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Oral microbiota signature predicts the
prognosis of colorectal carcinoma
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Emerging evidence links oral-derived gut microbes to colorectal cancer (CRC) development, but
CRCprognosis-relatedmicrobial alterations in oral remain underexplored. In a retrospective study
of 312 CRC patients, we examined the oral microbiota using 16S rRNA gene full-length amplicon
sequencing to identify prognostic microbial biomarkers for CRC. Neisseria oralis and
Campylobacter gracilis increased CRC progression risk (HR = 2.63 with P = 0.007, HR = 2.27 with
P = 0.001, respectively), while Treponema medium showed protective effects (HR = 0.41,
P = 0.0002). A microbial risk score (MRS) incorporating these species effectively predicted CRC
progression risk (C-index = 0.68, 95% CI = 0.61–0.76). When compared to a model constructed
solely from clinical factors, including tumor stage, lymphatic metastasis, and perineural invasion,
the predictive accuracy significantly improved with the addition of the MRS, resulting in a C-index
rising to 0.77 (P = 2.33 × 10−5). Our findings suggest that oral microbiota biomarkers may
contribute to personalized CRCmonitoring strategies, their implementation in clinical surveillance
necessitates confirmatory studies.

Colorectal carcinoma (CRC) remains one of the most prevalent malig-
nancies worldwide1. Despite advancements inmultidisciplinary treatments,
the prognosis for patients with locally advanced ormetastatic CRC remains
poor, largely due to high rates of distant metastasis, chemotherapy resis-
tance, and relapse, which contribute to unsatisfactory long-term survival
outcomes2,3. As a result, the identification of reliable prognostic factors is
essential for optimizing treatment strategies and improving patient out-
comes, particularly given the considerable variation in postoperative results
and long-term prognosis among individuals4.

The human oral microbiota is a complex ecosystem consisting of over
770 species-level taxa, each adapted to different niches within the oral
cavity 5. Evidence suggests that specific oral-derived species, including
Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus angi-
nosus,Peptostreptococcus stomatis, andPrevotella intermedia, are associated
with the occurrence of CRC6–10. These oral pathogens may influence CRC
development by disrupting the gut microbiota via the oral-to-gut microbe
translocation, or by activating the host immune inflammation11,12. For
instance, the well-known pathogen P. gingivalis, upon ectopic colonization
in the gut, can recruit myeloid immune cells, activate the NLRP3 inflam-
masome, and enhance the expression of inflammatory cytokines such as

IL-1β, thereby promoting the onset and progression of colorectal cancer
(CRC)13. While the role of oral-derived microbes in CRC development is
identified, the mechanisms by which alterations in the oral microbiota are
associated with CRC prognosis remain largely unknown.

The oral microbiota has been implicated in the progression of various
malignancies, and certain species have been associated with cancer
outcomes14. For example, Mohamed, et al. reported that a higher salivary
carriage of the genus Candida was associated with a poor prognosis, while
Malassezia was enriched in patients with favorable outcomes in oral
squamous cell carcinoma15. Additionally, Du et al. found that reduced oral
microbiota diversitywas correlatedwithhighermortality innasopharyngeal
carcinoma, particularly among elderly patients16. A recent study observed
that intra-tumoral infection of oral-derived F. nucleatum is associated with
poorer disease-free survival and overall survival in patients with stage III
CRC17. These findings underscore the critical role of the oral microbiota in
influencing cancer prognosis, and further investigation of the prognostic
function of oral microbiota in CRC is warranted.

In this study, we investigated the salivary microbiota of 312 CRC
patients using 16S rRNA gene full-length sequencing. We identified
microbial signatures associated with CRC outcomes and developed a
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microbial risk score (MRS) to predict CRC progression. Furthermore, we
integrated the MRS with key clinical factors to construct a multi-factorial
prognostic model with enhanced predictive performance. While these
findings require validation in multi-center cohorts, our study pioneers the
application of salivary microbiota profiling as a non-invasive prognostic
tool in CRC.

Results
Characteristics and microbial community structure among
patients with different clinical outcomes
In this study, we collected saliva samples from 312 CRC patients who were
scheduled for surgical tumor resection. The median follow-up period for
patients with CRC progression was 21.5 months, whereas for survival was

25.4 months, during which 59 experienced disease progression and 25 died
(Fig. 1). Demographic and clinical characteristics of the participants are
presented in Table 1. There were no statistically significant differences in
basic demographic characteristics, such as age, sex,marital status, bodymass
index (BMI), family history of tumors, and alcohol consumption history,
between non-progression and progression groups, and between survival
and death groups. Patients with progression or with death outcomes were
more likely diagnosed at an advanced clinical stage, exhibited higher rates of
lymphatic invasion, perineural invasion, and lymphatic metastasis when
compared to good outcome individuals (Table 1).

