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The Breast Cancer Classifier refines
molecular breast cancer classification to
delineate the HER2-low subtype
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Current breast cancer classification methods, particularly immunohistochemistry and PAM50, face
challenges in accurately characterizing the HER2-low subtype, a therapeutically relevant entity with
distinct biological features. This notable gap can lead to misclassification, resulting in inappropriate
treatment decisions and suboptimal patient outcomes. Leveraging RNA-seq and machine-learning
algorithms,we developed the Breast Cancer Classifier (BCC), a unique transcriptomic classifier for more
precise breast cancer subtyping, specifically by delineating and incorporating HER2-low as a distinct
subtype. BCC also redefined the PAM50Normal subtype into other subtypes, disputing its classification
as a uniquemolecular group. Our statistical analysis not only confirmed the reproducibility and accuracy
of BCC, but also revealed similarities in prognostic characteristics between the HER2-low and Basal
subtypes. Addressing this gap in breast cancer classification is clinically significant because it not only
improves treatment stratification, but also uncovers novel molecular and immunohistochemical features
associatedwith theHER2-low andHER2-high subtypes, thereby advancing our understanding of breast
cancer heterogeneity and providing guidance in precision oncology.

The evolution of the molecular classification of breast cancer witnessed a
paradigm shift with the introduction of the PAM50 classifier, a pioneering
assay that emerged from the seminal work by Perou et al.1. This study
revealed the possibility of segregating breast cancers into intrinsic subtypes
through hierarchical clustering of gene expression. Based on the expression
profiles of certain genes, the PAM50 molecular breast classification led to
the identification of five subtypes: Luminal A (LumA), Luminal B (LumB),
HER2-enriched, Basal, and Normal-like2–7. These subtypes have demon-
strated prognostic significance across varying patient cohorts, both
untreated and treated, thus showcasing their potential in risk
stratification8–11. The Prosigna test emerged as a consequential extension of
this classification, aiding in clinical management and identification of
intrinsic subtypes indicative of recurrence tendencies12,13. However, despite
its clinical assimilation, glaring limitations in molecular breast cancer
expression profile classification still remain, including low concordance
between subtypes, a blurred border between Luminal and Normal-like
subtypes, and heterogeneity of the HER2-enriched and Basal subtypes14–16.
These deficiencies are especially apparent in the identification of HER2-low
breast cancers17,18, consequently hindering the progress in treatment options
for this aggressive cancer.

Recent publications have also delineated the need for more nuanced
classifications16,19–22. In a transformative approach to breast cancer classifi-
cation, Mathews et al. introduced a reclassification of breast tumors into
seven distinct classes using interpretable mRNA signatures within the
PAM50gene set14. This evolution inunderstandingbreast cancer subtypes is
further enriched by studies focusing on the claudin-low subtype23–25. These
studies described the claudin-low subtype of triple-negative breast cancer
(TNBC) as distinct in gene expression patterns related to cell adhesion and
epithelial-to-mesenchymal transition, indicating its potential divergence in
origin and evolution when compared to other breast cancer subtypes.

Considerable work has gone into classifying TNBC26. The Burstein
classification system divides TNBC into four distinct subtypes: basal-like
immunosuppressed (BLIS), basal-like immune-activated (BLIA), luminal
androgen receptor (LAR), andmesenchymal (MES)27. This system revealed
the LARandMESsubtypes tobe predominantly found innon-Basal tumors
of TNBC. Furthermore, certain TNBC subtypes have characteristics similar
to non-TNBC tumors but display different clinical features28–30.

The HER2-E (HER2-enriched) intrinsic subtype, characterized by
higher expression of ERBB2 and proliferation-related genes, shows the
best response to anti-HER2 therapies both in adjuvant and neoadjuvant
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settings31,32, irrespective of the clinical status of HER2. However, only
about 50% of clinically HER2-positive (3+ based on immunohis-
tochemistry (IHC)) tumors are HER2-E; intriguingly, this molecular
subtype also appears in clinically HER2-negative breast cancer based on
IHC, which currently does not receive HER2-targeted treatments33,34.

Recent studies comparing the efficacy of different assays in deter-
mining HER2 status have shed light on a distinct subtype known as HER2-
low35–37, defined by IHC staining as 1+ or 2+ without amplification. The
molecular characteristics and prognostic analyses associated with IHC
HER2-low breast cancer were also analyzed to uncover different clinical
behaviors and responses to treatment, highlighting the absence of distinct
prognostic and biological correlates17,18,38. Emerging evidence from clinical
trials showcasing significant clinical benefits associatedwith the use of novel
HER2-directed antibody-drug conjugates (ADCs) in advanced HER2-low
breast cancers challenges the binary categorization of HER2 status in breast
cancers17,39,40. The recent FDA approval of the first treatment targeting
HER2 in HER2-low breast cancer indicates the clinical recognition and
treatment advancements for this new subtype41.

