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The microbiome is associated with
obesity-related metabolome signature in
the process of aging
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Dana Binyamin1, Sondra Turjeman1, Nofar Asulin1, Ron Schweitzer1,2 & Omry Koren1,3

Aging involves changes in the gut microbiome impacting health and longevity; however, the roles of
specific microbial metabolites remain understudied. Here, we examine the microbial contribution to
the metabolic profile in aged mice. Fecal samples were collected from female Swiss-Webster mice
raised conventionally (Conv) or germ free (GF), at 8weeks (young) and18 (aged)monthsof age, and the
microbiome and metabolome were characterized. Significant differences were observed in bacterial
composition and its predicted functional activity between young and aged mice. Interestingly, we
found more age-related differences in metabolite abundances among Conv mice than GF mice,
highlighting the contribution of the microbiome to aging. Moreover, microbiome-associated
metabolites, predominantly lipids, were higher in agedmice, with linoleic acid metabolism enriched in
this group. Our study underscores a microbiome-dependent component to age-related metabolic
changes in mice, particularly in lipid-associated pathways, and contributes to the growing body of
literature linking gut microbiota to host metabolism in aging.

Aging is a complex biological process characterized by a progressive decline
in physiological function, ultimately leading to increased morbidity and
mortality due to various diseases1. Amongmany factors that affect the aging
process, a central player is the gut microbiome2, a diverse community of
microorganisms residing within the gastrointestinal tract responsible for a
range of interactions that affect the host’s health and longevity3. One of the
hallmarks of aging is the dynamic reshaping of the gut microbiome, char-
acterized by shifts inmicrobial diversity4–6. Some specific changes associated
with aging include reduced alphadiversity, aswell as reductions of beneficial
taxa like Lactobacillus and Bifidobacterium7–9, which can lead to compro-
mises in gut barrier integrity and immune modulation. There are also
reports of increased opportunistic pathogens like some species of the family
Enterobacteriaceae10, which may contribute to systemic inflammation and
age-related diseases. Because lifestyle changes, dietary patterns, age-related
diseases, medications, and hospitalization can influence gut microbiome
composition, and because these factors are both prevalent and dynamic
among the elderly, it is often challenging to disentangle aging-specific effects
from those driven by comorbidities11,12. Accordingly, studies on the
microbiome in older adults have reported both age-associated changes in
microbial taxa and functions as well as disease-specific microbiome
alterations13. Experimental animalmodels offer insights into understanding
the effects of agingwhileminimizing the effects of environmental exposures
on the gut microbiome. Several studies have examined changes in the gut

microbiome associated with aging in mice and revealed a unique gut
microbial composition along with structural shifts between young and aged
mice, similar to some alterations observed in human studies14–16. One
example of a conserved change across species is the decline in Lactobacillus
with age16,17.

While microbial metabolite production and degradation are the main
modes of host-microbe interactions3,18, othermechanisms, such as immune
modulation, epithelial signaling, effects on gut barrier integrity, epigenetic
changes, neurotransmitter production, and neuroendocrine signaling, also
play an important role inmediating host physiology and are likely involved
in themicrobiome-host aging axis19–23. It is increasingly clear that microbial
metabolites serve as key mediators between the microbiota itself and asso-
ciated host states. Specifically, the gut microbiota plays a crucial role in the
synthesis of essential metabolites, including vitamins, amino acids, short-
chain fatty acids (SCFAs), and other bioactive molecules, through various
enzymatic activities and metabolic pathways24. These microbially derived
metabolites contribute to food digestion, xenobiotic metabolism, and the
formation of diverse bioactive molecules25. Metabolomic analysis enables
the detection of numerous metabolites within a tissue or matrix, providing
valuable biological information that might contribute to elucidating meta-
bolic pathways influenced by aging. Several studies have characterized the
metabolome in common human diseases, particularly age-related condi-
tions like cancer26, Parkinson’s disease27, Alzheimer’s disease28, chronic
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kidney disease29, and diabetes30, revealing alterations between healthy
individuals and patients. In patients with Alzheimer’s disease, SCFAs were
reduced and tryptophan metabolism was altered28. A similar pattern was
found among those with type 2 diabetes: patients exhibited reduced SCFAs
as well as disruptions in bile acid metabolism30. As with the gut microbiota,
many variables can affect the metabolome throughout life. The serum
metabolome of aged humans has been examined in several
studies31–33. In the Chinese Guangxi Longevity Cohort, consisting of indi-
viduals aged 22 to 111 years, researchers observed an age-related link
between the gut microbiome and serummetabolites, such as an increase in
bile salts anddecreased aminoacidswith aging31. Inmice,Brownet al. found
significant differences inmetabolite profiles, such as a decrease in glutamine
and histidine, across several organs at 3, 8, and 12 weeks of age, which were
attributed to the microbiome34. In general, few studies examined the cor-
relation between the gut microbiome and metabolite profile in advanced
aging, and to our knowledge, none have looked at the fecal metabolites,
which represent gut microbiome-associated metabolites, at later stages
of life.

In this study, we initially investigated microbiome changes in young
(8 weeks old) and aged (18 months old) conventionally raised (Conv) mice
and predicted alterations in metabolic pathways based on sequenced bac-
teria (Fig. 1A).Additionally, we profiled themetabolomesof germ-free (GF)
mice andmice treated with antibiotics and compared their metabolomes to
Conv mice (Fig. 1B). This enabled us to identify changes in microbially-
derived metabolites associated with aging, as well as age-related metabolic
alterations in the absence of bacteria.