We investigated the oral microbiota diversity and composition differ-
ences in several clinical factors. There were no significant differences in oral
microbiota diversity with differing prognostic outcomes. Shannon diversity

Fig. 1 | The workflow of the study. Step 1: Saliva samples were collected from 312
CRC patients scheduled for surgical tumor resection. The median follow-up time
was 21.5 months for patients with disease progression and 25.4 months for survival.
Salivarymicrobiota profilingwas performed using 16S rRNA full-length sequencing.
Step 2: Species-level identification was conducted with inclusion criteria of pre-
valence ≥10% and relative abundance ≥0.01%, resulting in 98 species. A 1:1 cross-
validation strategy was applied by randomly splitting the cohort into discovery
(n = 156) and test (n = 156) sets, with 1000 subsampling iterations. Prognosis-

related microbes were identified using univariate and multivariate Cox regression
analyses, highlighting Campylobacter gracilis, Neisseria oralis, and Treponema
medium as significant biomarkers. Step 3: A microbial risk score (MRS) was con-
structed based on the identified prognostic bacterial species. Clinical prognostic
factors were also evaluated, and a comprehensive model integrating microbiota
biomarkers (three species) and clinical factors (three variables) was developed. The
performance of the comprehensive model was validated and compared with models
based solely on the clinical factors, demonstrating superior prognostic accuracy.
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Table 1 | Patient demographic and clinical characteristics

Characteristics Overall (n = 312) Non-progressed (n = 253) Progressed (n = 59) P value* Survival (n = 287) Death (n = 25) P value*

Age (Mean ± SD) 57.79 ± 12.07 57.97 ± 11.74 57.00 ± 11.50 0.578 57.54 ± 11.80 60.64 ± 14.80 0.219

Sex (%)

Male 139 (44.55) 112 (44.27) 27 (45.76) 0.950 129 (44.95) 10 (40.00) 0.789

Female 173 (55.45) 141 (55.73) 32 (54.24) 158 (55.05) 15 (60.00)

Marital status (%)

Married 9 (2.88) 7 (2.77) 2 (3.39) 0.811 8 (2.79) 1 (4.00) 0.689

Unmarried 303 (97.12) 246 (97.23) 57 (96.61) 279 (97.21) 24 (96.00)

BMI (%)#

Normal 183 (59.22) 148 (58.96) 35 (60.34) 0.647 172 (60.35) 11 (45.83) 0.176

Obesity 13 (4.21) 12 (4.78) 1 (1.72) 12 (4.21) 1 (4.17)

Overweight 84 (27.18) 69 (27.49) 15 (25.86) 77 (27.02) 7 (29.17)

Underweight 29 (9.39) 22 (8.76) 7 (12.07) 24 (8.42) 5 (20.83)

Family history of tumors (%)

No 218 (69.87) 177 (69.96) 41 (69.49) 1 199 (69.34) 19 (76.00) 0.639

Yes 94 (30.13) 76 (30.04) 18 (30.51) 88 (30.66) 6 (24.00)

Cigarette smoking history (%)

No 265 (84.94) 214 (84.58) 51 (86.44) 0.875 244 (85.02) 21 (84.00) 0.778

Yes 47 (15.06) 39 (15.42) 8 (13.56) 43 (14.98) 4 (16.00)

Alcohol consumption history (%)

No 291 (93.27) 236 (93.28) 55 (93.22) 1 270 (94.08) 17 (80.95) 0.075

Yes 21 (6.73) 17 (6.72) 4 (6.78) 17 (5.92) 4 (19.05)

Neoadjuvant chemoradiotherapy (%)

No 201 (64.42) 171 (67.59) 30 (50.84) 0.023 188 (65.51) 13 (52.00) 0.256

Yes 111 (35.58) 82 (32.41) 29 (49.16) 99 (34.49) 12 (48.00)

Tumor stage (%)

0/1 50 (16.03) 46 (18.18) 4 (6.78) <0.001 48 (16.72) 2 (8.00) <0.001

2 83 (26.60) 77 (30.43) 6 (10.17) 80 (27.87) 3 (12.00)

3 130 (41.67) 106 (41.90) 24 (40.68) 122 (42.51) 8 (32.00)

4 41 (13.14) 16 (6.32) 25 (42.37) 29 (10.10) 12 (48.00)

Unknown 8 (2.56) 8 (3.16) 0 (0.00) 8 (2.79) 0 (0.00)

Histologic grade

Low 18 (5.77) 13 (5.14) 5 (8.47) 0.397 15 (5.23) 3 (12.00) 0.293

Moderate 268 (85.90) 217 (85.77) 51 (86.44) 247 (86.06) 21 (84.00)

High 26 (8.33) 23 (9.09) 3 (5.08) 25 (8.71) 1 (4.00)

Lymphatic invasion (%)

No 223 (71.47) 186 (73.52) 37 (62.71) 0.002 209 (72.82) 14 (56.00) 0.017

Yes 59 (18.91) 39 (15.42) 20 (33.90) 49 (17.07) 10 (40.00)

Unknown 30 (9.62) 28 (11.07) 2 (3.39) 29 (10.10) 1 (4.00)

Perineural invasion (%)

No 230 (73.72) 198 (78.26) 32 (54.24) <0.001 217 (75.61) 13 (52.00) 0.001

Yes 52 (16.67) 27 (10.67) 25 (42.37) 41 (14.29) 11 (44.00)

Unknown 30 (9.62) 28 (11.07) 2 (3.39) 29 (10.10) 1 (4.00)

Lymphatic metastasis (%)

No 171 (54.81) 153 (60.47) 18 (30.51) <0.001 165 (57.49) 6 (24.00) <0.001

Yes 105 (33.65) 69 (27.27) 36 (61.02) 87 (30.31) 18 (72.00)

Unknown 36 (11.54) 31 (12.25) 5 (8.47) 35 (12.20) 1 (4.00)
#A body mass index (BMI) less than 18.5 is classified as underweight, 18.5–24 as normal, 24–28 as overweight, and greater than 28 as obese.
*The demographic and clinical characteristics of patients were described and compared among different PFS and OS groups using the Pearson χ2 test for categorical variables and one-way ANOVA
analysis for age.
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tended to increase with the advanced TNM stage and lower tumor histo-
logical grade. We did not observe a significant difference in sex, lymphatic
metastasis status, and perineural invasion status (Supplementary Fig. 1).