Motivated by these observations, we wanted to determine how we can
use RNA-seq and machine learning to enhance breast cancer subtype
classification, specifically in identifying and characterizing the HER2-low
subtype, in comparison to traditional IHCmethods andPAM50.Toaddress
the urgent, yet unmet, need of defining HER2-low breast cancers in the
clinical setting, we leveraged advanced, platform-independent machine-
learning algorithms to construct an improved rank-based classifier called
BreastCancerClassifier (BCC) based on the expression levels of 63 genes for
intrinsic subtyping of either single breast cancer samples or unbalanced
cohorts. Utilizing advanced clustering techniques and machine-learning
algorithms, we performed a comparative assessment of the prognostic
aptitudes between the traditional PAM50 intrinsic subtypes and our newly
defined BCC subtypes that include HER2-low and HER2-high. Like
PAM50, BCCuses gene expression to venture beyond conventional IHC for
breast cancer subtyping. The unique feature of the BCC that distinguishes it
from PAM50 is the unveiling of the HER2-low subtype as a distinct bio-
logical entity. Specifically, our findings revealed that the HER2-enriched
classification does not exclusively reflect ERBB2 amplification. Moreover,
IHC 1+ and 2+ without ERBB2 amplification as defined by any in situ
hybridization (ISH) method currently used to characterize the HER2-low
subtype for equivocal cases42 fall short in encapsulating the biological
complexity of the HER2-low subtype.We show that, unlike its depiction by
IHC, the molecularly defined HER2-low subtype is a unique biological
subtype, thus enriching our understanding of the HER2 status in the
molecular taxonomy of breast cancer. Validated within independent gene
expression cohorts, our findings herald a potential enhancement in the
molecular classification of breast cancer.

Results
The identification of five breast cancer subtypes using a semi-
supervised method
Combining clusterization and gene signature score calculation accord-
ing to the ssGSEA algorithm on a comprehensive dataset of 6223 breast
tumor samples from the METABRIC, TCGA, and SCAN-B cohorts, a
semi-supervised molecular Breast Cancer Classifier (BCC) was devel-
oped (Fig. 1a, b). The preliminary hierarchical clustering analysis using
the classic PAM50 gene subset identified the Basal, HER2-enriched, and
Luminal clusters. At this step, we noted a group of samples that clustered
together with theHER2-enriched subtype but did not show high levels of
ERBB2 expression (Fig. 1c), in agreement with a published report that
not all HER2-enriched samples have high ERBB2 expression43. Then, we
performed differential expression analysis between preliminary groups
and defined a set of genes that distinguished the group from other
ERBB2-high samples (Supplementary Table 1). Next, UniformManifold
Approximation and Projections (UMAPs) with different gene sets were
utilized (Supplementary Table 1) to iteratively assign samples to groups
(Fig. 1a, b). To do this, we first defined the Basal subtype characterized by

the highest expression of FOXC1 and the lowest expression of FOXP1
compared to all other samples (Supplementary Fig. 1a, b). In the second
iteration, we split the ERBB2-high samples from other samples based on
the expression of a subset of proliferative genes (Supplementary Table 1)
and the expression of ERBB2 (Supplementary Fig. 1c). This subtype was
named HER2-high. Finally, samples were reclustered based on the same
subset of genes as in the previous step with the inclusion of additional
transcription factor genes (ACE2, FABP7, AKR1B15, and GATA3). This
projection uncovered a small subset of samples that were classified as
HER2-low (Supplementary Fig. 1d-h). Also, this HER2-low subset could
be separated as a cluster on the UMAP for all samples (Supplementary
Fig. 1i). Interestingly, HER2-low samples exhibited similar expression
patterns for proliferative, keratin, and luminal genes as HER2-high
samples (Fig. 1c). The rest of the samples were classified as Luminal and
subjected to further differentiation into subtypes LumA and LumBusing
a logistic regression classifier trained on the SCAN-B luminal samples
and gene sets of proliferative and anti-proliferative genes (Methods).

Benchmarking BCC against PAM50
The BCC was applied to a total of 6223 samples with clinical annotation
fromTCGA7, SCAN-B44, andMETABRIC45 datasets. Samples annotated as
“Other”were excluded from the comparison. The rest were divided into the
following molecular subtypes: Basal (723 samples, 12%), HER2-enriched,
and Luminal. The HER2-enriched subtype encompassed HER2-low
(167 samples, 3%) and HER2-high (647 samples, 10%) groups, while
Luminal included LumA (1449 samples, 23%) and LumB (3237 samples,
52%) groups. Our analysis showed BCC classification to largely coincide
with established PAM50 subtyping14,46,47. We compared BCC and PAM50
classifications of three high-level classes: Basal, HER2-enriched, and
Luminal (comprising LumA, LumB, and Normal-like groups). Notably,
according to the BCC, 96% of Basal samples corresponded to the Basal-like
subtype in PAM507. For the HER2-enriched and Luminal subtypes, a
concordance of 56% and 94%was observed, respectively. Samples from the
BCC HER2-enriched subtype included not only almost all PAM50 HER2-
enriched cases, but also several of Basal (9%) and Luminal cases (33%)
(Fig. 1d). Overall, our BCC classification concurred with PAM50 subtyping
for 85% of the samples analyzed.

The historical data on survival rates for the aforementioned samples
was examined after applying our classification. Here, we did not detect any
significant differences in survival between BCC- and PAM50-classified
samples for both conventional treatment groups from the METABRIC
(Fig. 1e) and TCGA (Fig. 1f) cohorts, and those receiving contemporary
treatment within the SCAN-B cohort (Fig. 1g).