Results
Thebacterial compositionobserved inagedmice isdifferent than
that in young mice
Fecal sampleswere collected fromyoung and agedConvmice, and bacterial
16S rRNAampliconswere subsequently sequencedandcompared (Fig. 1A).
Significant differences were found in β-diversity (weighted UniFrac dis-
tances) between the two age groups (Fig. 2A, p = 0.0001). Additionally,
higher bacterial richness was observed in aged mice compared to young
mice (Fig. 2B, p = 0.0007). The taxa bar plot of the 10most abundant genera
further illustrateddistinctions in the bacterial community structure between
young and aged mice (Fig. 2C) and differential abundance analysis
(ANCOM-BC) identified 14 genera that differed significantly between
young and aged mice (Fig. 2D and Supplementary Table 2). The genera
Akkermansia and Prevotella and an unclassified genus in the Bacteroidales
family exhibited a higher log fold change in young mice whereas Copro-
coccus and Turicibacter were more abundant (relatively) in aged mice.

The microbiomes of aged mice and young mice have different
predicted metabolic capabilities
To evaluate the bacterial functional profiles of young and aged Conv mice,
we used PICRUSt2 to predict the functional capabilities of the bacterial
communities. Predicted bacterial functional pathways differed between the

age groups (Fig. 3). The observed differences in pathway class were pre-
dominantly linked to metabolism, such as carbohydrate metabolism and
lipidmetabolism, thatwere elevated in agedmice, alongwith cell growthand
apoptosis pathways and amino acid metabolism, that were increased in
young mice.

Higher age-related metabolome variance in Conv compared to
GF mice
Upon identifying differences in both the bacterial community andpredicted
metabolic pathways, we investigated the influence of the gutmicrobiome on
age-related metabolite profiles. We conducted an untargeted analysis on
fecal samples collected from young and aged mice raised under conven-
tional conditions, before and after antibiotic treatment, or under GF con-
ditions (Fig. 1B). Fecal metabolites of Conv mice clustered separately from
GF mice regardless of the age of the mice (Fig. 4A; may be due in part to
differences in diet, discussed below). Additionally, a noticeable separation
was observed between young and aged Conv mice. Age-derived differ-
entiation inmetabolome profile was nearly absent in the GF groups in a full
principal component analysis (PCA) with both Conv and GFmice, but can
be seen when GF samples are analyzed separately (Fig. S1A).

With the intention of understanding the functional consequences of
the different metabolite profiles between the groups, we concentrated solely
on annotated compounds. To date, the majority of metabolites are unan-
notated; therefore, our analysis was limited to the examination of only 711
annotated metabolites. Similar to the analysis of all metabolites, the anno-
tated metabolites clustered based on rearing conditions and age (Fig. S1B).
All metabolites with significantly different concentrations (q < 0.1) between
young and aged mice under both rearing conditions are summarized in a
Venn diagram (Fig. 4B). As expected, most of the differences were observed
in the young vs. agedConvmice,with 51 annotatedmetabolites that showed
significantly different concentrations; 14 significant annotated metabolites
were observed inGFmice; and threewere significantly different between the
age classes in both Conv and GF mice. Significant metabolites found in the
GF group and shared between the groups were attributed solely to age-
related differences in mice.We further focused our investigations on the 51
differentially abundant microbially-associated metabolites identified in the
Conv-young vsConv-aged comparisons. The absence of these differences in
the GF group indicates that themicrobiome directly or indirectly affects the
concentrations of these metabolites. These metabolites were classified into
ninemajor groups based on their chemical classes (Fig. 4C), and lipidsmade
up a substantial portion (29%) of the significantly differentially abundant
annotatedmetabolites, exhibiting higher abundance in agedmice. Notably,
significant variations were also observed in amino acids and peptides,
nucleotides and bases, and bile acids, some of which were enriched in aged
mice, and others in young mice (Fig. 4C). The 14 annotated metabolites
showing significant differences between young and aged GF mice were
mainly carbohydrates exhibiting elevated levels in the young GF mice
compared to the aged ones (Fig. 4D, E). A summary of the metabolites that
increased in aged mice in each group is given in Fig. 4E.

Fig. 1 | Experimental design.The study was divided
into two main arms. A First, the fecal microbiome
was characterized in young (8 weeks old) and old
(18 months old) conventionally raise (Conv) mice
using 16S rRNAgene sequencing.As germ-free (GF)
mice do not harbor a microbiome, they were not
included in this part of the analysis.We used in silico
methods to determine predicted functionality of the
characterized microbiota. B Untargeted metabo-
lomics was performed on fecal samples of Conv
(day 0) and GF mice. To further support our find-
ings, we also characterized the metabolomes of
young and old mice following 14 days of antibiotic
treatment. Figure created using Adobe Express and
BioRender.
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Bacterial contribution to increases in linoleic acid metabolism in
aged mice
Among the distinct metabolites observed between young and aged Conv
mice, an increase in lipids was noted, with four of these lipids (28%) iden-
tified as components of the linoleic acid metabolism pathway. In addition,
enrichment analysis detected linolic acid metabolism as the most enriched
pathway in these samples (Fig. S2A). Linoleic acid (Fig. 5A, q = 0.04), 9(10)-
EpOM (Fig. 5B q = 0.07), 9-OxoODE (Fig. 5C q = 0.08), and 13-OxoODE
(Fig. 5D, q = 0.09), metabolites involved in linoleic acid metabolism (Fig.
5E), were highly abundant in the agedConvmice compared to young Conv
mice. In addition, the metabolite 12R-HETE, which is also present in a
higher concentration in aged Conv mice (q = 0.04, Fig S2B), is part of the
arachidonic acidmetabolism pathway, which is downstream of linoleic acid
metabolism.

