disease
risk in non-human primates. Thus, these data constitute a breakthrough
probe into the capabilities of machine learning prediction for assessing
cardiometabolic disease in apes. Moreover, these data allow for a better
understanding of the core causes of CMD in western lowland gorillas, who
have significantly different biochemical designs in terms of cardiometabolic
system, compared with humans. However, relative to one existing report on
the taxonomic composition of the gut microbiome of gorillas with CMD
(n=4)", we take a step further by mapping functional associations between
the microbiome and its metabolites in a greater number of individuals to
better understand the role of the gut microbiome in impacting cardiome-
tabolic disease in apes. Finally, although past studies compared the fecal
microbiomes zoo-housed and wild great apes>”, this is the first study
focusing on multiOMIC markers of disease in non-human primates at
national and continental scales.

Potential implications to understand heart disease in human and
zoo-housed nonhuman primate populations

Here, we report fecal microbiome and metabolome markers that distinguish
gorillas with CMD from unaffected individuals in U.S. zoos. These markers
show a substantial deviation from baseline values characterized in wild
individuals and gorillas from other zoo populations with unknown CMD
status, particularly in Europe. Given the highly fermentative gut environ-
ment that characterized zoo-housed gorillas, especially in U.S. settings, and
the lack of metabolic markers associated with the processing of highly
lignified or fibrous plant materials in this population, parallels can be drawn
on the ecological and evolutionary factors believed to trigger diseases in
humans. In this analogy, deviations from baseline diets concordant with a
primordial, evolutionary niche are hypothesized to have happened too fast,
leaving our genomes poorly adapted to these rapid dietary changes and
leading to the so-called disease of civilization, which includes CMD"*".

The gut microbiome and metabolic markers associated with lifestyle
dietary changes in humans have been widely characterized, as being likely
triggered by diets high in saturated fats, sodium, protein, simple, readily
fermented carbohydrates and low in micronutrients (polyphenols and
vitamins)*". These data point to similar distinguishing features in zoo-
housed gorillas in contrast with wild individuals, which would put diet at the
center stage of CMD etiology as the leading mortality cause in zoo settings'.
However, since not all zoo-housed gorillas develop the disease, the data
provided herein needs to be further tested to dissect other factors, including
behavioral, social, environmental, infectious or genetic and their relative
contribution to CMD progression in each individual.

Moving forward, and highlighting some of the main findings reported
here, further work is needed on exploring a possible link between impaired
production of butyrate and propionate, systemic metabolic homeostasis
(leptin and adiponectin levels), markers of intestinal integrity (permeability
or intestinal damage) and both pro and anti-inflammatory cytokines in
gorillas with CMD. These markers acquire significant importance due to
parallels with heart diseases in humans. Some of these factors, particularly
cholesterol balance or TNF-a have been explored previously in gorillas,
however, they show opposite patterns to what humans with heart disease
exhibit"®.

Studying the environmental factors (diet, setting) that trigger the
abundance of gut bacteria with potential inflammatory roles in gorillas with
CMD could be a relevant area of exploration, given preliminary associations
between enteric pathogens, intestinal permeability, energy-dense diets and
heart disease reported in humans across different studies. Zoos already
make significant efforts to guarantee the welfare of zoo-housed apes,
including testing diets that resemble those seen in the wild and that have the
potential to modulate the gut microbiome in zoo settings"'. Likewise, dietary
correlates of heart disease, including the role of gut microbes, have been
substantially studied in humans, including the study of intestinal barrier
dysfunction as a therapeutic target for heart disease. However, studies that
directly assess and incorporate markers of intestinal integrity, enteric
pathogens and microbiome function in tandem with the characterization of
systemic health in zoo-housed great apes are lacking. Hence, these data open
the door to consider more inclusive studies that highlight taxonomic and
functional features in the gut microbiome and markers of intestinal integrity
that can be targeted to better understand and treat the disease in apes. The
human and nonhuman primate parallels that we discuss corroborate critical
associations between lifestyle, diet and disease, placing gorillas as an inter-
esting evolutionary and ecological model to characterize cardiometabolic
diseases from a gut microbiome perspective.

