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Pregnancy-associated breast cancer (PABC), diagnosed during or shortly after pregnancy, is a
challenging entity with an aggressive biology and poor prognosis. This study analyzed the
clinicopathological characteristics and gene expression profile of 33 PABC and 26 non-PABC patients
using the nCounter BC360 Panel (NanoString). Notably, PABC showed a higher prevalence of basal-
like tumors than non-PABC (48.48% vs 15.38%, p = 0.012) and displayed 73 differentially expressed
genes (e.g., DEPDC1, CCNA2, PSAT1, CDKN3, and FAM83D), enriched in DNA repair and cell
proliferation pathways. Through the PPl network, we also identified a cluster of cell-cycle regulation
genes like MYC, FOXM1, or PTEN. Interestingly, differences emerged when comparing patients
diagnosed during gestation (PABC-GS) and the postpartum period (PABC-PP), with PABC-PP
showing increased expression of immune-related genes, including PD-1, and greater immune cell
infiltration (Tregs, macrophages, neutrophils, B-cells). These findings suggest an enhanced
proliferative capacity and impaired DNA repair in PABC, and underscore the role of immune infiltration
in postpartum cases; providing insights into its aggressive nature and potential targets.
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Breast cancer (BC) is one of the most common malignancies in pregnancy,
accounting for approximately 1 in 3000 pregnancies, and is the leading cause
of cancer-related death among pregnant and breastfeeding women"’.
Pregnancy-associated breast cancer (PABC) is mainly defined as a BC
diagnosed during gestation or within the first years after childbirth, although
the definition may vary depending on the length of this postpartum
period™. This malignancy in the prenatal and postnatal period is a chal-
lenging clinical situation to diagnose and manage, with the need to consider
both the mother and the potential risks to the fetus. PABC is estimated to
represent 0.2-3.8% of all BC cases, with the rate rising to 7% for women
under 45 years of age™. However, an increase in PABC cases has been
reported in recent years and is expected to continue. This is likely because
women tend to delay childbearing, which increases the risk of BC by about
5% per year of delay™. Interestingly, the incidence of PABC is significantly
higher in the postpartum period than during pregnancy, which may be due
to pregnancy-related changes in the breast and diagnostic challenges that
make the tumor difficult to detect during this period’.

It often affects younger women with a median age of 33 years at
diagnosis, and there is significant concern regarding the particularly
aggressive behavior of the disease. PABC tumors are typically negative for
both estrogen/progesterone receptors (ER/PR) and the human epidermal
growth factor receptor 2 (HER2), which results in a higher prevalence of
triple-negative breast cancer (TNBC). Furthermore, they often exhibit less
favorable tumor characteristics such as advanced TNM stages, high grade,
larger tumor size, and a higher rate of lymph node involvement compared to
non-pregnancy-associated breast cancer (non-PABC)’”’. Overall, PABC is
associated with a poorer prognosis compared to non-PABC, previously
attributed to late diagnosis and advanced disease stage at presentation'’.
However, recent meta-analyses have reported that PABC exhibits a lower
survival rate and a higher propensity for metastasis compared to non-
PABC, even after adjusting for stage at diagnosis, particularly among those
diagnosed shortly after birth''"*. This finding suggests a potential influence
of the mammary microenvironment during pregnancy and the reproduc-
tive history on the biology and prognosis of PABC".

This hypothesis is supported by the fact that pregnancy triggers two
potentially opposite effects on BC risk, both cancer-protective and cancer-
promoting”. This dual effect is strongly influenced by the age at first
pregnancy, with a more pronounced long-term protective effect for young
mothers. Nevertheless, all mothers face a transient increase in the BC risk
after a full-term pregnancy, but especially those who have their first child
after the age of 35'*". Therefore, the period surrounding pregnancy may
provide an opportunity for BC development due to the hormonal and
immunological changes that occur during pregnancy, as well as the effects of
breastfeeding and breast involution in the postpartum period, which could
modify the tumor microenvironment and promote neoplastic formation
and/or progression of pre-existing disease'*".

Although the definitive biological mechanisms driving PABC remain
unclear, several hypotheses have been proposed about factors that could
work together to contribute to PABC development. The unique hormonal
milieu during pregnancy, marked by high levels of pregnancy hormones,
may promote breast cell proliferation and potentially initiate oncogenic
transformation®'. Furthermore, the cellular immunosuppression and
immune tolerance, which prevent immune rejection of the fetus, may also
allow mammary tumor cells to evade the immune system and proliferate
without detection”. Breast involution is a major physiological change where
the mammary gland returns to a quiescent state resembling pre-pregnancy.
This process involves apoptosis and clearance of the secretory mammary
epithelium, creating a postpartum involuting microenvironment char-
acterized by an initial inflammatory response followed by immunosup-
pression, which is known to be potentially pro-oncogenic”**. Indeed,
several studies suggest that lack or short duration of lactation (<12 months)
may confer an increased risk of developing aggressive tumors due to the
accumulation of less differentiated cells that survive apoptosis during breast
involution™.

Given the complex nature of PABC, further research into the molecular
mechanisms involved in its pathogenesis is essential to improve our
understanding and management. Current diagnostic methods have lim-
itations in the successful detection of BC in pregnant or breastfeeding
women, likewise, treatment options are currently limited to existing
guidelines for young women with BC without specific targeted therapies
identified for the PABC population™. Hence, it is crucial to uncover the
molecular pathways and drivers of this neoplasm to explain its aggressive
biological characteristics, and potential relationship with pregnancy, as well
as to identify new biomarkers with preventive and clinical implications for
PABC patients. However, the molecular and biological basis of PABC
remains incomplete, as few studies have focused on the molecular char-
acterization of PABC™ ™, and our knowledge of the genomic and immune
profile of PABC tumors is still limited.