The oral bacterial species are significantly associated with the
prognosis of CRC patients
To determine whether the oral bacteria were associated with CRC prog-
nosis, we conducted a two-step identification. Firstly, the univariate Cox
regressionmodelwas applied to 98 oralmicrobial species that appeared in at
least 10% of the total samples with a relative abundance of at least 0.01%, to
preliminarily screen the potential species. Twelve species were found to be
substantially associated with CRC progression, and five species showed
substantial associations with CRC survival (Supplementary Table 1 and
Supplementary Table 2). Subsequently, those significant species were
incorporated into a multivariate Cox regression model, adjusting for age,
sex, tumor stage, and neoadjuvant chemoradiotherapy, to assess the inde-
pendent effect of these bacteria on the prognosis of CRC patients. Finally,
Campylobacter gracilis andNeisseria oralis were identified as the indicators
associated with an increased risk of CRC progression, while Treponema
medium was correlated with a reduced risk of progression in the total
population cohort (Hazard ratio, HR = 2.63 for N. oralis, 95% confidence
interval (CI) = 1.50–4.63, false discovery rate (FDR) = 0.08; HR = 2.27 for
C. gracilis, 95% CI = 1.34–3.86, FDR = 0.09; HR = 0.41 for T. medium, 95%
CI = 0.23–0.73, FDR = 0.09; Supplementary Table 1, Fig. 2A). No oral
bacteria were found to be independently associated with CRC survival
(Supplementary Table 2).

To identify robust oralmicrobial biomarkers,MonteCarlo simulations
were utilized for cross-validation across these 98 oral microbial species. The
univariate and multivariate Cox regression model was conducted within

both training and validation datasets by random sampling 1000 times.
Consequently, T. medium, C. gracilis, and N. oralis exhibited the most
significant statistical association in both the training and validation datasets,
confirming that these three oral bacteria are robust prognostic biomarkers
for CRC (Fig. 2B).

Construction of the oral MRSs as accurate predictors of CRC
prognosis
To evaluate the performance of oral microbial biomarkers in predicting
CRCprognosis,wedeveloped every combinationof oralMRSby integrating
one, two, or all of the three above-mentioned prognostic bacteria. Using a
Cox regression model, we applied these combinations of MRS to 1000 test
datasets. Among all combinations, the MRS including three specific oral
bacteria demonstrated a significant association with CRC prognosis, exhi-
biting the highest C-index (C-index = 0.68, 95% CI = 0.61–0.76). (Fig. 3A)

To better differentiate patient prognostic risks, we reclassified theMRS
into three categories: 0 for MRS Low, 1 for MRS Moderate, and 2–3 for
MRS-High risk. This stratification effectively distinguished progression
risks among patients in addition to overall survival (Fig. 3B, C). Patients in
the MRS-Low group, only 4 out of 38 patients exhibited progression
(10.5%), compared to 20 out of 150 patients in the MRS-Moderate group
(13.3%), and 35 out of 124 patients in the MRS-High group (28.2%)
experienced disease progression post-surgery.

We also identified the clinical factors associatedwith the progression of
CRC.Consistentwith previous researches, tumor stage, perineural invasion,
lymphatic metastasis were significantly associated with the progression of
CRC in log-rank test, and were identified as clinical prognostic biomarkers
(P < 0.05, SupplementaryFig. 2). Factors such as age,marital status, cigarette
smoking, alcohol consumption history, histologic grade and lymphatic
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Fig. 2 | Identification of prognostic bacterial biomarkers associated with PFS in
colorectal cancer patients. A Kaplan–Meier curve illustrating PFS stratified by the
detection status of identified oral bacterial species. P values were calculated using the
log-rank test. Numbers below each graph indicate the number of patients at risk at
different time points. ND not detected, Det detected, PFS progression-free survival.
B Volcano plot showing the hazard ratio (HR) and statistical significance of

candidate prognostic bacterial species. The x axis represents log2-transformed HR,
while the y axis shows −log10-transformed false discovery rates (FDR). Circle size
indicates the frequency of significance in 1000 cross-validation tests using univariate
Cox regression, and color intensity (gray to red) represents the frequency of sig-
nificance in multivariate Cox regression analysis. The multivariate Cox regression
model was adjusted for age, sex, tumor stage, and neoadjuvant chemoradiotherapy.
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invasion did not show the significant association with cancer progression
(Supplementary Fig. 2). We incrementally incorporated these three clinical
factors into the model, and the one containing all three demonstrated a
higher C-index compared to other clinical models in the 1000 test datasets
(C-index: 0.78, 95% CI = 0.71 – 0.83) (Fig. 3D).