Methods

Study subjects

The study took place between June 2019 and October 2020. We included 93
adult western lowland gorillas from which fecal samples were collected
multiple times resulting in a total of 350. We collected four samples from
each individual weekly, unless specified in Supplementary Fig. 1; two
samples per individual from wild seasonal samples, unless specified in
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Supplementary Fig. 1. The wild individuals were from three habituated
groups inhabiting Dzanga Ndoki National Park, Central African Republic.
We collected fecal samples from 19 gorillas during the wet season (yielding a
total of 33 samples) and the dry season (resulting in 36 samples), consisting
of 8 males and 11 females. Zoo-housed individuals were housed in 11 U.S.
zoos and 5 European zoos. All zoo-housed animals were born in zoos, except
one individual in Dviir Krélové Zoo born in the wild. We collected fecal
samples from 57 gorillas across various zoos in the United States, yielding a
total of 214 fecal samples. In total, U.S. gorillas that were diagnosed with
CMD by their respective zoos were composed of 20 individuals (73 fecal
samples collected), consisting of 17 males and 3 females with an age range of
13 and 58 years. The number of unaffected U.S. gorillas was 37 (141 fecal
samples collected) consisting of 21 males and 16 females with an age range
from 15 to 56 years. We sampled 17 gorillas from European zoos, consisting
of 6 males and 11 females with an age range from 8 to 47 years. The
diagnoses were done by veterinarians at each U.S. zoo, following clear,
established protocols used in the United States according to Boyd et al.
(2020)". Figure 1a, b and Supplementary Figure 1 provide comprehensive
details about the characteristics of the study subjects, including the timing of
sampling and the samples analyzed for both compositional and functional
microbial marker analyses. The animals were managed under similar hus-
bandry protocols including a diet of commercially available fresh vegetables
and fruits, and available biscuits formulated to meet the nutritional needs of
apes. Alfalfa and browse were offered as dietary enrichment. The diets met
the nutritional recommendations of the AZA Nutrition Advisory Group'*
and EAZA Nutrition Group'’. Among the subjects recruited through U.S.
based zoos, the health status concerning cardiometabolic disease was
assessed using Cardiac ultrasonography via transthoracic echocardiogram
and was performed using standard protocols'. These procedures are not
regularly performed in European zoos due to the need for anesthesia.

Sample collection

We collected the samples non-invasively approximately 30 min after defe-
cation, and we immediately preserved about 2.5 g of fecal samples from the
core of the bolus in 2.5 ml of ethanol (96% v/v, Fisher Scientific) and stored
them at ambient temperature until shipment. Although this method pre-
sents some limitations for fecal microbiome integrity and metabolome
degradation, it is feasible for field studies and recommended to be efficacious
in preserving the fecal microbiome and metabolome compared to the gold
standard for microbiome preservation (immediate freezing at —20 °C or
below”?). This method has been successfully applied in multiple studies in
the field, including our own’”’. We kept the samples at ~80 °C prior to
analysis. We collected four samples from each individual weekly, unless
specified in Supplementary Fig. 1; two samples per individual from wild
seasonal samples, unless specified in Supplementary Fig. 1. We recorded sex,
zoo or group, and age if applicable for each individual. The effect of age was
analyzed by separating individuals into three groups. One group designated
as adults who are between 12 to 40 years old, another group designated as
geriatric who are individuals 40 or older and another group designated as
young who are individuals 12 and younger.

Total DNA extractions

We used the DNeasy PowerSoil Pro Kit (Qiagen) according to the manu-
facturer’s instructions to isolate the total DNA at the University of Min-
nesota, Twin Cities. We assessed the quality and quantity of the extracted
DNA by NanoDrop™ 2000c spectrophotometer (ThermoFisher Scientific).

Amplicon taxa profiling

We applied pair-end sequence on all samples by the Illumina-MiSeq plat-
form using primers 515 F GTGCCAGCMGCCGCGGTAA forward and
806 R GGACTACHVHHHTWTCTAAT to amplify the V4 region of the
16S rRNA gene. Total number of forward and reverse reads was 32,047,808,
with 91,565 reads per sample on average. We removed sequencing primers,
low-quality reads, and short read sequences using the cutadapt unix tool,
removing forward and reverse reads with an average quality lower than 30%,

and removing untrimmed reads. We paired forward and reverse reads using
bbmap using default parameters. After quality filtering the total number of
high quality forward and reverse reads was 21,996,528, with 62,847 reads per
sample on average. We then imported matching reads and demultiplexed
within QIIME2™ (v.2020.8, ref. 96). We processed the ensuing demulti-
plexed fastq files by the DADA?2 giime2 plugin pipeline (v.2020.8.0, ref. 97)
for sequence grouping. We taxonomically classified sequences to species
level using the greengenes2 database (v.2022.10, ref. 98) within QIIME 2™
The total number of ASVs was 7,086,133 and ASV's per sample was 20,246
on average.