Therefore, this study aims to explore the molecular landscape of PABC
by using molecular profiling approaches in order to identify key pathways
and genes associated with PABC onset, considering the timing of diagnosis.
Using the NanoString technology, we performed comparative gene
expression analyses on formalin-fixed paraffin-embedded (FFPE) samples
from young patients with BC diagnosed during gestation (PABC-GS), in the
first year postpartum (PABC-PP), or not related to pregnancy (non-PABC)
(Supplementary Fig. 1). In addition, we used STRING analysis to show the
potential interaction network between the proteins encoded by the most
significantly expressed genes in each patient group.

Results

Patients and tumor characteristics

Table 1 summarizes the main characteristics of the patients and tumors. A
total of 59 BC patients were included in the present study, of which 55.9%
(n = 33) were classified as PABC and 44.1% (n = 26) as non-PABC. Within
the PABC group, 15 patients (45.5%) were diagnosed during gestation
(PABC-GS subgroup), and the remaining 18 patients (54.5%) were diag-
nosed during the first year postpartum (PABC-PP subgroup). Notably, the
proportion of patients with a family history of breast/ovarian cancer was
significantly higher in the PABC than in the non-PABC group (57.6% vs
15.4%, p = 0.012).

According to the immunohistochemistry evaluation, the triple-
negative subtype is prominent in PABC, with 48.5% of TN tumors, fol-
lowed by 36.6% HR*/HER2™ and 15.5% of HER2" tumors (p =0.0595,
Table 1). Regarding histological type, tumor size, histology grade, lymph
node invasion, and metastasis, no statistical differences were observed
between groups. But it is noteworthy that over half of PABC tumors (54.5%)
were classified as high-grade (G3). Data on tumor-infiltrating lymphocytes
(TILs) were only available for PABC patients, 51.5% of whom exhibited
elevated TIL levels (above 10%). Notably, when comparing the subgroups,
we found that 61.1% of PABC-PP tumors had high TIL scores, against
40.0% of PABC-GS tumors.

Basal-like is the predominant subtype in PABC patients
Regarding the classification of intrinsic subtypes by the PAM50 gene
expression signature (Supplementary Table 1), we noticed that basal-like
subtype was significantly more frequent in PABC patients compared to
non-PABC group (48.48% vs 15.38%, p = 0.012) (Fig. 1a). While the luminal
A subtype was the least common subtype in PABC group, it was the most
common in the non-PABC group (12.12% vs 34.62%, p = 0.0578) (Fig. 1a).
Upon analysis of the diagnosis timing, both PABC-GS and PABC-PP
subgroups demonstrated similar proportions of basal-like tumors (46.67%
and 50%, respectively). Notably, this subtype was also the most prevalent
within each subgroup (Fig. 1b).

Principal component analysis (PCA) score plot revealed distinct
clusters separating most of the PABC and non-PABC samples (Fig. 1¢). In
addition, this analysis demonstrated a clear separation of basal-like samples
from other subtypes, with the majority belonging to the PABC group
(Fig. 1¢).

npj Breast Cancer| (2025)11:12


www.nature.com/npjbcancer

https://doi.org/10.1038/s41523-025-00718-x

Article

Table 1 | Clinicopathological characteristics of the study cohort

Patient’s characteristics PABC non-PABC p-value
All PABC-GS PABC-PP All Y
(n=33) (n=15) (n=18) (n=26)
Age at diagnosis (years) 35.7 36.5 35.2 36.8 0.0791
Median (min-max) (29.6-42.6) (29.5-38.5) (31.6-42.6) (27.0-44.3)
Age at menarche (years) 12.0 12.0 12,5 12.0 0.4879
Median (min-max) (10.0-15.0) (10.0-14.0) (11.0-15.0) (10.0-14.0)
Family history of breast/ovarian cancer (n, %)
Yes 19 (57.6) 7 (46.7) 12 (66.7) 4 (15.4) 0.0012
No 14 (42.4 8(53.3) 6(33.3) 22 (84.6)
Germline mutations (n, %)
BRCA1/2 mutation 5(15.2) 1(6.7) 4(22.2) 0(0) NA
BRCA1/2 WT 8 (24.2) 6(4.0) 2(11.1) 0(0)
Unknown 20 (60.6) 8(53.3) 12 (66.6) 26 (100)
Recurrence (n, %)
Follow-up period (median, years) 6.0 6.0 5.0 8.5 0.999
Yes 10 (30.3) 3(20.0) 7(38.9) 7(26.9)
No 23 (69.7) 12 (80.0) 11 (61.1) 19 (73.1)
Recurrence type (n, %)
Local/regional 4(12.1) 0(0.0) 4(22.2) 0(0.0) 0.115
Distant 5(15.2) 3(20.0) 2(11.1) 3(11.5)
Unknown 1(3.03) 0(0.0) 1(5.6) 4(15.4)
NA 23(30.3) 12 (80.0) 11 (61.1) 19 (73.1)
New primary disease (n, %)
No 32 (97.0) 15 (100.0) 17 (94.4) 26 (100.0) 0.999
Yes 13.0 0(0.0) 1(5.6) 0(0.0)
No. full-term pregnancy prior to BC (n, %)
0 14 (42.4) 7 (46.7) 7(38.9) 10 (38.5) 0.024
1 15 (45.5) 6 (40.0) 9 (50.0) 6 (23.0)
2 3(9.1) 2(13.3) 1(5.6) 10(38.5)
3 13.0 0(0.0) 1(5.6) 0(0.0)
Child’s gender (n, %)
Female 16 (48.5) 7 (46.7) 9 (50.0) NA NA
Male 15 (45.5) 6 (40.0) 9 (50.0)
Unknown 2 (6.0) 2(13.3) 0(0.0)
Time of BC diagnosis (n, %)
Gestation 15 (45.5) 15 (100.0) 0(0.0) 0(0.0) NA
<12 months postpartum 18 (54.5) 0(0.0) 18 (100.0) 0(0.0)
<5 years after birth 0(0.0) 0(0.0) 0(0.0) 3(11.5)
>5 years after birth 0(0.0) 0(0.0) 0(0.0) 13 (50.0)
Nulliparous 0(0.0) 0(0.0) 0(0.0) 10 (38.5)
Pregnancy trimester at BC diagnosis (n, %)
First (<12 week) 6(18.2) 6 (40.0) 0(0.0) 0(0.0) NA
Second (12-27 week) 1(3.0) 1(6.7) 0(0.0) 0(0.0)
Thrid (>27 week) 3(9.1) 3(20.0) 0(0.0) 0(0.0)
Unknown 23(69.7) 5(33.3) 18 (100.0) 26 (100.0)
Tumor’s characteristics PABC non-PABC p-value
All PABC-GS PABC-PP All 0
(n=33) (n=15) (n=18) (n=26)
Histological type (n, %)
Invasive ductal carcinoma 29 (87.9) 15 (100.0) 14 (77.8) 22 (84.6) 0.7142
Invasive lobular carcinoma 2(6.1) 0(0.0) 2(11.1) 1(3.9
Other types 2(6.1) 0(0.0) 2(11.1) 3(11.5)
Clinical subtype (IHC) (n,%)
Luminal (HR*/HER2") 12 (36.4) 2(13.3) 3(16.7) 10 (38.5) 0.0595
HER2+ 5(15.1) 6 (40.0) 6 (33.3) 10 (38.5)
TN (HR/HER2") 16 (48.5) 7 (46.7) 9 (50.0) 6 (23.0)
Tumor size (TNM) (n,%)
T1-T2 21 (63.6) 9 (60.0) 11 (61.1) 19 (73.1) 0.9560
T3-T4unknown 8(24.2) 4(26.7) 4(22.2) 7 (26.9)
4(12.1) 2(13.9) 3(16.7) 0(0.0)
Node invasion (TNM) (n,%)
NO 10 (30.3) 10 (66.7) 12 (66.7) 10 (38.5) 0.8345
N1-3 18 (54.5) 2(13.3) 4(22.2) 16 (61.5)
Unknown 5(15.2) 3(20.0) 2(11.1) 0(0.0)
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Table 1 (continued) | Clinicopathological characteristics of the study cohort