Furthermore, we integrated these clinical factors and oral MRSs to
construct a combined model. We randomly partitioned the entire dataset
into training and test datasets (1:1). In the training datasets, the C-index
for the combined model achieved a C-index of 0.84 (95%CI: 0.75 ~ 0.91),
and in the test datasets, the C-index for the combined model was 0.77
(95% CI: 0.66 ~ 0.86). The combined model exhibited a higher C-index
than the clinical model 0.77 vs. 0.67, P = 2.33 × 10−5, with similar results
observed in the train datasets and total population datasets 0.84 vs. 0.76,
Ptraining datasets = 0.02, 0.81 vs. 0.72, Ptotal population = 3.25 × 10−5 (Fig. 3E,
Table 2). To further assess the predictive performance of our oralMRS for
CRC progression, we constructed a clinical model, an MRS model, and a
combined model based on a random forest survival model. Consistently,
the combined model outperformed the clinical model in both test and
total population datasets, suggesting the stable predictive power of the
MRS (Fig. 3F, Table 2).

Correlation between oral MRSs and predictive functional
pathways
To investigate the functional roles of oral microbiota among patients with
varying oral microbial risks, we used the PICRUSt2 tool to explore the

potential metabolic functions of oral microbiota based on 16S rRNA gene
sequences. Among the 344 identified KEGG pathways, we excluded those
that appeared in fewer than 30% of patients and with an average relative
abundance of below 1%, ultimately incorporating 282 metabolic pathways.
Patients were categorized into two groups: MRS-low and MRS-moderate/
high groups. Sixteen pathways exhibited significant differences between
these two groups, with five pathways significantly increased in the MRS-
moderate/high group. These pathways are predominantly associated with
the promotion of cancer cell proliferation, specifically the Super-pathway of
Polyamine Biosynthesis II and Polyamine Biosynthesis, which are linked to
polyamine synthesis-an enhancement of cellular proliferation typically
observed in cancer cells exhibiting active polyamine metabolism (Fig. 4B).
Among the 11 metabolic pathways significantly enriched in the MRS-low
group, the most difference in mean proportions was observed in the
N-acetylglucosamine (GlcNAc) andN-Acetylgalactosamine pathways (Fig.
4B). This pathway is associated with the synthesis of GlcNAc and GalNAc,
both of which can mitigate inflammatory responses, regulate glycosylation,
and inhibit cancer cell proliferation. Subsequently, we analyzed the corre-
lation between the differential metabolic pathways and identified oral
microbial indicators.We found that species associatedwith an increasedrisk
of CRC progression exhibited similar functional characteristics but differed
markedly from those associatedwith a reduced risk ofCRCprogression. For
instance, C. gracilis and N. oralis demonstrated a positive correlation with
the increased KEGG pathways in the MRS-moderate/high group and a
negative correlation with the depleted pathways. In contrast, the bacterium

Fig. 3 | The performance of microbial risk scores, clinical model, and
comprehensive model. A Comparison of the predictive performance (C-index) of
all combinations ofmicrobial risk scores derived from the three identified prognostic
species in the test datasets using the Cox regression model. B Kaplan–Meier curves
for PFS stratified by microbial risk scores (MRS) into low (n = 38), moderate
(n = 150), and high-risk groups (n = 124). Numbers below the graph indicate
patients at risk at different time points. The P value is calculated by the log-rank test.
C Kaplan–Meier curves for overall survival stratified by the MRS. The P value is
calculated by the log-rank test. D Comparison of the predictive performance
(C-index) of all combinations of clinical factors (perineural invasion, lymphatic
metastasis, and tumor stage) in the test datasets using the Cox regression model.

E Performance comparison of the clinical model, MRS model, and comprehensive
model (integrating both clinical and microbial factors) in the test datasets using the
Cox regression model. The P value for the comparison between the clinical model
and the comprehensive model was calculated using a Z score test. The bars represent
the 95% confidence intervals calculated by the bootstrap method. F Performance
comparison of the clinical model, MRSmodel, and comprehensive model in the test
datasets using the random survival forest (Rsf) method. The P value for the com-
parison between the clinical model and the comprehensive model was calculated
using a Z score test. The bars represent the 95% confidence intervals calculated by
bootstrap method. T. mediumTreponema medium,N. oralisNeisseria oralis, C. gra-
lisCampylobacter gralis, Mod moderate, Rsf random survival forest.
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T. medium, which was enriched in the MRS-low group, displayed an
opposite trend (Fig. 4A).

Discussion
In this study, we systematically investigated the relationship between
oral microbiota and CRC prognosis using full-length 16S rRNA
sequencing data from saliva. We identified three prognostic biomarkers
for CRC: C. gracilis, N. oralis, and T. medium. Additionally, we devel-
oped a prognostic prediction model based on the oral microbiota, which
effectively predicts the prognosis of CRC patients. Given the high

recurrence rates of CRC post-surgery, it is essential to identify suitable
biomarkers for risk assessment18,19.