Five-year survival rates were similar for all the classes with one
exception in TCGA cohort, where the HER2-enriched subtype defined by
the BCC had a worse five-year survival rate (79% PAM50 vs. 71% BCC,
Table 1).

Compared to the PAM50HER2-enriched subtype, the BCCHER2-
enriched subtype showed better concordance with HER2 expression as
determined by IHC. Among samples in the PAM50 HER2-enriched
group, 63% were considered HER2-positive by IHC, versus 77% of the
samples in the BCC HER2-enriched group (Fig. 1h, Supplementary
Fig. 1j; detailed breakdown of IHC annotation among BCC subtypes is
provided in Supplementary Table 2). The proportion of cases with
ERBB2 amplification was also higher in the BCC HER2-enriched group
(68% vs. 58% in PAM50, Fig. 1i). Accordingly, the proportion of cases
with amplified HER2 as determined by ISH in the BCC HER2-enriched
group was higher (67%) than in the PAM50 HER2-enriched (56%)
subtypes (Fig. 1j).

TheBCC revealed luminal features inPAM50Normal-like tumors
The PAM50 Normal-like subtype was originally defined by including
normal breast tissue samples alongside tumor samples during themolecular
profiling process48. This subtype was shown to be the least stable, especially
upon removal of the keratinocyte gene set16. This suggests the presence of
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non-cancerous breast tissue with mesenchymal properties, and that a high
prevalence of keratinocytes (like in the Basal subtype) played a role in the
definition of this subtype49. Pathologic assessment of PAM50 Normal-like
histological slides from TCGA revealed a high amount of adipose tissue
(Fig. 2a) andDCIS (Ductal Carcinoma In Situ) component, occupying from
10% to 50% of tumor area per visual assessment. WES analysis showed the

mean tumor content in Normal-like samples to exceed 20%, similar to
LumA and LumB tumors (Fig. 2b). Moreover, we did not detect any dif-
ferences in the expression of cytokeratins and all mesenchymal markers
between Normal-like and LumA samples (Supplementary Fig. 2a).

A normal breast primarily comprises fibro glandular and adipose
tissues50. While we found the adipose gene signature level in PAM50
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Normal-like samples to be significantly lower than in cancer-free samples
(Fig. 2c), we did not detect any differences in this signature between the
PAM50 Normal-like and LumA subtypes. Moreover, the proliferation and
keratin signatures in the Normal-like subtype demonstrated significantly
higher scores compared to normal tissue, indicative of resemblance to the
LumA subtype (Fig. 2d, Supplementary Fig. 2a).Moreover, theNormal-like
molecular subtype showed heterogeneity across IHC subtypes, consisting of
76% of hormone receptor-positive (HR+), 10% of TNBC, and 14% of
HER2-positive samples (Fig. 2e). We also did not find significant survival
rate differences between the PAM50 Normal-like and PAM50 LumA
groups (five-year OS 92% and 93%, respectively, Fig. 2f). Thus, our results
dispute the recognition of the Normal-like subtype as a separate group.
Rather, analysis by the BCC revealed PAM50 Normal-like samples to dis-
play characteristics indicative of the Luminal subtypes.

Clinically oriented BCC definition of the LumA and LumB sub-
types could better distinguish prognostic associations
than PAM50
Clinically, LumA and LumB subtypes are currently distinguished by the
levels of KI67, a protein that indicates high growth rates within the tumor51.
Basedon the standard threshold,wedefined sampleswithKI67 ≤ 20%as the
LumA subtype and those with KI67 > 20% as LumB. The SCAN-B dataset
was separated into train and test sets to train and test the logistic regression
classifier. The F1 score for the proposed classifier for the test cohort was 0.76
(Fig. 2g, S2b). The resulting classifierwas used to predictKI67-highLuminal
samples in other cohorts. Prediction quality was validated on theGSE21653
dataset (n = 124), with an F1 score of 0.78 (Supplementary Fig. 2c). We
demonstrated the disease-free survival prognosis for samples from the
GSE21653 dataset with survival data and annotated as Luminal (n = 122) to
be similar to the original annotation byKI67 status (Supplementary Fig. 2d).

In all cohorts, both theBCCLuminal subtypespredominantly included
the HR+/HER2− phenotype as determined by IHC, accounting for 95%
and 93% of samples, respectively (Supplementary Fig. 1j, left plot), versus
88% and 76% based on the PAM50 classification (Supplementary Fig. 1j,
right plot). This difference was mostly attributed to lower percentages of
HER2+/HR+− cases in the BCC Luminal groups (2% and 5% in LumA
and LumB, respectively), in contrast to 6% and 12% in the PAM50 LumA
and B groups. Samples annotated as Normal-like by PAM50 were dis-
tributed mostly between LumA and LumB samples by the BCC: 46% and
36%, respectively (Fig. 2e).