Tumor’s characteristics PABC non-PABC p-value
All PABC-GS PABC-PP All 0
(n=33) (n=15) (n=18) (n=26)
Metastasis (TNM) (n,%)
MO 30 (90.9) 13 (86.7) 17 (94.4) 24 (92.3) 0.8293
M1 2(6.1) 1(6.7) 1(5.6) 2(7.7)
Unknown 1(3.0) 1(6.7) 0 (0.0 0 (0.0)
Histology grade (n,%)
G1 (low) 1(3.0 1(6.7) 0(0.0) 3.8) 0.188
G2 (intermediate) 9(27.3) 4(26.7) 5(27.8) 11 (42.3)
G3 (high) 18 (54.5) 9 (60.0) 9 (50.0) 11 (42.3)
Unknown 5(15.2) 1(6.7) 4(22.2) )
Tumor-infiltrating lymphocytes (TILs) (n,%)
<10% 16 (48.5) 9 (60.0) 7 (38.9) NA NA
>10% 17 (51.5) 6 (40.0) 11 (61.1)
“Chi-square test and Mann-Whitney test were used to compare clinicopathological variables between PABC (all) and non-PABC groups.
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Fig. 1 | Intrinsic subtypes classification of samples. a Distribution of BC molecular
subtypes in PABC and non-PABC groups of tumors using the PAM50 prediction
algorithm. b Distribution of BC molecular subtypes in PABC-GS and PABC-PP

subgroups of tumors. ¢ Principal component analysis (PCA) of the gene expression data
of samples, on the left classified by group (PABC and non-PABC), and on the right
classified by intrinsic subtype (LumA, Basal-like, HER2-E, and LumB). *p-value <0.05.

PABC patients have a distinctive gene expression pattern

To identify differentially expressed genes (DEGs) in the PABC group, we
performed DEG analysis using a threshold of absolute fold change (FC) =
1.5 and a false discovery rate (FDR) of <0.05. 73 DEGs were identified in

PABC, including 32 genes that were significantly upregulated and 41 genes
that were significantly downregulated (Fig. 2a). To examine the differences
in expression between both groups (PABC vs non-PABC group), we con-
ducted unsupervised hierarchical clustering analysis using the 73 DEGs
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Fig. 2 | DEGs between PABC and non-PABC. a Volcano plot showing the log10 (p-
value) and log2 FC of the 776 genes from nCounter BC360™ Panel in PABC (n = 33)
compared to non-PABC (n = 26). Several FDR thresholds were indicated by hor-

izontal lines. b Heatmap for the 73 DEGs with |FC| = 1.5 and FDR < 0.05 in PABC
(red) and non-PABC (green) samples. The red through blue color indicates high to
low expression levels. c Comparative box plots displaying the normalized expression
levels of the top ten most significant DEGs (FDR < 0.01) for the 59 samples classified

into patient subgroups (PABC-GS and PABC-PP) and control (non-PABC)
("FDR < 0.05; "FDR < 0.01; "“FDR < 0.001 compared with control). d STRING
clustering analysis of the DEGs in PABC patients. Network represented the most
significant DEGs in PABC (nodes, n = 73) and their interactions (edges, n = 306).
Hub genes, nodes with a degree of connectivity > 15, are listed in the table on the
right. Genes involved in the cell cycle regulation process, according to gene ontology
(GO) term enrichment analysis, are shown as red nodes.
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PABC) samples.

previously identified, revealing a predominant clustering pattern for both
groups (Fig. 2b).

The top ten most significant DEGs between both groups (FDR < 0.01)
were genes involved in several biological processes including DNA damage
repair, proliferation or adhesion, and migration (Supplementary Table 2).
Remarkably, four of the top 5 upregulated genes in PABC samples (DEPDCI,
CCNA2, CDKN3, and FAMS83D), exhibiting nearly a two-fold increase
compared to non-PABC samples, play a role in the DNA damage repair
pathway (Supplementary Table 2). Except for the PSATI gene, which is
related to the triple-negative biology and whose expression in PABC is almost
4-fold higher than in non-PABC (Supplementary Table 2). Furthermore,
there was significant up-regulation of these genes in both PABC subgroups
(GS and PP subgroups) compared to the non-PABC group. Likewise,
downregulated genes also exhibited a similar and lower expression level in
both PABC subgroups compared to non-PABC (FDR < 0.05, Fig. 2¢).