Althoughmany studies have explored themicrobiota-based prognosis
biomarkers for CRC, the majority of previous research has predominantly
concentrated on gut microbiota, which is usually tested by a fecal
sample20–22. The collection and analysis of saliva samples are simpler, more
cost-effective, and demonstrate better compliance than fecal samples8,23,24.
Prognostic models based on fecal microbiota identified the enterotypical
Prevotella and three microbial biomarkers for predicting clinical outcomes
of CRC, achieving a C-index of 0.6925. Microbial signatures in tumor tissues
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Table 2 | TheC-index valuesof theclinicalmodel, theMRSmodel, and thecomprehensivemodel for predictingprogression-free
survival probability in the train set, test set, and the overall population

Cox proportional hazard model Random survival forests model

Train set C-index
(95% CI)

Test set C-index
(95% CI)

Total population set
C-index (95% CI)

Train set C-index
(95% CI)

Test set C-index
(95% CI)

Total population set
C-index (95% CI)

Clinical model# 0.76 (0.66, 0.86) 0.67 (0.54, 0.78) 0.72 (0.64, 0.79) 0.80 (0.70, 0.88) 0.71 (0.61, 0.80) 0.76 (0.68, 0.82)

MRS model$ 0.66 (0.58, 0.75) 0.69 (0.57, 0.80) 0.68 (0.61, 0.75) 0.66 (0.57, 0.75) 0.69 (0.57, 0.80) 0.67 (0.60, 0.74)

Comprehensive
model*

0.84 (0.75, 0.91) 0.77 (0.66, 0.86) 0.81 (0.74, 0.86) 0.85 (0.77, 0.92) 0.77 (0.67, 0.86) 0.81 (0.74, 0.86)

P value� 0.02 2.33 × 10−5 3.25 × 10−5 0.03 0.01 0.0007
#The Clinical model included Tumor stage, Perineural invasion, and Lymphatic metastasis.
$The MRS model included Neisseria oralis, Campylobacter gracilis, and Treponema Medium.
*The Comprehensive model integrated factors from both the clinical and MRS models.
�The P value for the comparison between the clinical model and the comprehensive model was calculated using a Z score test.
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have also demonstrated potential to refine prognostication in CRC
patients26. Evidence of oral microbiota as prognostic indicators for CRC
remains limited. In this study, we identified three oral bacteria associated
withCRCprognosis basedon follow-updata frompatients, and constructed
an oral MRS for predicting CRC prognosis. This approach enables the
qualitative detection of the target species through a simple and straight-
forward PCRmethod, potentially providing advantages for monitoring the
postoperative progression risk for CRC patients.

Previous epidemiological studies have established a significant asso-
ciation between oral diseases and CRC. A cohort study of over 700,000
individuals reported a significant correlation between clinically assessed
periodontitis and CRC (HR = 1.13, 95% CI: 1.03–1.24)27. Similar conclu-
sions were drawn in another study on oral health, which found that women
with moderate to severe periodontal disease exhibited a modest increased
risk of CRC (HR = 1.22, 95% CI: 0.91–1.63)28. These findings suggest that
poor oral healthmay, to a certain extent, facilitate the onset and progression
of CRC. Subsequently, numerous studies have begun to focus on the role of
oral bacteria in the occurrence of CRC. Zhang S et al.29 have evaluated the
association between oral microbiota dysbiosis and CRC, and constructed a
diagnostic model based on oral microbial markers, which can effectively
distinguish between adenoma (AUC= 0.94) or CRC (AUC= 0.83) and
healthy controls. Another study also found the value of oral microbiota as
biomarkers for the detection of CRC, and a classification model containing
oral microbiota can effectively distinguish CRC patients (AUC= 0.90),
polyps (AUC= 0.89), and healthy controls8. These findings not only illu-
minate the connection between oral health and the risk of CRC but also
underscore the potential of the oralmicrobiota as a diagnostic biomarker for
CRC. Therefore, leveraging the oral microbiota as a biomarker for prog-
nostic evaluation of CRC may represent an avenue for future research and
clinical practice19,30,31.

Emerging evidence suggests that oralmicrobiotamay contribute to the
development of CRC through several mechanisms. First, the oral-gut
microbial translocation axis facilitates direct pathogen infiltration. The oral
cavity acts as a reservoir of gutmicroorganisms, daily swallowing introduces
substantial bacterial loads to the gastrointestinal tract. Previous studies have
reported an increasedoral-gut transmission inCRCpatients32. Additionally,
animal models demonstrated that buccal F. nucleatum can migrate to the
CRC locus and impair the therapeutic efficacy and prognosis of
radiotherapy33. Second, certain oral pathogens can enter the bloodstream.
Bacteremia caused by oral microbes, such as Peptostreptococcus and
Gemella, has been linked to an increased risk of CRC34. Furthermore, oral
dysbiosis modulates gut immunoinflammatory responses via the gut-
mucosal immune interconnection.Microbial dysbiosis in the oral cavity can
exacerbate inflammation in the gut by regulatinghost immunity, specifically
through the introduction of colitogenic pathobionts and pathogenic Th17
cells into the gut35. These multilayered interactions underscore the impor-
tance of oral microbiota balance in the development of CRC.