Applying our trained classifier to the SCAN-B cohort (n = 1197), we
observed a higher percentage of KI67+ samples in the BCC LumB cluster

compared to the PAM50 LumB cluster. Notably, the recall score for LumB,
critical for identifying patients with more aggressive subtypes, significantly
improved from 0.46 with PAM50 to 0.85 with the BCC (Fig. 2h, i). More-
over, we also found a notable difference between the survival rate for the
BCCLumAandLumB subtypes (five-yearOSof 93%and89%, respectively,
Fig. 2f).

To confirm the correlation of survival prognosis with subtyping, we
applied Cox regression analysis on the METABRIC cohort (n = 743). The
BCCLumA subtype was associated with better survival compared to LumB
(Hazard Ratio (HR) = 0.80) even after controlling for tumor stage (HR =
0.71, Fig. 2j). As expected, adding molecular grade52 as a feature decreased
the HR to 0.44, indicating a partial correlation between the LumB subtype
and molecular grade. The correlation was also supported by a higher pro-
liferation rate in LumB (Fig. 2j), which is consistent with published
literature53.

TheBCCHER2-lowsubtype issimilar toTNBC-LARanddoesnot
represent a specific histological subtype
We analyzed samples from METABRIC, TCGA, and SCAN-B cohorts to
characterize the previously unreportedHER2-low subtype and to capture its
key distinctions from the HER2-high and other subtypes. First, we noticed
that only 6% of the BCC HER2-low samples were HER2-positive by IHC
(IHC status was available for n = 5602). Notably, 92% of the BCC HER2-
high samples showed HER2 positivity, compared to only 63% of samples
classified as the PAM50HER2-E subtype (Figs. 3a, 1h). Moreover, the BCC
HER2-high subtype showed 97% concordancewithERBB2 amplification as
assessedby ISH(Fig. 3b), versus 56% inPAM50HER2-E (Fig. 1j). ISHstatus
was available for samples from the TCGA dataset (n = 394). Consonantly,
81% of samples from the BCC HER2-high subtype showed high amplifi-
cations in ERBB2 (Fig. 3c), compared to 58% in PAM50 HER2-E (Fig. 1i)
from both the TCGA andMETABRIC cohorts (n = 2906). In contrast, only
6% of the BC HER2-low samples had HER2 amplifications as assessed by
ISH (Fig. 3b). Moreover, CNA in ERBB2 was revealed in only 10% of the
BCCHER2-low samples (Fig. 3c), versus 90%of samples of the BCCHER2-
high group. Furthermore, ERBB2 expression was lower in HER2-low than
in HER2-high samples (Fig. 3d).

Using the BCC classifier to analyze TCGA samples with available
pathology slides annotated asHER2-low,we found the InvasiveNon-special
type Carcinoma (NST) to be the predominant histological subtype within
theBCCHER2-lowcategory (84%), accounting for the vastmajority of cases
(Supplementary Table 3). The Invasive Lobular Carcinoma (ILC) subtype
constituted the second largest group at approximately 10%.

Interestingly, HER2-low samples showed a significant overlap
with the Burstein TNBC-LAR subtype27, characterized by androgen
signaling. From 5602 samples with IHC annotation, 2.2% were
HER2-low (n = 126). Then, among these, 69% (n = 87) were TNBC.
For samples from the METABRIC dataset with IHC and Burstein
annotation (n = 256), 32 were classified as TNBC-LAR. Among these
TNBC-LAR samples, 66% (n = 21) were classified as BCC HER2-low
(Fig. 3e). Correspondingly, among the HER2-low TNBC samples,
55% (n = 21) were TNBC-LAR.We also noted a much higher AR gene
expression in BCC HER2-low samples compared to BCC Basal
samples, but did not find a difference in AR expression levels with
other subtypes (Fig. 3d). In concordance with this finding, a similar

Fig. 1 | Process of BCC subtyping and comparison between BCC and PAM50.
a Schematic of sample separation into five subtypes. b Sample reannotation of the
SCAN-B dataset (n = 3273) using density-based clustering on UMAP. cHeatmap of
expression levels of PAM50 genes and four additional genes (marked with *) used
for BCC annotation (total n = 6263 from TCGA, SCAN-B, and METABRIC).
d Comparison of three high-level subtypes annotated by BCC and PAM50 classi-
fication. p-values for the Pearson’s chi-squared test are shown. e Kaplan–Meier
survival curves for the PAM50 and BCC samples from theMETABRIC cohort (only
for high-level subtypes). p-value for the logrank test is shown. f Kaplan–Meier
survival curves for the PAM50 and BCC samples from the TCGA cohort (only for

high-level subtypes). p-value for the logrank test is shown. g Kaplan–Meier survival
curves for the PAM50 and BCC samples from the SCAN-B cohort (only for high-
level subtypes).
p-value for the logrank test is shown. h Distribution of IHC phenotypes across
PAM50 and BCC subtypes. p-values for the Pearson’s chi-squared test are shown.
i Proportion of ERBB2-amplified samples in the main subtypes in reported anno-
tation and BCC. p-values for the Pearson’s chi-squared test are shown. j Proportion
of ERBB2 ISH-positive and negative samples in the main subtypes in reported
annotation and BCC. p-values for the Pearson’s chi-squared test are shown.