Furthermore, after adjusting DEG analysis for intrinsic subtype, more
than 60% of the genes initially identified remained significant (p-value <
0.05), with CDKN3 prominently highlighted (Supplementary Fig. 2a). The
DNA damage repair pathway was the most enriched signature even after
this adjustment in pathway scoring analysis (PSA) (Supplementary Fig. 2b).
Indeed when we re-evaluated the key DNA repair-related genes (DEPDCI,
CCNA2, CDKN3, and FAMS83D) in the unadjusted DEG analysis within
each molecular subtype group (LumA, LumB, HER2+, Basal-like), we
noted that these genes showed consistently higher expression in PABC
samples across most subtypes, providing evidence that DNA damage repair
pathway appears to be enriched in PABC independently of intrinsic subtype
(Supplementary Fig. 2c).

Given the distinct transcriptomic signature for PABC tumors, we deter-
mine whether these 73 DEGs represent a coordinated change in tumor biology.
Search tool for the retrieval of interacting genes (STRING) clustering analysis
generates a network and predicts the interactions between the proteins encoded

by this set of genes, providing an overall view of the multiple cellular functions
in which these related genes participate. Thus, the functional enrichment
analysis revealed a dominant biological cluster of 29 genes involved in the
regulation of the cell cycle (FDR < 2.9e-12), with over half of these genes closely
clustered together (Fig. 2d) Notably, the top 5 genes with higher inter-
connectivity within the constructed PPI network were MYC, FOXM1, CCNA2,
CDC20, and CDKNG3; all of the above hub genes were upregulated in PABC,
except PTEN, which was the only one downregulated (Fig. 2d).

To get an overview of the biological processes in which these DEGs
were involved, we performed a PSA on PABC samples compared with non-
PABC. We observed enrichment in pathways associated with DNA damage
repair, proliferation, and molecular subtype signatures (Fig. 3a). When
examining the differences between samples within PABC subgroups
(PABC-GS and PABC-PP), PABC-PP samples consistently showed slightly
higher scores for DNA repair and proliferation signatures compared to
PABC-GS samples (Fig. 3b).

Considering the potential significance of these signatures in PABC
tumors, we sought to identify these biological pathways' key genes. We
observed that a substantial number of DEGs in PABC were part of these
pathways, with 22 genes belonging to the DNA repair pathway (18 upre-
gulated and 4 downregulated) and 20 genes to the proliferation pathway (11
upregulated and 9 downregulated) (Fig. 4a—d). Notably, this includes rele-
vant proliferation-related genes such as the MYC oncogene and the tumor
suppressor gene PTEN, as well as the oncogenic transcription factor FOXM1
involved in DNA repair (Supplementary Table 3). Regarding the subtypes
signature, 9 DEGs were found in PABC (8 upregulated and 1 down-
regulated) (Fig. 4e, f), most of them were basal-like-related genes according
to PAMS50 subtyping (CDC20, KIF2C, MYC, PTTG1, TYMS, and UBE2C)
(Supplementary Table 3).

Additionally, a heat map was represented for each signature using these
DEGs in order to analyze the gene expression pattern by a group of samples,
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Fig. 4 | DEGs for the most relevant signatures

in PABC. a Volcano plot of DE in PABC vs non-
PABC with the DNA damage repair genes high-
lighted in orange. b Heat map for the most DEGs of
the DNA damage repair signature (|[FC| = 1.5 and
FDR < 0.05) in PABC (red) and non-PABC (green).
¢ Volcano plot of DE in PABC vs non-PABC with
the proliferation genes highlighted in orange. d Heat
map for the most DEGs of the proliferation sig-
nature (|[FC| > 1.5 and FDR < 0.05) in PABC (red)
and non-PABC (green). e Volcano plot of the DE in
PABC vs non-PABC with the subtypes-related
genes highlighted in orange. f Heat map for the most
DEGs of the subtypes signature (JFC| > 1.5 and
FDR < 0.05) in PABC (red) and non-PABC (green).
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and particularly the DNA damage repair heat map showed a clear and
strong overexpression pattern in PABC for most of those genes (Fig. 4b).

Specific differential genes for PABC-GS and PABC-PP

subgroups

As PABC patients appear to have different biological features depending on
whether the BC occurs during or after pregnan

4,11

, we focused on

identifying genes that might show differential expression (DE) either during
gestation (PABC-GS) or in the immediate postpartum period (PABC-PP).

We found 50 DEGs specific for PABC-GS, 20 DEGs specific for PABC-
PP, and ten genes common to both subgroups (Fig. 5a—c). In the heatmaps
performed with the DEGs, it is evident that PABC-GS has alarger number of

significant genes than PABC-PP (60 vs 30 genes), however, clustering by
sample type is still evident in both heatmaps (Fig. 5d, e). Among the most

characteristic genes of each subgroup with the highest degree of significant
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¢ Heatmap for the 60 DEGs with an |[FC| = 1.5 and FDR < 0.05 in PABC-GS (blue)
and non-PABC (green) samples. d Volcano plot of the DE in PABC-PP (n = 18) vs
non-PABC (n = 26). e Heatmap for the 30 DEGs with an |FC| = 1.5 and FDR < 0.05
in PABC-PP (blue) and non-PABC (green) samples.
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DE, AGTRI was highly downregulated in PABC-GS while SMAD5 was
significantly downregulated in PABC-PP (Fig. 5b, ¢). The matched 10 DEGs
to both subgroups, FGF10, CCL21, MAP2K4, and TCEALI (downregulated
genes), as well as CDKN3, DEPDC1 and FAM83D (upregulated genes), were
identified as distinctive genes for all PABC patients regardless of the time of
BC onset (Fig. 5a).