Metagenomic shotgun profiling

Shotgun metagenomics profiling was performed on fecal samples from 32
gorillas, resulting in a total of 102 samples. The subset of samples selected for
U.S. gorillas was based on those from CMD affected and unaffected indi-
viduals showing maximum dissimilarity in 16S rRNA, Bray-Curtis dis-
tances along axis one and two of a PCoA (Supplementary Fig. 1). Samples
from European Zoo-housed gorillas and from wild gorillas in wet dry sea-
sons subjected to metagenomics analyses were randomly selected. We
performed library prep using Illumina Nextera XT (Illumina) and sample
sequencing using the Illumina NovaSeq platform (Illumina) totaling on
average 5.3 million reads per sample. Using the Kneaddata unix tool
(v.0.10.0, ref. 99). We removed adapters and low quality reads using default
parameters. We set trimmomatic parameters within kneaddata to SLI-
DINGWINDOW:4:20 MINLEN:90. We performed taxonomic assignment
by using the computational tool Kraken2 (v.2.0.8, ref. 100) using the stan-
dard NCBI RefSeq complete database embedded within kraken,which
includes bacteria, viral, plasmid, and Univec_Core taxonomic information.
The average number of taxonomic reads was about 4.7 million reads per
sample. Using at taxonomic level read counts, we then removed read counts
that were unidentifiable to Domain level. Including unidentified reads
accounting for on average 75.46% of reads per sample. At level Root reads,
accounting for on average 2.37% of reads per sample. At level Cellular
organisms reads, accounting for on average 3.60% of reads per sample. We
also calculated the predicted pathway abundance using HUMAnN 3.0 with
default parameters using the Chocophlan nucleotide database and Uniref
protein database (ref. 101). Counts were normalized to read per millions
(RPMs) from course per kilobytes (CPK).

Fecal metabolome profiling

We used untargeted 'H NMR metabolomics for metabolite profiling. We
thawed and vortexed the samples (28 x g, 10 s, room temp.); then, we placed
150-200 mL aliquots in 1.5 mL microcentrifuge tubes and diluted at a 1:5
ratio (w/v) with ultrapure water followed by vortexing (28 x g, 10's, room
temp.) and centrifugation (24,5000 x g, 10 min, room temp.). We trans-
ferred each 576 pL of the resulting supernatant to another 1.5 mL micro-
centrifuge tube, and 64 uL of phosphate-buffered saline (PBS, 1.5M
K,HPO, / 15M NaH,PO,;, 5mM 3-(trimethylsilyl)-2,2,3,3-tetra-
deuteropropionic-d, acid (TSP) in D,0, 0.2% NaNj3, pH 7.4) solution was
added and then centrifuged (24,5000 xg, 10 min). We transferred the
resulting supernatant (500-550 puL) to a 5mm NMR tube (Norrell) and
introduced it into the NMR spectrometer for analysis. We recorded 'H
NMR spectra on a 500.23 MHz Bruker Avance III spectrometer at a tem-
perature of 298 K, equipped with a BBFO SmartProbe™ with Z-axis gra-
dients and autosampler (Bruker Biospin GmbH). We used a standard
Bruker “noesyprld” (90°-t;-90°-d,ix-90°-FID) pulse sequence to suppress
signals from water molecules, where t; is a 4 us delay time and the mixing
time of 0.1 s. Acquisition parameters for the spectra were 128 scans, a 16
ppm spectral width collected into 64 K data points, an acquisition time of 4 s,
and an interscan relaxation delay of 5 s. We run automatic routine including
tuning, 3D shimming, 90° pulse calibration and automatic receiver gain
setting prior to each sample. We zero-filled, manually phased, and baseline
corrected the free induction decay obtained to 65k, Fourier-transformed,
using Whittaker smoother algorithm in MestreNova NMR Suite software
package (v.11, Mestrelab Research). We identified and quantified the
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metabolites from the corrected spectra via the library ChenomxNMR Suite
(v.8.6, Chenomx Inc.). Due to the unknown dilution ratio of ethanol in the
fecal samples, we normalized the concentrations by the total sum of the
metabolites.