Table 1 | Five-year survival of reported PAM50 and BCC
subtypes

Basal-like HER2-enriched Luminal

METABRIC PAM50 68% 58% 82%

METABRIC BCC 66% 59% 83%

TCGA PAM50 81% 79% 82%

TCGA BCC 80% 71% 84%

SCAN-B PAM50 78% 81% 90%

SCAN-B BCC 77% 84% 90%
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level of heterogeneity was reported recently by the LAURA
classification54 within identified HER2-low samples, as shown in
Supplementary Fig. 3e. Here, the heatmap shows a group of samples
with high expression of genes common for LAURA group A (PRF1,
WNT10A, IL12RB2, GZMH, HOXB13, PAX5, TIGIT). It also con-
firms the presence of samples with low expression of all genes, indi-
cative of a signature of samples from Group B. This analysis shows
that the molecular BCC HER2-low subtype is also heterogeneous

when projected into a space of features revealed in the LAURA
classification.

The BCC HER2-low subtype mostly consisted of the HER2-low
subtype as defined by IHC
Sample annotations in TCGA, METABRIC, and SCAN-B only contain
information on hormone receptor and HER2 status by IHC, without
HER2 scores. The HER2-low subtype was identified using cut-offs for
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ERBB2RNA-seqexpression.Notably, 92%ofBCCHER2-lowpatients from
the TCGA cohort had ERBB2 expression between 6 and 8.5 log2 TPM,
which was previously defined as a cut-off for IHC HER2-low concordance
(Fig. 3f, Supplementary Fig. 3d, Supplementary Table 4)55. Conversely, only
6% of BCC HER2-low patients showed ERBB2 amplification. Corre-
spondingly, all samples from the BCC HER2-high group had ERBB2
expression higher than 8.5 log2 TMP, and 87% of these samples showed
amplification in ERBB2 (Fig. 3c, g), consistent with the PAM50 HER2-
enriched subtype as definedby IHC.TheMETABRICdatasetdemonstrated
the same distribution of ERBB2 expression and amplification across BCC
samples (Supplementary Fig. 3a).

Noteworthily, the HER2-low IHC group contained not only BCC
HER2-low samples but also samples of the Basal, LumA, LumB subtypes
(Supplementary Fig. 3d), which is in agreement with previously reported
heterogeneity of this IHC group54. On the other hand, the vast majority of
samples in the BCC HER2-low group (96%) were HER2-low samples as
defined by RNA cut-offs and did not contain samples of other subtypes.
Therefore, our findings indicate that the BCC can stratify breast cancer
samples better than IHC can, particularly with regards to HER2 status.

Distinctive genetic alterations in BCC HER2-low samples
Deep investigation of genomic alterations on TCGA and METABRIC
datasets (n = 2827) showed the HER2-low subtype to have the highest
percentage of samples with amplifications of EGFR (11%, p-value = 6e-5,
Fig. 3g), a gene that encodes a keyHER2 coreceptor, among other subtypes,
and elevated EGFR expression (Fig. 3d). The BCC HER2-low subtype was
enriched with ERBB2 missense mutations (8%, p-value = 0.05) in the tyr-
osine kinase domain (Supplementary Fig. 3b), mostly resulting in a gain of
function (GOF). TP53 was altered in 72% of cases, and mutations mostly
featured missenses and frameshifts. The HER2-low subtype also featured
amplification in AKT1 (9%, p-value = 1e-5), PIK3CA (53%,
p-value = 0.02) including known GOF variants13 H1047R (44%), E545K
(9%), E542K(5%) (Supplementary Fig. 3c), andPTEN (11%,p-value = 0.04)
(Fig. 3h), cumulatively altering genes of the PI3K pathway in 73% ofHER2-
low samples (with at least one alteration).Observedgenomic alterations and
overexpression of markers such as AR allow us to assume a similarity
between the BCC HER2-low and TNBC LAR subtypes26,56.

The BCC HER2-high subtype consisted mostly of HER2-amplified
samples, while the Basal, LumA, and LumB subtypes showed the expected
genomic and transcriptomic features. Genomic profiling of the HER2-high
subtype revealed similar mutational events as previously reported in lit-
erature for the PAM50 HER2-enriched subtype7,57. The percentage of
coding mutations in TP53 was significantly higher for the HER2-high than
for other subtypes (65% of mutated samples, p-value = 2e-34, Fig. 3h, i).
Similarly, the percentage of TOP2A amplification, frequently co-amplified
with ERBB2, was also significantly higher (23%, p-value = 2e-44, Fig. 3g)58.

Among theBCCBasal samples, 82.3%wereTNBC (Fig. 1h) presenting
with known genetic features of subtypes TNBC-BLIS and TNBC-IM27.
Moreover, 83% of the BCC Basal samples had mutations in TP53, the
highest among all subtypes (p-value < 1e-108) (Fig. 3h, i). BRCA1 germline
mutation was also a relatively common event for Basal samples (10%,
p-value < 1e-8) along with BRCA1 somatic mutation (6%, p-value < 1e-4)

(Fig. 3h). However, the Basal subtype differed from other subtypes in that
amplifications of GATA3 (22%, p-value < 1e-46) and PIK3CA (9%,
p-value < 1e-11) were more common (Fig. 3h). Deep PTEN deletions were
detected in 6% (p-value < 1e-5) of the Basal samples.