PABC-PP tumors have an enrichment of immune infiltration
signature

We performed DE analysis to identify significant differences in gene
expression patterns between PABC-PP vs PABC-GS subgroups. This ana-
lysis identified 71 DEGs (with an absolute FC > 1.5 and a p-value < 0.05),
with 38 upregulated and 33 downregulated genes in the PABC-PP subgroup
(Fig. 6a). The clustering heat map did not show a clear separation of the
PABC subgroups using these DEGs. Nonetheless, we did observe a clus-
tering among several samples according to their subgroup and a pattern of
overexpression of certain genes in PABC-PP is evident (Fig. 6b). Topl0
DEGs between the two subgroups (p-value < 0.01) are listed in the Sup-
plementary Table 4 with box plots showing the level of expression of these
genes in each sample by subgroup (Fig. 6¢). Among the most upregulated
genes, AGTRI stands out, whose expression was highly increased in some
PABC-PP samples compared to PABC-GS samples. In contrast, CDHZ2 and
CLDN1, which play a role in adhesion and migration, exhibit consistent
downregulation in PABC-PP samples compared to PABC-GS (Supple-
mentary Table 4).

STRING clustering analysis was also performed but with the identified
71 DEGs between the subgroups (PABC-PP vs PABC-GS) to generate a
gene interaction network for a global view of the interactions and functions
among these genes. The functional enrichment analysis generated a statis-
tically significant biological cluster of 28 genes associated with the immune
response (Fig. 6d, FDR < 3.21e-06). It is noteworthy that more of the 40% of
DEGs (30/71) between subgroups are related to this process, of which 25 are
upregulated in PABC-PP. Notably, of the top 5 genes with higher inter-
connectivity in the constructed PPI network, CD44, STATI, CCR2, and
FOXP3 were identified as hub genes upregulated in PABC and involved in
the immune response (Fig. 6d).

We then conducted a PSA to provide a thorough understanding of
the enriched biological processes between subgroups. Although not as
pronounced, the PABC-PP samples showed a high score for the
immune infiltration signature, while the PABC-GS samples displayed a
high score for the epithelial-mesenchymal transition (EMT) and
adhesion-migration pathway (Fig. 7a). Additionally, as immune
infiltration was found to score highest in the PABC-PP subgroup, we
examined the volcano plot of the DE analysis from PABC-PP vs PABC-
GS, highlighting the genes involved in this signature and we also
conducted a heatmap of these genes. As a result, although there was no
clear clustering by sample subgroup in the heatmap, a tendency for up-
regulation of immune infiltration-related genes in PABC-PP samples
was observed in the volcano plot (Fig. 7b). Of the 32 genes in the
immune infiltration signature, 28 were upregulated in the PABC-PP
subgroup. Notably, the immune checkpoint gene PDCD1/PD-1 was
identified as one of the most significant genes in this set (|FC| = 1.5 and
p-value <0.05) (Fig. 7b). In summary, the PSA revealed that the
immune infiltration signature was enriched in the PABC-PP subset.
This was consistent with the upregulation of individual genes observed
in the DE analyses and the immune response cluster identified in the
STRING network.

Finally, given the potential importance of the immune infiltrate in
PABC-PP, we conducted a cell-type profiling analysis (CPA) to examine
transcriptomic changes of specific immune cell types by measuring the
abundance of selected marker gene transcripts across subgroups. Despite
limited statistical significance, the quantification of cell populations based
on gene expression profiles revealed an increased score of B cells, neu-
trophils, regulatory T lymphocytes, and macrophages in PABC-PP com-
pared to PABC-GS (Fig. 7¢).

Discussion

Despite significant advances in early detection and understanding of the
molecular basis of BC, deficits remain for those that occur during or shortly
after pregnancy. In this study, we analyzed the clinicopathological data and
the specific gene expression profile of PABC, as well as the distinctive
patterns in relation to the time of BC diagnosis. The results revealed
molecular features that are unique to PABC, especially in tumors diagnosed
shortly after childbirth, highlighting the need to differentiate between two
PABC subsets based on diagnosis timing.

Our study showed a higher prevalence of the basal-like subtype in
PABC compared to non-PABC. Moreover, PSA revealed a strong associa-
tion between PABC tumors and BC molecular subtyping by gold-standard
PAMS50 signature. Basal-like tumors are often classified as TNBC because
most are typically negative for ER, PR, and HER2; and both subtypes are
associated with aggressive pathologic features and fewer therapeutic
options™”. Certainly, our research demonstrated a high level of agreement
between the triple-negative and basal-like subtypes assessed by IHC and the
PAMS50 assay, with 48.5% of PABC tumors being classified as triple-negative
and 48.48% as basal-like. Other studies also confirmed this finding among
PABC while the luminal A subtype was uncommon®”’. TNBC subtype,
which is reported to account for 50-60% of all PABC cases, has been
associated with several molecular alterations'*”'. In our work, Phospho-
serine aminotransferase 1 (PSATI) was identified as one of the most sig-
nificantly up-regulated genes in PABC with an expression nearly 4-fold
higher than in non-PABC. Indeed, a recent study has linked the high
expression of PSATI to the TNBC clinical grade, suggesting that multiple
pro-tumourigenic pathways may enhance PSATI expression, thereby
promoting the migration and invasion potential of TNBC™.

Some investigations have reported that the protective effect of preg-
nancy against BC varies by molecular subtypes. In fact, parity and early age
at first birth have been associated with a marked reduction in the luminal BC
risk, whereas neither parity nor age at first birth protects against TNBC*™".
Elevated hormone levels during pregnancy are thought to decrease ER
expression levels, which may contribute to suppressing ER-positive tumors
and increase the development of ER-negative tumors in PABC**. This
could explain the low frequency of luminal PABC tumors observed in our
study. Currently, as women tend to delay pregnancy, breast tissue is more
likely to have accumulated cells with mutations and abnormal cells with the
potential for malignant transformation. This risk is further compounded by
a shorter duration of breastfeeding, which may lead to an undifferentiated
progenitor cell population with a higher potential for carcinogenesis” . As
a result, there is a greater risk of developing an undifferentiated tumor
phenotype, such as TNBC/basal-like BC. The higher frequency of these
tumors in PABC is particularly relevant as it may contribute to their poorer
overall prognosis and impact clinical management. Thus, it should be
considered when evaluating optimal treatment strategies for these patients.