Given our aim to replicate a natural and normal aging state, the
Conv mice were provided with a regular, non-sterilized diet as the
autoclaved diet the GF mice received might result in the loss of some
nutrients. To tease apart the effects of diet differences and better
understand how the absence of microbiota affects host metabolome,
metabolomic analysis was also conducted on Conv mice fed a non-
sterile diet and administered antibiotics, and metabolites that are part
of the linoleic acid metabolism pathway were examined pre- and
post-treatment (Fig. 1B). Interestingly, a notable decrease in meta-
bolite levels was observed in the aged mice following antibiotic
administration, whereas no discernible effect was observed in the
young mice (Fig. S3).

Discussion
Growing evidence suggests that the gut microbiome plays a central role in
many age-related changes and contributes to longevity across various
species35. In addition, since a shift in themicrobiome is one of the hallmarks
of aging and amajor player inhealth anddiseases, understanding the impact
of themicrobiome on the host in particularly vulnerable elderly populations
is important for the development of targeted therapeutic strategies. As
expected, microbiome characterization of young and aged mice revealed
variations in the microbiome composition across different age groups,
providing valuable insights into the dynamics of microbial communities.
The genus Akkermansia, for instance, known for its association with
longevity and antidiabetic effects, decreased in agedmice4,36. Also, consistent
with the body of literature, the genus Turicibacter, which is associated with
proinflammatory factors and correlatedwith high fatmass, was increased in
aged mice14,37. Analysis of predicted functional capabilities of young and
aged microbiomes supported the influence of the gut bacterial population
on age-associated metabolome, and most of the detected pathways were
related to metabolism. Previous studies suggested that the rate of metabolic
activity and its byproducts played pivotal roles in driving the aging
process38,39. For instance, lipidmetabolism is a well-documentedpathway in
the literature that strongly correlates with aging, as evidenced by numerous
studies highlighting significant differences in humans and mice40–42. With
aging, there is an increase in body fat content accompanied by alterations in
lipidmetabolism and associatedmetabolite levels. Here we also observe that
aged mice weighed more than young mice (Fig. S4), regardless of whether
they were reared in Conv or GF conditions. This change plays a critical role
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in a range of age-related diseases such as cardiovascular disorders, cancer,
and Alzheimer’s disease40.

While PICRUSt2 is a widely used method for predicting microbially
associated metabolites from 16S rRNA amplicon sequencing data, to fully
understand the metabolic differences in our experimental groups, we

performed untargetedmetabolomics profiling on a subset of samples. After
demonstrating a clear separation between Conv and GF mice, we also
observed different clustering between young and aged mice, mostly in the
conventionally raised group.Microbiome-related differences inmetabolites
were categorized into ninemain groups, and differences in lipids weremost
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prominent, with increased abundance in aged mice. In a study comparing
Conv andGFmice fedwith a regular chow diet, an increase in several lipids
was observed in the serum, adipose tissue, and liver ofConvmice, indicating
the microbial effect on lipid metabolism43. In contrast, in GF mice, we
mainly found differences in carbohydrates and peptides between the age
groups. A hallmark of aging is the decline in metabolic flexibility, char-
acterized by an ineffective transition in utilizing fuel sources from
carbohydrates to fatty acids based on their varying availability44.
Similarly, the intestinal microbiome plays a crucial role in converting
non-digestible carbohydrates into metabolites45. Our results suggest a
potential contribution of the gut microbiome to this change and
support a possible role for the microbiome in influencing lipid
metabolism during aging.

Disruption of lipid metabolism is associated with obesity, leading to
abnormalities in blood lipid levels, deposition of lipids in non-typical
locations, and the onset of metabolic disorders such as non-alcoholic fatty
liver disease46. In a previous study on the effects of themicrobiome in aging,
we found that fecal microbiota transplantation from aged mice into young
GF recipients caused an increase in several obesity parameters, including
increased fat mass, food consumption, and elevated insulin levels in the
blood14. Albouery et al. discovered that alterations in the gut microbiome

associated with aging may impact lipid metabolism not only in the gut but
also in other organs, such as the brain and liver47.

Furthermore, in our study, four of the lipids with significantly different
concentrations were characterized as metabolites involved in the linoleic
acid metabolism pathway. Linoleic acid is an essential fatty acid that has a
significant role in adipocyte differentiation. An excess of arachidonic acid
within cells, derived from the intake of dietary linoleic acid, has the potential
to trigger adipocyte differentiation through multiple interconnected
pathways48. Excessive linoleic acid consumption has also been associated
with obesity and implicated in the chronic inflammatory condition often
observed in individuals with obesity48,49. Members of the gut microbiome,
such as Lactobacillus50, Ruminococcus, and Oscillospira51, can produce
linoleic acid. Here, we found that the linoleic acid metabolism pathway was
predicted to be enriched in aged mice in our bacterial PICRUSt2 analysis,
and when examining differences in the abundances of these three specific
taxa, we found higher abundance of Lactobacillus and Oscillospira in aged
mice (Fig. S5, t-test).