Our study identifiedN. oralis andC. gracilis as predictors of poor CRC
prognosis. In a prospective cohort of 793 individuals, elevated oral abun-
dances ofN. oralis (OR = 1.42, 95%CI = 1.01–2.00) andCampylobacter spp.
(OR = 1.58, 95% CI = 1.12–2.24) were significantly associated with CRC
risk36. C. gracilis demonstrates oral-gut translocation capacity, with gut
colonization evidenced in inflammatory bowel disease and Crohn’s disease
biopsies37,38. C. gracilis is also known as a pathobiont of dental diseases and
periodontitis39,40. Periodontitis-driven systemic inflammation may con-
tribute to CRC development (e.g., Th17 cell activation) by disrupting gut
barrier integrity and amplifying microbial dysbiosis35. N. oralis typically
appears in the oral cavity. One plausible mechanism is that N. oralis can
convert ethanol into acetaldehyde in the oral cavity41. Acetaldehyde, a well-
established carcinogen, is known for its substantial toxicity and
mutagenicity39. These findings elucidate the mechanistic roles of these oral
pathobionts inmediating unfavorable CRC prognosis through oral-gut axis
translocation, systemic inflammation, and carcinogen production.

Our findings indicate that T. medium is associated with a reduced risk
of CRC progression. T. medium, a member of the genus Treponema, is

distinct from the notorious Treponema denticola, and research on T.
medium remains limited. Although this bacterium has been identified in
gingival plaques, there is still no consensus regarding its pathogenicity42.Our
findings indicate that T. medium is associated with a reduced risk of CRC
progression. The mechanisms by which T. medium may contribute to
reducing CRC progression risk warrant further exploration in future
studies.

Other oral microbes, such as F. nucleatum43, P. intermedia44, Rothia45,
and P. gingivalis11, have also been identified as the higher abundance
microbes enriched in the oral cavity of CRC patients. The well-known oral-
derivedmicrobes, F. nucleatum, have also been found in the feces and tumor
tissues in CRC patients, increasing the risk of CRC by inducing inflamma-
tion, disrupting the gutmicrobiota, and exacerbatingmetabolic disorders. Its
critical virulence factor, RadD, facilitates the attachment to CRC cells and
plays a vital role in promoting tumorigenesis46. Moreover, F. nucleatum can
effectively bind to host cells through its virulence factor, adhesin FadA. This
interaction enhances bacterial adhesion, disrupts the intestinal barrier47,48.
Besides, F.nucleatum can induce immune suppressive effect by promoting
M2 polarization of macrophages via the TLR4/IL-6/PSTAT3/c-MYC sig-
naling pathway49. These pathogen–host interactions are involved in the
carcinogenesis of CRC. In this study, we did not observe the significant
associations between thesemicrobes andCRCprogression, which can partly
be explained by the fact that themolecular events driving carcinogenesis and
the biological processes driving disease progression (e.g., metastasis, ther-
apeutic resistance) frequently involve distinct biological mechanisms. Our
current prognostic analyses are confined to CRC patient cohorts where oral
microbial profiles inherently exhibit baseline homogeneity due to their
shared carcinogenesis-associated signatures. Consequently, bacterial taxa
already enriched in CRC populations (e.g., F.nucleatum) may demonstrate
attenuated prognostic discriminative power.

The oral microbiota plays an important role in the biosynthesis and
metabolic degradation of amino acids and carbohydrates50. Our study
revealed that those bacteria, enriched in highoralmicrobial risk patients, are
positively correlatingwithmetabolic pathways, which are crucial for cellular
proliferation, gene expression, and growth51. These bacteria had opposite
functions to those associated with a reduced risk of CRC progression.
Specifically, we identifiedN. oralis andC. gracilis, positively correlating with
metabolic pathways involved in the synthesis of arginine and proline,
phospholipids, and polyamines. Polyamines, such as putrescine, spermi-
dine, and spermine, play an important role in regulating the cell cycle and
apoptosis52. Therefore, oral microbiota may facilitate cancer growth and
metastasis by increasing the biosynthesis of polyamines, providing cancer
cells with essential polyamines. In contrast, the analysis of metabolic
pathways revealed that T. medium was positively correlated with several
metabolic routes, including beta-alanine metabolism, L-histidine bio-
synthesis and degradation, serine and glycine metabolism, and the non-
mevalonate pathway. Interestingly, serine andglycinemetabolism, aswell as
the non-mevalonate pathway, are closely associatedwith the synthesis of the
antioxidant glutathione, while the beta-alanine pathway is considered a
precursor for the synthesis of carnosine, which functions as an intracellular
antioxidant and pH buffer. Oxidative stress is closely associated with cancer
development, resulting in cellular damage and DNA mutations51.

In this study, several limitations should be considered. Firstly, this
study primarily utilized a single-center design and lacks an external vali-
dation cohort, which restricts the generalizability of our predictive model,
necessitating future validation through multi-center studies with indepen-
dent cohorts. Nevertheless, we conducted a series of sensitivity analyses to
ensure the robustness of our results, including randomization of the sample
division and different model-constructed approaches. Additionally, the
relatively small number of progression events (n = 59) may affect the sta-
tistical power of our findings. Future prospective investigations incorpor-
ating multi-center designs, expanded sample sizes, and extended follow-up
periods are required to reliably identifyCRCprognostic biomarkers. Finally,
while our analysis suggests potential microbial metabolic pathway invol-
vement, the proposed associations between identified microbes, microbial
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functional metabolic pathways, and clinical outcomes require experimental
validation through in vitro and in vivo studies to elucidate the mechanisms
underlying the influence of oral microbiota on CRC progression.