Our gene expression analysis supports the notion that pregnancy
strongly influences BC transcriptome profile. Notably, our results are
consistent with previous studies suggesting that PABC may be a distinctive
and challenging entity of BC, exhibiting unique molecular signatures that
differ from other BC in young women™***. In this regard, of the 73 DEGs
identified in PABC, STRING functional analysis revealed a statistically
significant cluster of 29 genes involved in cell-cycle regulation, in agreement
with a previous study that observed an enrichment of cell cycle-related genes
in PABC epithelia and stroma™. Furthermore, pathway analysis revealed
that PABC tumors were characterized by an enrichment of genes associated
with relevant biological processes such as DNA damage repair and cell
proliferation. In fact, four of the five most significantly up-regulated genes in
PABC are related to DNA repair (DEPDCI, CCNA2, CDKN3, and
FAMS3D); highlighting cyclin A2 (CCNA2) which is known to be involved
in cell cycle control and whose dysregulation appears to be closely associated
with chromosomal instability and tumor proliferation in several cancers;
particularly there is evidence of overexpression in the TNBC"'. Nonetheless,
we have evidence that these key genes and the DNA damage repair signature
appear to be enriched in PABC independently of the intrinsic subtype,
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Fig. 6 | DEGs between PABC-PP and PABC-GS. a Volcano plot showing the log10
(p-value) and log2 FC of the 776 genes from the nCounter Breast Cancer 360 panel in
PABC-PP (n = 18) compared to PABC-GS (n = 15). b Heatmap for the 71 DEGs
with an |FC| 2 1.5 and p-value < 0.05 in PABC-PP (blue) and PABC-GS (brown)
samples. The red through blue color indicates high to low expression levels.

¢ Comparative box plots displaying the normalized expression levels of the top ten

most significant DEGs (p-value < 0.01) for the 33 samples classified into subgroups
(PABC-GS, PABC-PP). d STRING clustering analysis displays a network com-
prising the DEGs in PABC-PP vs PABC-GS (nodes, n =71) and their interactions
(edges, n = 238). Hub genes, nodes with a degree of connectivity > 10, are listed in the
table on the right. Genes involved in the immune response process, according to gene
ontology (GO) term enrichment analysis, are shown as red nodes.
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infiltration genes highlighted in orange, and on the right a heat map for the 33 genes
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marking with an "those genes with a |[FC| > 1.5 and p-value < 0.05. ¢ The graph shows
immune cell-type abundance measurements across subgroups of patients (PABC-
GS and PABC-PP), according to their gene expression profiles. Each cell type score
was centered to zero value; on the right comparative box plot displayed the cell
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suggesting that they are distinctive features of PABC rather than merely a
reflection of TNBC characteristics.

Of note, PABC also shows a dysregulated expression of other relevant
cancer-related genes involved in cell cycle, proliferation, and DNA repair.
These include the oncogenes MYC and FOXM1, as well as the tumor sup-
pressor gene PTEN, which play key roles in breast progression and
tumorigenesis*>*’. It would be interesting to further investigate the role of
these genes in PABC, as well as to identify them as potential biomarkers for
diagnosis and/or treatment. Taken as a whole, these results suggest that
PABC tumors may exhibit increased cell cycle activity, heightened pro-
liferative capacity, and aberrant DNA damage repair, which could lead to
faster tumor growth, and a higher risk of metastasis. These findings could
provide a biological explanation for the more aggressive behavior of PABC
compared to non-PABC and could potentially lead to new treatment
options for PABC patients targeting DNA repair or cell cycle checkpoints.
Furthermore, we observed that a higher proportion of PABC patients had a
positive family history of breast/ovarian cancer. This suggests that a heri-
table component may be present in PABC*~*. However, this study lacks
enough germline mutation data. Further research into germline mutations
in well-known cancer genes, such as BRCA1/2, and other potential genes is
required to unravel their role and contribution to PABC. This is necessary to
understand how they may influence clinical and molecular characteristics,
potentially leading to differences in tumor biology and treatment response
in PABC patients.

Finally, we independently analyzed the gene expression profile of
PABC patients diagnosed during pregnancy (PABC-GS) and those diag-
nosed within 12 months postpartum (PABC-PP), given their distinct bio-
logical features that may impact the BC transcriptomic profile’. Thus, our
results could indicate that a BC arising in the postpartum period is asso-
ciated with an increase of immune infiltration genes, unlike BC which
develops during gestation”. It is also noteworthy that PABC-PP exhibits
increased expression of potentially relevant cancer targets involved in the
immune response, such as the programmed cell death protein 1 (PDCD1/
PD-1). Weaning-induced breast involution provides an active immune
milieu characterized by massive epithelial cell death, stromal remodeling,
and infiltration of immune cells with immunosuppressive features which
has been demonstrated to promote BC development and metastasis***. In
fact, postpartum involution shares many attributes with wound healing,
including up-regulation of genes involved in immune cell infiltration, which
creates a pro-tumorigenic immune microenvironment that has been shown
to persist beyond the timeframe of postpartum mammary gland
remodeling’**>*. Additionally, our analysis between the PABC-PP and
PABC-GS subgroups revealed altered expression of genes related to
adhesion-migration and EMT, which may reflect changes in the mammary
stroma and tissue remodeling due to the involution proces™'. Therefore,
our findings indirectly support the hypothesis that postpartum breast
involution could impact the tumor immune milieu and enhance tumor
growth and metastasis, facilitating the dissemination of pre-existing tumor
cells in an immune-evasive microenvironment, and thus contributing to the
pronounced worse outcomes associated with a postpartum BC
diagnosis®™>*.