Building upon our previous research, demonstrating that the gut
microbiome of aged mice has obesogenic characteristics14, we hypothesize
that alterations in themicrobiome in aging increase lipids levels in feces, and
likely systemically, and impact linoleic acid metabolism, which potentially
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contributes to increased obesity parameters in aged mice. We do
acknowledge that aged GF mice also exhibit higher body weight compared
to young GF mice, indicating that age-related weight gain can occur inde-
pendently of the microbiome and is likely influenced by additional age-
associated factors.

One limitation of this study is the inability to establish direct correla-
tions between the microbiome and metabolites due to the lack of matched
samples for analysis. However, the comparison to GF mice highlighted the
influence of the microbiome on different metabolites. Furthermore, varia-
tions in diets, including the autoclaved diet provided to the GF mice, may
have influenced our results, as dietarymacronutrient composition can have
an impact on the gut microbiome and subsequently, the fecal metabolome.
In addition, it prevented direct comparisons between the Conv and the GF
groups. To mitigate this issue, our analysis primarily focused on discerning
differences between young and agedmice within each group separately.We
chose not to feed the conventional group an autoclaved diet as well, as this
process destroys many of the diet's components, thus hindering the simu-
lation of the natural and healthy aging process52. Additionally, the exclusive
use of fecal samples as opposed to serum samples limits our understanding
of metabolite transport into the bloodstream, thus hindering a compre-
hensive assessment of systemic metabolic changes associated with the gut
microbiome in aging mice. Future studies incorporating both fecal and
serum metabolomics analyses could provide valuable insights into the
transport dynamics of metabolites and their systemic effects. Lastly, our
study focused only on female mice, as the effects of the microbiome on the
metabolome in females are understudied53,54. While this decision was made
to address current knowledge gaps, future studies should include both sexes
to better understand the potential sex-dependent differences in
microbiome-metabolome interactions during aging.

Methods
Mouse handling and sample collection
Fecal samples were collected from young (8 weeks old) and old (18 months
old) Conv and GF Swiss-Webster (SW) female mice. Mice were weighed at
the time of fecal sample collection. In addition, following fecal sample col-
lection, Conv mice received an antibiotic treatment consisting of 0.04 g
ciprofloxacin, 0.2 g metronidazole, and 0.1 g vancomycin in 400ml sterile

water for 2weeks andwere then sampled again. All Convmice were housed
2–3miceper cage in the same room, andGFmicewerehoused in cages of up
to 4 mice per cage in sterile isolators. GFmice were fed an autoclaved chow
diet enrichedwith proteins (28%) and fats (22%) (Altromin 1414 IRR, Lage,
Germany) while Conv mice were fed a normal chow diet (11% fats, 24%
proteins and 65% carbohydrates; Altromin 1324 IRR, Lage, Germany). All
mice weremaintained at 22 ± 1 °Cwith a 12 h light/dark cycle at the animal
facility of Azrieli Faculty of Medicine, BIU, Israel. The experiment was
performed following approval from the Institutional Animal Care and Use
Committee (permit number 67-09-2021). As only fecal samples were col-
lected, no anesthesia was used. Animals were aged further as part of an
extension of this study such that no animals were euthanized in this
research.

Gut microbiome characterization
Total DNAwas extracted from fecal samples of 30 young and 30 agedConv
mice (Fig. 1A) using the MagMAX Microbiome Ultra Kit (Thermo Fisher
Scientific, Waltham MA, USA) according to the manufacturer’s instruc-
tions, following a 2-min bead-beating step (BioSpec, Bartlesville, OK,USA).
Several GF fecal samples were also included to ensure the GF status.
Amplification of the V4 region of the bacterial 16S rRNA gene was per-
formed using barcoded 515 F and 806 R primers following the Earth
Microbiome Project protocol55. The PCR reaction was comprised of 2 μl of
515 F primer (10 μM), 2 μl of 806 R primer (10 μM), 25 μl of PrimeSTAR
Max PCRReadymix (Takara, San Jose, CA,USA), 17 μl of ultra-pure water,
and approximately 20 ng of DNA. The PCR protocol consisted of an initial
step at 95 °C for 3min, followedby30 cycles of 10 s at 98 °C, 5 s at 55 °C, and
20 s at 72 °C,with afinal elongation step for 1min at 72 °C. Ampliconswere
purified using VAHTS DNA Clean Beads (Vazyme, Nanjing, China) and
quantified with the Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen,
Carlsbad, CA, USA). Equimolar amounts of DNA from each sample
were pooled to ensure consistent read depth. After gel electrophoresis
on a 2% agarose E-Gel (Invitrogen, Carlsbad, CA, USA), DNA was
extracted from the gel using the NucleoSpin Gel and PCR Clean-up
Kit (Macherey-Nagel, Düren, Germany) before being sequenced on
the Illumina Miseq platform at the Genomic Center, Azrieli Faculty
of Medicine, BIU, Israel.
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Fig. 5 | Bacterially associated elevation in linoleic acid metabolism in aged mice.
A–D Peak intensity of age-related, differentially abundant metabolites that are part
of linoleic acid metabolism in conventionally raised (Conv) mice: Linoleic acid,