Besides, we acknowledge several methodological constraints of this
study. First, while implementing enhanced mechanical lysis, quantitative
assessment ofmicrobial lysis efficiencywas not conducted, leaving potential
Gram-positive bacterial under-lysis unverified. Second, the inherent primer
bias of 16S rRNA sequencing may skew microbial composition, which has
the potential to be biased towards amplifying specific bacteria. As a high
percentage of host genomic DNA is present in oral specimens, 16S rRNA
sequencing is widely used in oral microbiota research due to its cost-
effectiveness, while metagenomic sequencing data are necessary for more
precise information on taxonomic composition. Finally, inferred metabolic
pathways through PICRUSt2 disregard strain-level heterogeneity. Future
studies should integrate shotgunmetagenomicswithmetabolomic profiling
to establish host-microbiota interactions.

In summary, our study suggests potential associations between N.
oralis, C. gracilis, and T. medium with the risk of postoperative progression
inCRC. By integrating clinical andmicrobial factors, we achieved improved
predictive accuracy for progression risk compared to clinical factors alone.
These findings collectively provide preliminary evidence for exploring oral
microbiota-based biomarkers for CRC progression, the implementation of
oral microbial indicators in CRC clinical surveillance required future con-
firmatory studies.

Methods
Participants and sample collection
From December 2018 to April 2021, we recruited 361 patients diagnosed
with stage I to IV colorectal adenocarcinoma at Sun Yat-sen University
Cancer Center. All patients underwent elective surgical resection, and saliva
samples were collected preoperatively. Forty-nine patients were excluded as
follows: (1) 42patientswere excludeddue topostoperative sampling; and (2)
7 patients were excluded because their sequencing data did notmeet quality
control standards. Ultimately, 312 patients with colorectal adenocarcinoma
were included in this analysis. Institutional review board approval was
obtained from the Human Ethics Committee of Sun Yat-sen University
Cancer Center (The approved number: B2024-542-01), and informed
consent was obtained from all patients participating. The study data have
been collected in accordance with the Declaration of Helsinki. This study
followed the Standards for Reporting of Diagnostic Accuracy (STARD)
reporting guideline (Supplementary Table 3).

All patients were collected the clinical information, including sex, age,
marital status, body mass index (BMI), cigarette smoking history, alcohol
consumption history, family history of tumors, neoadjuvant chemor-
adiotherapy, tumor stage, histologic grade, lymphatic invasion, perineural
invasion, and lymphatic metastasis. During the study registration period,
the saliva samples were collected from patients who were instructed to
refrain from eating and drinking for at least 30min before the collection
process. The participants were guided to open the collection tubes and let
saliva flow into them effortlessly, which was collected using sterile 50ml
centrifuge tubes. The collected saliva was temporarily stored in an ice box
and transferred to 2ml centrifuge tubeswithin two hours, and subsequently
stored at −80 °C for long-term preservation.

DNA extraction and library construction
In this study, saliva samples from patients were extracted using the DNeasy
PowerSoil Pro Kit (QIAGEN, Germany). Saliva specimens were subject to
mechanical lysis through bead-beating processing (four cycles of 5-minute
agitationat~2700 rpmfor50Hz)using theVortex-Genie 2 system(Scientific
Industries) with zirconium dioxide and yttrium oxide beads. The construc-
tion of the 16S rRNA amplicon library was described previously53,54. Speci-
fically, DNA extracted from each salivary sample served as the template for
amplifying the full-length regionof the16S rRNAgene.Weamplified the full-
length16S rRNAgeneusinguniversal primers27 F (5’-AGRGTTYGATYM
TGG CTC AG-3’) and 1492 R (5’-RGY TAC CTT GTT ACG ACT T-3’),

which included 12-bp barcodes. Saliva-derived DNA was amplified using
KAPA HiFi HotStart DNA Polymerase (KAPA Biosystems) for 27 cycles.
The process involved denaturation at 95 °C for 30 s, annealing at 57 °C for
30 s, and extension at 72 °C for 1min. We used Agencourt AMPure XP
(Beckman Coulter) for fragment selection and purification of the PCR pro-
ducts. We prepared the SMRTbell libraries from the purified amplicons by
ligating adapters and sequenced them using the PacBio Sequel platform
(Pacific Biosciences). We obtained high-quality circular consensus sequence
(CCS) reads from the rawPacBio sequencingdata using SMRTLink software
(v9.0.0, PacificBiosciences) and assignedmultiplexed libraries to each sample
using Lima (v2.0.0) based on the barcodes.

Analysis of 16S rRNA full-length region sequencing data
Weemployed a customizedDADA2 (v1.22.0) workflow for the PacBio full-
length 16S sequencing data to conduct quality control, denoising, and
identification of amplicon sequence variants (ASVs) from the demulti-
plexedCCS, ultimately yielding representative sequences and an abundance
matrix derived from ASVs55. ASVs detected in fewer than five samples or
with a total sequence count of fewer than tenwere excluded. The “phyloseq”
package in R (version 4.4.0) was employed to standardize the sequencing
depth of each sample to 250056. Species annotation of ASVs was performed
using the pre-trained SILVA database (version 138), categorizing species
information across six taxonomic levels: phylum, class, order, family, genus,
and species, while calculating the relative abundance of various taxa at
different classification levels57. Alpha diversity index and beta diversity
metrics were computed using the R package “vegan”58.