Furthermore, our results suggest an immune phenotype in PABC-PP
characterized by an increased abundance of several cell types, including
neutrophils, regulatory T lymphocytes, macrophages, and B cells. Con-
sistent with these findings, when comparing patients” characteristics, we
observed a greater number of tumors from the PABC-PP subgroup with
high levels of TILs (>10%) compared to PABC-GS. It has been reported that
tumor-infiltrating immune cells play a dual role in the onset and progression
of cancer: they can protect against tumor progression by killing neoplastic
cells, but they can also shape tumor immunogenicity and establish an
immunosuppressive environment that facilitates the dissemination of
tumor cells’. Evidence of macrophage, neutrophil, and lymphocyte acti-
vation has been found in the involuting mammary gland™. Regarding the
specific role of immune cell populations present in mammary tumor
microenvironments, regulatory T cells (Tregs) and M2-type tumor-

associated macrophages (M2-TAM:s) are considered to exert an immuno-
suppressive action that can drive tumor growth™. Tregs are a distinct spe-
cialized subpopulation of T cells characterized by the expression of the
nuclear transcription factor Forkhead box P3 (FoxP3), which appears to
have a major role in disrupting the immune control of cancer’™””. Several
studies have shown that along with M2-TAMs, they promote tumor growth
by suppressing the immune system through the secretion of cytokines such
as IL-10 and TGF-, leading to a poor prognosis for BC patients™. In fact, an
increased influx of Tregs FoxP3+ and macrophages with T cell suppressive
function have already been observed in the involuting mammary glands of
rodents and BC patients™". In the case of B-cells, both pro- and anti-
tumorigenic features were attributed, as BC cells can induce a regulatory
phenotype in B-cells which support tumor progression by inhibiting Th1
mechanisms and enhancing Treg responses™. Our work found that B-cells
were the main cell type highlighted in PABC-PP, which is in line with an
interesting recent study in which an increased plasma B-cell infiltration in
post-weaning PABC tissue was correlated with the poorest outcomes®.

Taken together, these findings collectively suggest that pregnancy-
related immunological changes may exert a substantial influence on PABC,
and given the pivotal role of the immunosuppressive cell influx in post-
partum BC, this underscores the need to further investigate their tumor
immune microenvironment and its impact on BC development and pro-
gression. An additional conserved mechanism of immune suppression
between pregnancy, mammary gland involution and malignancy is altered
immune checkpoint molecules such as PD-1 and PD-LI. It has recently
been reported that in cases of postpartum BC, there is an increase in PD-1
expression on T cells and that anti-PD-1 treatment is effective in reversing
involution-associated tumor growth®'. This knowledge could help to explore
the potential benefits of using immunotherapy for these patients, such as
targeting tumor-associated macrophages or immune checkpoint pathways
like the PD-1/PD-L1 axis.

Despite the lack of statistical power between subgroups, most likely
due to the small sample size caused by the difficulty in recruiting PABC
patients, these preliminary insights are highly relevant and warrant
additional studies in a larger cohort to validate these findings and
improve our understanding of BC biology during different stages of
pregnancy, lactation, involution and (early and distant) postpartum. Of
note, we need further confirmation in a large cohort of patients, in order
to draw robust conclusions about the broader molecular landscape of BC
subtypes. Additionally, longer follow-up and investigation of parity
impact, the specific timing of diagnosis during pregnancy, and the
duration of breastfeeding, are required to better elucidate the aggressive
and recurrence risk associated with PABC.

Currently, against the traditional definition of PABC, there is a growing
recognition that a BC diagnosed during gestation should be considered a
separate and distinct clinical entity from a BC discovered in the postpartum
period (which recent data suggest can extend to 5-10 years after birth)". Our
research supports this distinction, but also demonstrates that they are
molecularly distinct entities, where differences at gene expression level are
evident even in tumors detected in the immediate postpartum period (one
year after childbirth), compared to tumors diagnosed during pregnancy.

In conclusion, our study provides relevant findings on PABC which
displays a unique differential gene expression pattern linked to precise
biological pathways and a network of protein interactions that could
potentially contribute significantly to PABC aggressiveness. Furthermore, it
became clear that it is crucial to distinguish between BC that develops
specifically during gestation and that which arises during the early post-
partum period, justifying the need for future studies to investigate their
disparities and the possible clinical implications.

Methods

Study design: patients and sample collection

Building on the research of the GEICAM/2012-03 study”, the Registry
Study of Pregnancy and Breast Cancer (EMBARCAM GEICAM/2017-
07 study) (ClinicalTrials.gov identifier: NCT04603820) is a multicenter,
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observational, ambispective study enrolling BC patients, including those
diagnosed during the gestation and up to one year postpartum.

The present analysis involved an age-matched subset cohort of PABC
patients from both the GEICAM/2017-07 study and GEICAM/2012-
03 studies, and non-PABC patients from the EpiGEICAM study (control
cohort)***, The inclusion criteria for PABC patients were: female sex, a new
BC diagnosis during pregnancy or within one year postpartum, and age < 45
years at diagnosis. Non-PABC patients were: female sex, a new BC diagnosis
outside of pregnancy or one year postpartum, and aged < 45 years. A total of
66 archival FFPE tumor tissue specimens of these BC patients diagnosed
between 1992 and 2015 were collected. H&E slides corresponding to the
FFPE tumor tissue samples of the patients were reviewed by an expert BC
pathologist to confirm the diagnosis and determine the tumor surface area.
Clinicopathological data for all included patients were also collected.
Informed consent was obtained from each patient for the collection of
clinicopathological and biological data following the ethical guidelines of the
Declaration of Helsinki and good clinical practice guidelines.

The study cohort initially consisted of 66 samples from BC patients, but
seven were excluded because the samples did not pass the quality analysis.
This resulted in a total of 59 patients with samples available for gene
expression analysis. The patients were classified according to parity as (i)
PABC, if diagnosed during pregnancy or within 12 months of delivery; (ii)
non-PABC. The PABC group was further divided into two subgroups
according to the specific time at BC diagnosis: during gestation (PABC-GS)
or in the first year postpartum (PABC-PP).