9(10)-EpOME, 9-OxoODE, and 13-OxoODE, # q < 0.1, *q = 0.04. E Linoleic acid
metabolism pathway (KEGG map0059176).
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Bioinformatic analysis was conducted on the sequence reads using
QIIME2 software (version 2023.7)56, with error correction performed by
DADA257. A phylogenetic tree was generated and taxonomic classification
was achieved utilizing the Greengenes reference database with a confidence
threshold set at 99%58.Datawas thenexported fromQIIME2 intoR (version
4.1.2). A phyloseq object was built using the phyloseq R package (version
1.46)59. Samples were rarefied based on rarefaction curves (vegan package,
version 2.6-460) to a depth of 3000 sequences. While rarefying may reduce
sensitivity due to data loss, it has the advantages of not being prone to false
positives or effects of sequencing effort that can impact other normalization
methods61. For beta diversity assessment, principal coordinate analysis
(PCoA) was applied based on weighted UniFrac distances62. Statistical
analysis was donewith the adonis2 function using the vegan package. Alpha
diversity, measured by Faith’s phylogenetic diversity63, was also computed
and compared using Mann–Whitney tests. To identify differentially
abundant taxa, analysis of compositions of microbiomes with bias correc-
tion (ANCOM-BC)was performedwith theANCOM-BCpackage (version
2.4)64. Since the ANCOM-BC function includes normalization, we used the
unrarefied taxa table for this analysis. In addition, differences in Lactoba-
cillus, Ruminococcus, and Oscillospira abundance between the groups were
tested using a t-test. These taxa were specifically targeted because they were
previously associated with aging in humans and mice (see lit review above)
and because of their relationship with linoleic acid metabolism (all three
taxa,50). All figures were generated using ggplot2 (version 3.3.4)65. For
functional predictions based on bacterial sequencing, PICRUSt266 was used
within the QIIME2 pipeline and then visualized results in R using the
ggpicrust2 package (version 1.7.3)67.

Metabolomics sample preparation
Metabolite extraction and protein precipitation were conducted by Afekta
Technologies Ltd (Kuopio, Finland) on four fecal samples from each group
(young and aged mice, raised conventionally, before and after antibiotics
treatment, or germ free; Fig. 1B). Samples were individually homogenized
with cold 80%v/v aqueous LC-MSultra-grademethanol in a ratio of 900 µL
per 100mg of sample using a Bead Ruptor 24 Elite homogenizer (OMNI,
Kennesaw GA, USA) at 6m/s at 2 ± 2 °C for 30 s. Following 15min ice
incubation and 10 s vortex, samples were centrifuged for 10min at 4 °C and
17,000 × g. The supernatant was collected and filtered (Captiva ND filter
plate 0.2 µm, Agilent, Santa Clara, CA, USA) by centrifuging for 5min at
700 × g at 4 °C, and then samples were kept at 4 °C until analysis. Following
this procedure, a portion of each sample (60 µL)was pooled into one tube to
be used as a pooled quality control sample in the analysis.

Metabolomics liquid chromatography–mass spectrometry (LC-
MS) analysis
Sampleswere analyzed in anuntargetedmanner by liquid chromatography-
mass spectrometry (LC-MS) on an Agilent 6546 Q-TOF LC/MS system
with Agilent Jet Stream source and 1290 Infinity II UHPLC system (Santa
Clara, CA, USA). The analytical method has been described in detail by
Hanhineva et al.68 and Klåvus et al.69. In brief, for the reversed-phase (RP)
separation, a Zorbax Eclipse XDB-C18 column (2.1 × 100mm, 1.8 µm;
Agilent, Santa Clara, CA,USA)was used and anAcquityUPLCBEHamide
column (Waters, Milford, MA, USA) was used for the HILIC separation.
After each chromatographic run, ionizationwas carried out using jet stream
electrospray ionization (ESI) in the positive and negative mode, yielding
four data files per sample. The collision energies for the MS/MS analysis
were selected as 10, 20, and 40 V, for compatibility with spectral databases.

Metabolomics data processing
Peak detection and alignment were conducted using MS-DIAL version
4.9070. Peak collection involved inclusion ofm/z values ranging from 50 to
1500 and all retention times, with a minimum peak height set at 3000. The
peaks were detected using a linear weighted moving average algorithm.
Alignment of peaks across samples employed a retention time tolerance of
0.1min and anm/z tolerance of 0.015 Da. To eliminate solvent background,

blank solvent samples were utilized, with the condition that signal abun-
dance across samples was at least five times greater than the average in the
solvent blank samples to be retained for further data analysis.

After the peak picking, a total of 77,578 molecular features were
included in the data preprocessing and clean-up step. The annotation of
eachmetabolite and the level of confidence for the identification were given
based on the recommendations published by the Chemical Analysis
Working Group (CAWG) Metabolomics Standards Initiative (MSI)71. The
final analysiswasmade on711metaboliteswith annotation tags of at least of
430 (Supplementary Table 1). Metabolites were classified based on meta-
bolite type manually, and from these groups, common pathways were
inferred. In addition, pathway enrichment analysis was conducted con-
sidering the 51 annotated metabolites that had significantly different con-
centrations across the age groupsofConvmice. This analysiswasperformed
using the MetaboAnalyst 6.0 website72, to identify significantly over-
represented metabolic pathways.

Metabolomics statistics and visualizations
A PCA plot was generated with the prcomp function (R base stats package,
version 4.3.2) based on the full metabolome profile of all 77,578metabolites
and based on only annotated metabolites. Next, differences between
annotated metabolite concentrations in young and aged mice were exam-
ined forConv andGFmice separately using thepeak intensities recorded for
each sample for each metabolite. T-tests with FDR corrections were per-
formed using the genefilter package (version 1.84)73. A Venn diagram was
generated using InteractiVenn, a web-based tool, considering all significant
metabolites (young vs old, q < 0.1) in Conv and GF mice groups, and a
heatmap was generated using the ComplexHeatmap package (version
2.18)74 considering significantly differentmetabolites present in each group.
Differences between linoleic acid metabolism in the antibiotic-treated mice
were examinedusing t-tests after equal varianceswere confirmed.Allfigures
were generated using the ggplot2 package unless specified otherwis65.