Statistical analyses

All statistical analyses were conducted in the R statistical interface v 4.3.3'".
Alpha diversity metrics of 16 rRNA amplicon sequence data (ASVs rarified,
and Simpson’s diversity indices) were analyzed using Kruskal-Wallis one-
way analysis of variance followed by Dunn’s test R package dunn.test (v
1.3.6, ref. 103) for pair-wise comparisons corrected with Bonferroni method
for multiple comparisons. Beta diversity was assessed using Bray-Curtis
distance matrices coupled with Principal Coordinates analysis (PCoA) to
establish compositional differences between cohorts, as calculated using the
vegan v2.6_4 package'”'. Compositional differences in multivariate space
were further assessed by comparing PCoA scores along axis one and two
among groups, via using Kruskal-Wallis one-way analysis of variance fol-
lowed by Dunn’s test for paired comparisons, corrected with the Bonferroni
method. Differences in Bray-Curtis dissimilarities between groups were also
assessed by applying permutational multivariate analyses of variance
(PERMANOVA) using the adonis2 function of the Vegan R package'”. This
procedure was done by restricting permutations for wild group membership
and zoo location using the function strata within adonis2, the purpose was
to get a better understanding on the specific effects of cohort groups on
microbiome composition while controlling for these factors. In addition, age
and sex were also incorporated into the PERMANOVA models. To assess
unbiased estimators of effect sizes (Omega squared, ) for each of the
different variables of interest, a cumulative effect size model was applied
using the function adonis_OmegaSq from the R MicEco package v0.9.15'”.
Statistical analysis of shotgun metagenomics data for alpha and beta
diversity metrics was performed as stated above. Exact effect sizes and
individual P values for both amplicon and shotgun metagenomics data are
available in Supplementary Tables 3, 4, 6.

To get a better understanding of which specific taxa are the key
contributors to the differences we observed in alpha and beta diversity, we
applied a three-method statistical filter accounting for locality, sex, and
diet biases. First, we applied an indicator species analysis that selected taxa
with an indicator value greater than 0.5 (P value < 0.05). We then used
microbiome multivariable association with linear models (MaAsLin2) to
filter out indicator species that were not significant contributors based on
MaAsLin2’s linear modeling. MaAsLin2 filtering was done based on a
false discovery rate (FDR) adjusted P value lower than 0.05. Finally, we
applied a 2 k-fold analysis on the shotgun metagenomics taxa. Only taxa
from the 2 k-fold validation procedure that had an FDR-adjusted P value
lower than 0.05 were kept. After applying these three filters 29 taxa were
identified. The top 20 taxa were further investigated using Kruskal-Wallis
one-way analysis of variance followed by Dunn’s test for paired com-
parisons corrected via Bonferroni. Exact individual P values are available
in Supplementary Table 5. Wilcoxon rank sum test was used for pair-wise
comparisons. We then applied the same methodology on the predicted
pathway abundances generated from the shotgun metagenomics data.
This procedure identified five pathways that were indicators of health
status. PERMANOVA exact effect sizes and individual P values are
available in Supplementary Table 6.

We evaluated the normalized abundances of fecal metabolites by PCA
as exploratory analysis to evaluate the differences between the five different
groups. Prior to conducting PCA, we verified that our metabolomics data
met the key assumptions, including linearity (assessed by considering the
nature of the variables and their relationships), and mean-centering and
scaling (autoscaling was applied). We further tested each metabolite using
Kruskal-Wallis one-way analysis of variance followed by Dunn’s test for
paired comparisons corrected with Bonferroni method for multiple com-
parisons or Wilcoxon rank sum test for pair-wise comparisons. We cor-
rected P values for multiple comparison testing with the Bonferroni method
(q <0.05). Exact individual P values are available in Supplementary Tables 5,

10. This procedure identified five fecal metabolites that were indicators of
health status.

To establish machine learning and prediction capabilities we applied
PLS-DA and multi-block PLS-DA on the U.S. cohorts from either the 29
taxa established, five predicted pathways, the five metabolites, or as a
combined set as indicators of CMD affected and unaffected cohorts using
the R package MixOmics (v6.20.0, ref. 106). We evaluated model perfor-
mance by AUC plot along with an average specificity, sensitivity, accuracy,
precision, recall, and balanced error rate. To create the AUC we applied a 10
k-fold cross validation repeated 10 times using the Mixomics perf function.
Then using the Mixomics auroc function we created the AUC with the
overall lowest error rate. We created a custom-written model, selecting a
random set of 70% of the gorillas for each cohort for training the model, and
the remaining 30% for testing. We then applied the predict function from the
labdsv r package (v2.1-0) to create a machine learning model to construct an
error rate confusion matrix. We repeated this procedure 10 times to account
for potential sampling bias. We averaged the accuracy, balanced error rate,
sensitivity, specificity, precision, recall, and F1 scores from each iteration.
We further evaluated the models using LOOCYV, which is a well-established
validation method robust against low sample sizes*’.

Data availability

DNA amplicon and shotgun metagenomic data can be accessed in the NCBI
Sequence Read Archive under the following link: https://www.ncbi.nlm.nih.
gov/sra/PRINA995885. Normalized metabolomics data are available as
Supplementary Table 12; Data are expressed as metabolite concentrations
(ug/mL of extract) after normalization by the total sum of the metabolites.

Code availability

The code is available upon request.
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