RNA isolation and nCounter gene expression profiling assay
Based on the size of the patient’s breast tumor surface, a total of 3-5 tissue
sections, 10 pm thick, were obtained for RNA isolation using the RNeasy
FFPE Isolation Kit (Qiagen, Hilden, Germany), following the manu-
facturer’s protocol. RNA yield and purity were assessed using NanoDrop™
2000/Spectrophotometer 2000c (Thermo Fisher Scientific, Waltham, MA,
USA) and Invitrogen™ Qubit® 3.0 Fluorometer (Thermo Fisher Scientific,
Waltham, MA, USA). RNA quality control was performed using an Agilent
4200 TapeStation system (Agilent Technologies, Santa Clara, CA, USA).

Tumor RNA sample gene expression was analyzed using the nCoun-
ter® Breast Cancer 360" V2 Panel (BC360 NanoString Technologies,
Seattle, WA, USA). This gene expression platform covers 23 key BC path-
ways and processes, including the BC intrinsic subtypes (Luminal A,
Luminal B, HER2-Enriched, Basal-like) by PAM50® signature®. This panel
consists of 758 gene-specific probe pairs for the targets, 18 housekeeping
genes for normalization, 6 exogenous positive controls, and 8 exogenous
negative controls. In a single reaction, probes were hybridized in solution
with 150-500 ng of total RN'A overnight at 65 °C following the instructions
and kits provided by NanoString. Digital images were processed within the
nCounter Digital Analyzer and gene counts from all the 66 samples were
obtained for bioinformatics analysis. A quality control (QC) of raw data was
performed using nSolver™ 4.0 Analysis Software (NanoString Technolo-
gies). Most samples (89.4% of the original cohort) satisfied quality criteria
metrics by NanoString, and only seven samples were excluded due to
analytical failure.

Raw transcriptome data from the 59 samples were background
threshold-corrected using negative probes with a mean minus two standard
deviations. Then, gene expression values were subjected to housekeeping
gene normalization by calculating the geometric mean using the geNorm
algorithm. Normalized data were log2-transformed for the following ana-
lyses conducted using the nCounter Advanced Analysis 2.0 and ROSA-
LIND® platform (NanoString Technologies).

Differential gene expression analysis

Data were subjected to unsupervised hierarchical clustering. Expression
values were normalized using z-scores and visualized in heat maps. Addi-
tionally, PCA was used to identify expression patterns between the different
study groups. DE analysis was performed to identify the most significant
DEGs between groups and subgroups. FC and p-values were calculated

using the log-linear negative binomial model (fast method in the nCounter®
Advanced Analysis)”. p-values were adjusted using the Benjamini-
Hochberg method to estimate the FDR. The clustering of genes for the
final heatmap of DEGs was performed using the Partitioning Around
Medoids method.

Pathway and immune cell population analysis

For PSA, each sample gene expression profile was condensed into a small set
of pathway scores using the first principal component, which represented
the average expression change (log2 scale) for the associated genes”. We
then performed a gene set analysis (GSA), which overlays DE data for sets of
genes grouped by biological function, to identify the DEGs of the enriched
pathways. DGE and PSA adjusted for intrinsic subtype as a confounding
factor were also analyzed. We also performed a CPA, which uses the
expression levels of cell type-specific marker genes to measure the relative
abundance of immune cell populations among different groups of

samples®.

Protein—protein interaction (PPI) network construction

The interaction network of the protein products from the DEGs identified in
the DE analysis of the PABC group and subgroups was explored by
bioinformatic analysis using the STRING (version 11.5) database®’. We set
the strength of the interactions at >0.4 as the threshold for analysis. The PPI
network represented the genes as nodes and the interactions as edges. Nodes
with a high degree of connectivity were called hub genes. We analyzed the
functional annotations of this set of significant genes provided by STRING.

Statistical analysis

Statistical analysis of the clinicopathological data and PAM50 subtypes
distribution between groups was performed using GraphPad Prism 8
(version 3.5). Quantitative variables were presented using descriptive sta-
tistics while qualitative variables were presented as numbers and percen-
tages. The comparison between groups with qualitative data was performed
by using Chi-square and Fisher’s exact test, whereas quantitative data were
analyzed by the Mann-Whitney test. p-values < 0.05 were considered sta-
tistically significant.

Gene expression data were analyzed using the nCounter Advanced
Analysis Software 2.0 and ROSALIND® platform (NanoString Technolo-
gies). In the DE analysis, p-values were corrected for multiple testing using
the Benjamini-Hochberg FDR adjustment”. To select statistically sig-
nificant DEGs, a threshold of absolute FC > 1.5 and an FDR-adjusted
p-value < 0.05 were applied, except for DE subgroup analyses with fewer
samples where an unadjusted p-value < 0.05 was accepted.

Data availability

Nanostring sequencing data has been deposited at the European Geno-
mephenome Archive (EGA), which is hosted by the EBI and the CRG,
under accession number EGAD00010002709, EMBARCAM BC360 pro-
ject. The datasets used and/or analyzed during the current study are avail-
able from the corresponding author upon reasonable request.
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PABC Pregnancy-associated breast cancer

PABC-GS  Breast cancer diagnosed during gestation
PABC-PP  Breast cancer diagnosed during the first-year
postpartum period

Non-PABC Non-pregnancy-associated breast cancer

DE Differential expression

DEGs Differentially expressed genes

FC Fold change

FDR False discovery rate

PSA Pathway scoring analysis

GSA Gene set analysis

CPA Cell-type profiling analysis

STRING  Search tool for the retrieval of interacting genes
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PR Progesterone receptor

TILs Tumor-infiltrating lymphocytes

PSAT1 Phosphoserine aminotransferase 1
CCNA2 Cyclin A2

PDCD1/  Programmed cell death protein 1

PD-1

Tregs Regulatory T cells

M2-TAMs M2-type tumor-associated macrophages
FoxP3 Nuclear transcription factor Forkhead box P3
ER Estrogen Receptor
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