Data availability
All sequencing data were submitted to EBI (project accession number
ERP160940). The metabolomics data have been deposited toMetaboLights
repository with the study identifier MTBLS1008575.

Received: 17 October 2024; Accepted: 7 August 2025;

References
1. Khaltourina, D., Matveyev, Y., Alekseev, A., Cortese, F. & Ioviţă, A.

Aging fits the disease criteria of the international classification of
diseases.Mech. Ageing Dev. 189, 111230 (2020).

2. Heintz, C. & Mair, W. You are what you host: microbiome modulation
of the aging process. Cell 156, 408–411 (2014).

3. Boyajian, J. L., Ghebretatios, M., Schaly, S., Islam, P. & Prakash, S.
Microbiome and human aging: probiotic and prebiotic potentials in
longevity, skin health and cellular senescence. Nutrients 13, 4550
(2021).

4. Bárcena, C. et al. Healthspan and lifespan extension by fecal
microbiota transplantation into progeroid mice. Nat. Med 25,
1234–1242 (2019).

5. López-Otín, C., Blasco,M. A., Partridge, L., Serrano,M. &Kroemer, G.
Hallmarks of aging: an expanding universe.Cell 186, 243–278 (2023).

6. Wilmanski, T. et al. Gutmicrobiome pattern reflects healthy aging and
predicts survival in humans. Nat. Metab. 3, 274–286 (2021).

7. Jing, Y. et al. Role ofmicrobiota-gut-brain axis in natural aging-related
alterations in behavior. Front. Neurosci. 18, 1362239 (2024).

8. Alsegiani, A. S. &Shah, Z. A. The influence of gutmicrobiota alteration
on age-related neuroinflammation and cognitive decline. Neural
Regen. Res. 17, 2407 (2022).

9. Jing, Y. et al. Age-related alterations in gut homeostasis are
microbiota dependent. npj Biofilms Microbiomes 11, 51 (2025).

https://doi.org/10.1038/s41522-025-00811-w Article

npj Biofilms and Microbiomes |          (2025) 11:173 7

www.nature.com/npjbiofilms


10. Boopathi, S. et al. Gut Enterobacteriaceae and uraemic toxins -
Perpetrators for ageing. Exp. Gerontol. 173, 112088 (2023).

11. Bosco, N. & Noti, M. The aging gutmicrobiome and its impact on host
immunity. Genes Immun. 22, 289–303 (2021).

12. You, X., Dadwal, U. C., Lenburg, M. E., Kacena, M. A. & Charles, J. F.
Murine gut microbiome meta-analysis reveals alterations in
carbohydrate metabolism in response to aging.mSystems 7,
e01248–21 (2022).

13. Ghosh, T. S., Shanahan, F. & O’Toole, P. W. The gut microbiome as a
modulator of healthy ageing. Nat. Rev. Gastroenterol. Hepatol. 19,
565–584 (2022).

14. Binyamin, D. et al. The aging mouse microbiome has obesogenic
characteristics. Genome Med. 12, 87 (2020).

15. Barreto, H. C., Sousa, A. & Gordo, I. The landscape of adaptive
evolution of a gut commensal bacteria in aging mice. Curr. Biol. 30,
1102–1109.e5 (2020).

16. van der Lugt, B. et al. Integrative analysis of gut microbiota
composition, host colonic gene expression and intraluminal
metabolites in aging C57BL/6J mice. Aging 10, 930–950 (2018).

17. Xu, C., Zhu, H. & Qiu, P. Aging progression of human gut microbiota.
BMC Microbiol. 19, 236 (2019).

18. Zhang, Y., Chen, R., Zhang, D., Qi, S. & Liu, Y. Metabolite interactions
between host and microbiota during health and disease: which feeds
the other?Biomed. Pharmacother. 160, 114295 (2023).

19. Molinero, N. et al. Gut microbiota, an additional hallmark of human
aging and neurodegeneration. Neuroscience 518, 141–161 (2023).

20. Best, L. et al. Metabolic modelling reveals the aging-associated
decline of host–microbiome metabolic interactions in mice. Nat.
Microbiol 10, 973–991 (2025).

21. Nichols, R. G. & Davenport, E. R. The relationship between the gut
microbiome and host gene expression: a review. Hum. Genet 140,
747–760 (2021).

22. Loh, J. S. et al. Microbiota–gut–brain axis and its therapeutic
applications in neurodegenerative diseases. Sig Transduct. Target
Ther. 9, 1–53 (2024).

23. Zheng, D., Liwinski, T. & Elinav, E. Interaction betweenmicrobiota and
immunity in health and disease. Cell Res. 30, 492–506 (2020).

24. Mukhopadhya, I. & Louis, P. Gut microbiota-derived short-chain fatty
acids and their role in human health and disease.Nat. Rev. Microbiol.
1–17 https://doi.org/10.1038/s41579-025-01183-w. (2025)

25. Belizário, J. E., Faintuch, J. & Garay-Malpartida, M. Gut microbiome
dysbiosis and immunometabolism: new frontiers for treatment of
metabolic diseases.Mediat. Inflamm. 2018, e2037838 (2018).