Statistical analysis
The demographic, socioeconomic, and clinical characteristics of patients
were described and compared among different clinical outcomes using the
Pearson χ2 test for categorical variables, and one-way ANOVA for con-
tinuous variables. Permutational multivariate analysis of variance
was applied to evaluate the statistical significance of differences in
microbial composition across various clinical factors59. The C-indexes
between the clinical models and comprehensive models were compared by
using the Z score test60. All statistical analyses and visualization procedures
were performed using R software (version 4.4.0) with designated
R packages.

Survival analysis
Progression-free survival (PFS) was defined as the period from surgical
removal to the recurrence or progression of CRC, or death from any cause.
Overall survival was defined as the period from the surgical period to death
from any cause. To investigate potential prognostic factors for the CRC, we
used Kaplan–Meier survival analysis and the Log-rank test to compare the
relationships between various factors andprognosis, converting all variables
into categorical forms, such as sex, marital status, BMI, family history of
tumor, alcohol drinking history, cigarette smoking history, neoadjuvant
chemoradiotherapy, tumor stage, histologic grade, lymphatic invasion,
perineural invasion, lymphatic metastasis. Furthermore, we calculated the
HRs and their corresponding 95%CIs for different factors influencing CRC
prognosis using the Cox proportional hazards regression model. These
analyses were performed using the “survival” and “survminer” R packages.
Regarding the sample size for PFS analysis, the comparison between the
number of progression events59 and the number of prognostic factors used
in the multivariate Cox proportional hazards model indicates that the
“minimum of 10 events per predictor” rule was satisfied61.

Identification of prognostic oral bacteria
A total of 291 bacterial species were observed, of which 98 were included in
the prognosis analysis, whichmet criteriawith a frequency exceeding 10% in
the total sample and a relative abundance >0.01%. Patientswere divided into
two groups based on themedian abundance of each species, and a univariate
Cox regression model was performed. Species that were statistically sig-
nificant were subsequently incorporated into a multivariate Cox regression

https://doi.org/10.1038/s41522-025-00702-0 Article

npj Biofilms and Microbiomes |           (2025) 11:71 8

www.nature.com/npjbiofilms


model, adjusted for sex, age, tumor stage, and neoadjuvant
chemoradiotherapy.

Next, we appliedMonte Carlo simulation cross-validation for a robust
selection, by randomly partitioning the entire datasets into discovery and
validation sets (1:1) and performing 1000 times randomized resampling. In
the discovery set, we performed univariate andmultivariate Cox regression
models to identify the species associated with prognosis (P < 0.05). Species
with significance in the discovery stage were then included in the validation
set for confirmation. Ultimately, three bacterial species were identified as
prognostic biomarkers, demonstrating substantial effect sizes (HR > 1.5 or
HR < 0.8) and significance (corrected FDR < 0.1).

Construction of MRSs and prognostic prediction models
Three validated oral bacterial species significantly associated with CRC
prognosiswere included to construct anMRS.These specieswereC. gracilis,
N. oralis, both associated with poor prognosis, and T. medium, which was
conversely associated with good prognosis. The presence of species indi-
cating poor prognosis or the absence of species indicating good prognosis
was scored as one point each. Each patient was assigned an MRS ranging
from 0 to 3. To evaluate the performance of the combinations, 50% of the
samples (156 out of 312) were randomly selected 1000 times without
replacement to create a pool of test datasets, and the concordance index
(C-index) across the test datasetswas used as an indicator ofmodel stability.
For clear stratification, a three-layered risk score (MRS), which included the
above three bacteria, was categorized by assigning scores 0 for MRS low, 1
for MRS moderate, and 2–3 for MRS high risk. Furthermore, to compre-
hensively predict the probability of PFS in CRC patients. We constructed a
clinical model based on selected clinical factors, including tumor stage,
lymphatic invasion, and perineural invasion, all of which were statistically
significant in a univariate Log-rank test. A comprehensive model was
constructed by integrating both clinical factors andMRS.We calculated the
concordance index (C-index) to evaluate theperformanceof themodels and
compared the differences in predictive performance between models
incorporating and excluding MRS.

Metagenomic PICRUSt analysis
We applied the “Phylogenetic Investigation of Communities by Recon-
struction of Unobserved States” (PICRUSt2) tool to infer functional varia-
tions within microbial communities62. Subsequently, we utilized STAMP
software to evaluate significant differential metabolic pathways between
moderate/high and low MRS groups, applying the Bonferroni correction
with adjusted p value < 0.05 considered significant. The correlation between
oral microbes and the significantly related differential pathways was per-
formed by Spearman’s rank correlation test.

Data availability
The 16S rRNA sequence data, along with the corresponding patient
metadata, are currently being uploaded to the China National Center for
Bioinformation (CNCB). Full access to these resourceswill be public prior to
the publication of the study.

Code availability
The key computer codes for the analyses in this study are available on
https://github.com/ZSH-AMF/Key_code.git.
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