Among all the genetic events analyzed, only mutations in PIK3CA
(60%, p-value < 1e-26), CDH1 (18%, p-value < 1e-8), and MAP3K1 (17%,
p-value < 1e-6) were statistically significantly more frequent in the LumA
subtype than in all other subtypes7. The LumB subtypewas characterized by
mutations inAKT1 (5%, p-value < 1e-6) andGATA3 (17%, p-value < 1e-19,
Fig. 3h, i).

The BCC Luminal, Basal, and HER2-high subtypes showed
expected marker expression and pathway activity
Gene expression analysis across the BCC Luminal subtypes revealed fea-
tures commonly associatedwith these subtypes as defined by currently used
classifications, such as a high expression of hormone receptor genes (ESR1,
PGR), luminal markers (GATA3, FOXA1), kinase receptor genes (ERBB3,
IGF1R), and the cell migration gene AGR3 (Fig. 4a)16,46. The expression of
ESR1, GATA3, and FOXA1 was higher in subtype LumB than in LumA,
while PGD expression was higher in subtype LumA and showed a bimodal
distribution in subtype LumB. These subtypes also exhibited the expected
low expression of basalmarker genes SOX11 and FOXC1 (Fig. 4a, b)59,60 and
cell cycle genes such as CCNE1, MYBL2, CCNB2, CDC20, and RRM246.
Interestingly, the expression of cell cycle genes was higher in LumB than in
LumA samples, indicative of a higher proliferative potential of LumB
tumors.

The HER2-high subtype, as expected, showed the highest ERBB2
expression (Fig. 4a). Cell cycle (MKI67,CDK1,CCNB1) andmitosis (TPX2,
AURKB, NDC80) genes were also highly expressed. Additionally, UBE2C,
UBE2T, and TOP2A were upregulated in the HER2-high subtype in com-
parison with the HER2-low and Luminal subtypes (Fig. 4a).

Compared to the other subtypes, the Basal subtype showed higher
expression of basal phenotype marker genes FOXC1 and KRT11, cell cycle
genes (MYC, MKI67, CCNE1, CDK1, CCNB1, MYBL2, CCNB2, E2F2,
CDC20), mitosis genes (PTTG1, AURKB, NDC80, KIF2C, TPX2, TOP2A),
and differentiation marker gene KRT17 (Fig. 4a). Conversely, expression of
hormone receptor genes (AR, ESR1, PGR), luminal marker genes FOXA1
and GATA361, and kinase receptor genes ERBB2 and ERBB362 were the
lowest in the Basal subtype (Fig. 4a).

The HER2-low subtype possessed intermediate features among
all BCC subtypes
The expression profile of HER2-low samples resembled that of HER2-high
samples, with the exception of low expression levels of ERBB2 and neigh-
boring GRB7, which is often co-amplified with ERBB263. The resemblance
included high FOXA1 expression and low FOXC1 expression. Compared to
the Basal, HER2-high, and Luminal subtypes, the HER2-low subtype
showed the highest level of EGFR and CLDN8 expression and the lowest
level of IGF1R expression (Figs. 3d, 4a). Pathwayanalysis showed theHER2-
low subtype to have the highest scores for androgen-, hypoxia-, and p53-
mediated pathways, but the lowest score for estrogen-mediated pathways
(Fig. 4c) among all of the subtypes.

Fig. 2 | Reclassification of the PAM50 Normal-like subtype and characterization
of the BCC Luminal subtype. a Representative histological sections (H&E-stained)
of samples annotated as PAM50 Normal-like, with adipose tissue and DCIS com-
ponent present. Scale bar—500 μm. bMean tumor content across reported PAM50
subtypes in TCGA (n = 1048) determined byWES. The color key included is used for
(b), (c), and (d). ***: p value < 0.001, **: p value < 0.01, *: p value < 0.05, -: p
value < 0.1. c Gene expression levels in the adipose signature (in scaled SSGSEA
scores) across reported PAM50 subtypes and normal tissue. dGene expression levels
in the proliferation signature across reported PAM50 subtypes and normal tissue.
e Sankey plot depicting the distribution of PAM50 Normal-like samples between
BCC LumA and LumB subtypes and among the IHC-defined phenotypes.

f Kaplan–Meier survival curves for the PAM50 and BCC LumA/LumB subtypes.
gDelineation of the SCAN-B Luminal subtype into LumA and LumB with the BCC
using proliferative and anti-proliferative signatures as explanatory variables. The
blue line reflects the proposed threshold of signature scores between LumA and
LumB. h Barplots showing the distribution of KI67-positive samples between
PAM50 LumA/LumB subtypes. i Barplots showing the distribution of KI67-positive
samples across BCC LumA/LumB subtypes. j Cox proportional hazard regression
analysis showing the change of survival rates across the BCC LumB/LumA subtypes
in the METABRIC cohort (top) depending on additional variables: stage (middle)
and molecular grade (bottom). HR Hazard ratio; CI confidence interval.
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Genes upregulated in the HER2-low subtype in comparison to the
Basal andHER2-high subtypes were identified using differential expression
analysis (Fig. 4d). The HER2-low subtype is characterized by the over-
expression of several genes crucial for cell cycle progression, proliferation
(MYBL2, RRM2, CDC20, MKI67, CCNE1, BIRC5), and mitosis (MELK,
TOP2A), particularly when juxtaposed against Luminal samples, which

concurred with KI67 status as assessed by IHC (Supplementary Fig. 4A). In
contrast, expression of cell cycle, proliferation, and mitosis genes in the
HER2-low subtype was notably subdued when compared to the Basal
subtype, suggesting distinct proliferation dynamics across these subtypes.