26. Xie, Z. et al. Metabolomic analysis of gut metabolites in patients with
colorectal cancer: Association with disease development and
outcome. Oncol. Lett. 26, 358 (2023).

27. Yan, Z. et al. Alterations of gut microbiota and metabolome with
Parkinson’s disease.Microb. Pathog. 160, 105187 (2021).

28. Wu, L. et al. Altered gut microbial metabolites in amnestic mild
cognitive impairment and Alzheimer’s disease: signals in
host–microbe interplay. Nutrients 13, 228 (2021).

29. Wang, H. et al. Perturbed gut microbiome and fecal and serum
metabolomes are associated with chronic kidney disease severity.
Microbiome 11, 3 (2023).

30. Al Bataineh, M. T. et al. Uncovering the relationship between gut
microbial dysbiosis, metabolomics, and dietary intake in type 2
diabetes mellitus and in healthy volunteers: a multi-omics analysis.
Sci. Rep. 13, 17943 (2023).

31. Sun, L. et al. Age-dependent changes in the gutmicrobiota and serum
metabolome correlate with renal function and human aging. Aging
Cell 22, e14028 (2023).

32. Yu, Z. et al. Human serum metabolic profiles are age dependent.
Aging Cell 11, 960–967 (2012).

33. Lawton, K. A. et al. Analysis of the adult human plasma metabolome.
Pharmacogenomics 9, 383–397 (2008).

34. Brown, K. et al. Microbiota alters the metabolome in an age- and sex-
dependent manner in mice. Nat. Commun. 14, 1348 (2023).

35. Badal, V. D. et al. The gut microbiome, aging, and longevity: a
systematic review. Nutrients 12, 3759 (2020).

36. Plovier, H. et al. A purified membrane protein from Akkermansia
muciniphila or the pasteurized bacterium improves metabolism in
obese and diabetic mice. Nat. Med. 23, 107–113 (2017).

37. Liu, A. et al. Aging increases the severity of colitis and the related
changes to the gut barrier and gut microbiota in humans and mice. J.
Gerontol. Ser. A 75, 1284–1292 (2020).

38. Catic, A. Cellular metabolism and aging. Prog. Mol. Biol. Transl. Sci.
155, 85–107 (2018).

39. Palmer, A. K. & Jensen, M. D. Metabolic changes in aging humans:
current evidence and therapeutic strategies. J. Clin. Investig. 132,
e158451 (2024).

40. Chung, K. W. Advances in understanding of the role of lipid
metabolism in aging. Cells 10, 880 (2021).

41. Feng, L. et al. Age-related trends in lipid levels: a large-scale cross-
sectional study of the general Chinese population. BMJ Open 10,
e034226 (2020).

42. Hornburg, D. et al. Dynamic lipidome alterations associated with
human health, disease and ageing. Nat. Metab. 5, 1578–1594 (2023).

43. Velagapudi, V. R. et al. The gutmicrobiotamodulates host energy and
lipid metabolism in mice [S]. J. Lipid Res. 51, 1101–1112 (2010).

44. Zhou, Q., Yu, L., Cook, J. R., Qiang, L. & Sun, L. Deciphering the
decline of metabolic elasticity in aging and obesity. Cell Metab. 35,
1661–1671.e6 (2023).

45. Rowland, I. et al. Gut microbiota functions: metabolism of nutrients
and other food components. Eur. J. Nutr. 57, 1–24 (2018).

46. Schoeler, M. & Caesar, R. Dietary lipids, gut microbiota and lipid
metabolism. Rev. Endocr. Metab. Disord. 20, 461–472 (2019).

47. Albouery, M. et al. Age-related changes in the gut microbiota modify
brain lipid composition. Front. Cell Infect. Microbiol. 9, 444 (2020).

48. Naughton, S. S., Mathai, M. L., Hryciw, D. H. &McAinch, A. J. Linoleic
acid and the pathogenesis of obesity. Prostaglandins Other Lipid
Mediat. 125, 90–99 (2016).

49. Mamounis, K. J., Yasrebi, A. & Roepke, T. A. Linoleic acid causes
greater weight gain than saturated fat without hypothalamic
inflammation in the male mouse. J. Nutr. Biochem. 40, 122–131
(2017).

50. Fujimoto, D. et al. The relationship between unique gut microbiome-
derived lipidmetabolites andsubsequent revascularization inpatients
who underwent percutaneous coronary intervention. Atherosclerosis
375, 1–8 (2023).

51. Shenghua, P. et al. An integrated fecal microbiome and metabolome
in the aged mice reveal anti-aging effects from the intestines and
biochemical mechanism of FuFang zhenshu TiaoZhi(FTZ). Biomed.
Pharmacother. 121, 109421 (2020).

52. Su, X. et al. High-coverage metabolome analysis reveals significant
diet effects of autoclavedand irradiated feedonmouse fecal andurine
metabolomics.Mol. Nutr. Food Res. 65, 2100110 (2021).

53. Lee, J. et al. Gut microbiota-derived short-chain fatty acids
promote poststroke recovery in aged mice. Circ. Res. 127,
453–465 (2020).

54. Parker, A. et al. Fecal microbiota transfer between young and aged
mice reverses hallmarks of the aging gut, eye, and brain.Microbiome
10, 68 (2022).

55. Caporaso, J. G. et al. Ultra-high-throughput microbial community
analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6,
1621–1624 (2012).