The HER2-low subtype showed mixed basal-luminal identity. Over-
expression ofKRT5when comparedwith the Luminal subtypes is indicative
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of basal features, although KRT5 expression in the HER2-low subtype was
still lower than in the Basal subtype. Concurrently, overexpression of
FOXA1 and hormone-related genes such as ESR1, PGR, and GATA3 when
compared with the Basal subtype suggests luminal characteristics (Fig. 4d).

Genes involved in cell adhesion and migration, such as CDH3 and
SFRP1, were overexpressed in theHER2-low subtypewhen compared to the
HER2-high and Luminal subtypes. MMP11 and TMEM45B were over-
expressed in the HER2-low subtype when compared to the Basal subtype.
CLDN8was overexpressed in the HER2-low subtype when compared to all
other subtypes (Fig. 4d). CLDN8 expression is downregulated in breast
cancer in comparison with normal tissue and, depending on the
PAM50 subtype or clinicopathological characteristics, can indicate different
prognosis64. CLDN8 is an androgen-related gene. Its expression level cor-
relates directly with AR expression level and is usually higher in Luminal
breast cancers and in the TNBC-LAR subtype65. These findings correlate
with our observation of high AR expression in the HER2-low subtype.
Finally, expression of metabolic genes, SLC39A6, NAT1, and CA12,66 was
notably lower in HER2-low than in HER2-high tumors.

The BCC subtype classification reflected clinical behavior of breast
cancer that correlated with different treatment types and the
molecular features of each subtype. Next, we analyzed the survival
trends for BCC subtypes using historical data from 1977 to 2005 for
the METABRIC dataset and from 2006 to 2013 for the TCGA dataset
(Fig. 4e). The HER2-high and HER2-low BCC subtypes showed notably
poorer survival outcomes compared to other BCC subtypes. Patterns for
all other subtypes potentially reflect the historical evolution in breast
cancer treatment modalities, including the introduction and standardi-
zation of adjuvant chemotherapy, tamoxifen, and trastuzumab.

The SCAN-B cohort, with sample collection spanning from 2014
onward, likely represents the impact of current treatment standards (Fig. 4e).
Intriguingly, the survival trajectory for the BCC HER2-low subtype more
closely mirrored that of the Basal group than the other subtypes, suggesting
its distinct biological and clinical profile. For all three datasets, the associa-
tions remained significant in the multivariable Cox regression model after
controlling for stage, ERBB2 mutations, and ESR1 status (Supplementary
Fig. 4c). This observation aligns with our hypothesis that HER2-low may
constitute a unique biological entity, necessitating a differential therapeutic
approach67. Since PAM50 does not define the HER2-low subtype, this sur-
vival analysis would not have been feasible with the PAM50 classification.
This further emphasizes the clinical significance of the BCC in delineating
HER2-low breast cancer as a distinct entity from the other subtypes.

Validation of BCC
To validate the BCC, we created a platform-independentmachine learning-
based classifier. This classifier is hierarchical and capable of making single-
sample predictions because it does not utilize per-cohort scaling. Samples
from the TCGA and SCAN-B datasets were mixed and split in the ratio of
70/30 for train-to-test cohorts. The F1 scores on the test datawere 0.99, 0.95,
and 0.82 for the Basal, HER2-high, and HER2-low subtypes, respectively,
demonstrating high performance of our classifier (Supplementary Table 5).

The classifier was subsequently applied to 3165 samples from
15 separate breast cancer datasets obtained from various microarray

platforms, which are labeled in Supplementary Table 6 as “Validation
cohort”. The UMAP of combined median-scaled gene expression revealed
clusters corresponding to the predicted subtypes (Fig. 5a). Gene expression
patternsof thepredicted subtypes resembled thoseof the initial classification
(Fig. 5b, Supplementary Fig. 5a). Analysis of survival prognosis using the
TNBC dataset (Supplementary Table 6) revealed the five-year survival for
HER2-low patients to be 33%, the worst among all subtypes (Fig. 5c).

Investigation of correlation between the obtained classification and the
clinical annotation of the samples analyzed revealed that while the IHC
subtypes were not entirely substituted by the BCC subtypes, most Luminal
samples wereHR+ as assessed by IHC (87% and 72% for LumAandLumB,
respectively), HER2-high samples were predominantly HER2+ (93%), and
Basal samples weremostly TNBC (81%) (Fig. 5d). The BCCLumA subtype
consisted of almost entirely molecular Grade 1 (mG1) samples, while other
subtypes comprised mostly samples with high molecular grades, especially
the Basal subtype (92%mG3). Although the tumor stage was mostly evenly
distributed, it was slightly skewed towards low stages for the LumA subtype
where 32% of the samples were Stage I.