56. Bolyen, E. et al. Reproducible, interactive, scalable and extensible
microbiomedata scienceusingQIIME2.Nat.Biotechnol.37, 852–857
(2019).

57. Callahan, B. J. et al. DADA2: high-resolution sample inference from
Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

https://doi.org/10.1038/s41522-025-00811-w Article

npj Biofilms and Microbiomes |          (2025) 11:173 8

https://doi.org/10.1038/s41579-025-01183-w
https://doi.org/10.1038/s41579-025-01183-w
www.nature.com/npjbiofilms


58. DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene
database and workbench compatible with ARB. Appl. Environ.
Microbiol 72, 5069–5072 (2006).

59. McMurdie, P. J. &Holmes,S. phyloseq: anRpackage for reproducible
interactive analysis and graphics of microbiome census data. PLoS
ONE 8, e61217 (2013).

60. Dixon, P. VEGAN, a package of R functions for community ecology. J.
Veg. Sci. 14, 927–930 (2003).

61. Weiss, S. et al. Normalization and microbial differential abundance
strategies depend upon data characteristics. Microbiome 5, 27
(2017).

62. Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for
comparing microbial communities. Appl. Environ. Microbiol 71,
8228–8235 (2005).

63. Faith, D. P. & Baker, A. M. Phylogenetic diversity (PD) and biodiversity
conservation: some bioinformatics challenges. Evol. Bioinform.
Online 2, 121–128 (2007).

64. Lin,H.&Peddada,S.D.Analysis of compositionsofmicrobiomeswith
bias correction. Nat. Commun. 11, 3514 (2020).

65. Wickham, H. Ggplot2 (Springer International Publishing, https://doi.
org/10.1007/978-3-319-24277-4. 2016).

66. Douglas, G. M. et al. PICRUSt2 for prediction of metagenome
functions. Nat. Biotechnol. 38, 685–688 (2020).

67. Yang, C. et al. ggpicrust2: an R package for PICRUSt2 predicted
functional profile analysis and visualization. Bioinformatics 39,
btad470 (2023).

68. Hanhineva, K. et al. Nontargeted metabolite profiling discriminates
diet-specific biomarkers for consumption of whole grains, fatty fish,
and bilberries in a randomized controlled trial1, 2, 3. J. Nutr. 145, 7–17
(2015).

69. Klåvus, A. et al. notame’: workflow for non-targeted LC-MSmetabolic
profiling.Metabolites 10, 135 (2020).

70. Tsugawa, H. et al. MS-DIAL: data-independent MS/MS
deconvolution for comprehensive metabolome analysis. Nat.
Methods 12, 523–526 (2015).

71. Sumner, L. W. et al. Proposed minimum reporting standards for
chemical analysis Chemical Analysis Working Group (CAWG)
Metabolomics Standards Initiative (MSI).Metabolomics 3, 211–221
(2007).

72. Pang, Z. et al. MetaboAnalyst 6.0: towards a unified platform for
metabolomics data processing, analysis and interpretation. Nucleic
Acids Res. 52, W398–W406 (2024).

73. Gentleman, R., Carey, V., Huber, W. & Hahne, F. Genefilter: methods
for filtering genes from high-throughput experiments. R package
version 1.64.0. (2018).

74. Gu, Z., Eils, R. &Schlesner,M.Complex heatmaps reveal patternsand
correlations in multidimensional genomic data. Bioinformatics 32,
2847–2849 (2016).

75. Yurekten, O. et al. MetaboLights: open data repository for
metabolomics. Nucleic Acids Res. 52, D640–D646 (2024).

76. Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-
Watanabe, M. KEGG for taxonomy-based analysis of pathways and
genomes. Nucleic Acids Res. 51, D587–D592 (2023).

Acknowledgements
We thank all members of the Koren lab for their support, feedback, and
discussions throughout this study. DB acknowledges the Israel Academy of
Sciences and Humanities for supporting her PhD through a yearly
scholarship from the Adams Fellowships Program.

Author contributions
D.B., S.T., and O.K. designed the study; D.B. and N.A. performed mouse
experiments and data acquisition, D.B. and R.S. analyzed the data; D.B.,
S.T., and O.K. interpreted the results, prepared the figures, and were
involved inwriting and critically revising themanuscript; O.K. supervised the
project. All authors approved the final version of the manuscript.

Competing interests
OK serves as an EIC of this journal and had no role in the peer-review or
decision to publish this manuscript. All other authors declare no competing
interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41522-025-00811-w.

Correspondence and requests for materials should be addressed to
Omry Koren.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s41522-025-00811-w Article

npj Biofilms and Microbiomes |          (2025) 11:173 9

https://doi.org/10.1007/978-3-319-24277-4
https://doi.org/10.1007/978-3-319-24277-4
https://doi.org/10.1007/978-3-319-24277-4
https://doi.org/10.1038/s41522-025-00811-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjbiofilms

	The microbiome is associated with obesity-related metabolome signature in the process of aging
	Results
	The bacterial composition observed in aged mice is different than that in young mice
	The microbiomes of aged mice and young mice have different predicted metabolic capabilities
	Higher age-related metabolome variance in Conv compared to GF mice
	Bacterial contribution to increases in linoleic acid metabolism in aged mice

	Discussion
	Methods
	Mouse handling and sample collection
	Gut microbiome characterization
	Metabolomics sample preparation
	Metabolomics liquid chromatography–mass spectrometry (LC-MS) analysis
	Metabolomics data processing
	Metabolomics statistics and visualizations

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