Discussion
By leveraging a cohort of 6223 breast tumor samples, we have introduced a
pivotal modification to the established molecular breast cancer subtyping
based on expression of 63 genes that we namedBCC.We identified a group
of Luminal cancers with a similar gene expression profile as HER2-high
tumors with the exception of low ERBB2 expression. The BCC classifier is a
platform-independent machine-learning model that brings into focus the
distinct nature of the HER2-low subtype as a molecular subgroup often
overshadowed in traditional classifications68. The BCC as a machine-
learning model consists of hierarchical models based on the LightGBM
boosting frameworks and provides high performance metrics.

Our approach was primarily based on the expression patterns of
reported PAM50 genes3, supplemented by 13 additional genes selected
based on our findings on the HER2-low subtype and refinement of the
Luminal group (see Methods). The most differentially expressed genes
introduced into the BCC were FOXC1 and FOXA1 (Basal and Luminal
subtype, respectively), GATA3 (transcriptional factor and luminal
marker69), ACE2 (metastasis, vasoconstrictive promoter70), FABP7 (cell
growth and differentiation71), and AKR1B15 (epithelial to mesenchymal
transition, inflammatory response72) (Fig. 1c).

In contrast with previously described PAM50 research-based mod-
ification andmodels49,73–75, the BCC introducesHER2-high as a category for
samples exhibiting high HER2 expression and amplification, potentially
serving as an alternative to the IHC 3+HER2 classification (91% con-
cordance between these groups). Contrasting with this, the BCCHER2-low
subtype, marked by its absence of significant ERBB2 expression or ampli-
fication, redefines traditionalHER2 categorizations to correspondwith IHC
HER2 1+ and 2+ scores. This approach of the BCC to HER2 classification
underscores the need for refined diagnostic criteria beyond conventional
binary IHC classifications17,35. The presence of different histological sub-
types in the BCC HER2-low subtype (Supplementary Table 3) is an inter-
esting observation that warrants further investigation.

While the BCC classification is correlated with IHC subtypes, it is not
intended as a replacement for these subtypes. The BCC classification

Fig. 3 | Definition of the BCC HER2-low subtype: distinctions from other sub-
types, main features, and drivers. a Barplot showing proportions (in %) of HER2-
positive and negative samples as assessed by IHC across the BCC subtypes in TCGA,
SCAN-B, and METABRIC cohorts (total n = 5602). p-values for the Pearson’s chi-
squared test are shown. b Barplot showing proportions (in %) of HER2-positive and
negative samples as assessed by ISH across BCC subtypes in TCGA (n = 394).
p-values for the Pearson’s chi-squared test are shown. cBarplot showing proportions
(in % of copy number alterations, CNAs) of ERBB2-amplified samples across
BCC subtypes in TCGA. p-values for the Pearson’s chi-squared test are shown.
d Violin plot showing expression levels of ERBB2, AR, and EGFR (in scaled units)
across BCC subtypes (METABRIC, TCGA, and SCAN-B datasets, total n = 6223).

***: p-value < 0.001, **: p-value < 0.01, *: p-value < 0.05, -: p-value < 0.1. Whiskers
indicate 25th percentile (bottom) and 75th percentile (top) +/− 1.5 IQR. e Sankey
plot depicting the overlap between subtypes of TNBC samples (METABRIC cohort,
n = 256) classified by Burstein22 and the BCC. f ERBB2 expression levels across BCC
subtypes in the TCGA dataset (n = 970). The color key indicates types of CNA
change. ***: p-value < 0.001, **: p-value < 0.01, *: p-value < 0.05, -: p-value < 0.1.
g Proportion of alterations in biomarker genes among BCC subtypes (TCGA and
METABRIC datasets, n = 2827). h Barplot depicting various types of alterations in
biomarker genes across BCC subtypes. The purple scale shows -log10(adjusted
p-values) for the right-tailed Fisher’s exact test. i Panorama of events in driver genes
across BCC subtypes (TCGA and METABRIC datasets, n = 2906).
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employs the term “subtype” to denote distinct molecular profiles identified
through transcriptomic data because it is important to differentiate these
from the surrogate subtypes defined by IHC. The correlation between the
BCC and IHC classifications is strong: 94% concordance between the BCC

Luminal and IHC HR-positive groups (Fig. 1h), 91% between the BCC
HER2-high and IHC HER2+ groups (Supplementary Fig. 1j), and 81%
between the BCC Basal and IHC TNBC groups (Fig. 5d). Importantly, we
want to point out that the IHC HER2-low group is different from the

Fig. 4 | Gene expression patterns and survival associations among BCC subtypes.
aHeatmap of differentially expressed genes across BCC subtypes in TCGA, SCAN-
B, and METABRIC cohorts (n = 6223). b Violin plots showing normalized gene
expression levels (in scaled units) across BCC subtypes in TCGA, SCAN-B, and
METABRIC cohorts (n = 6223). ***: p-value < 0.001, **: p-value < 0.01,
*: p-value < 0.05, -: p-value < 0.1. Whiskers indicate 25th percentile (bottom) and
75th percentile (top) +/− 1.5 IQR. c Heatmap showing patterns of PROGENy
signaling pathways across BCC subtypes in METABRIC, TCGA, and SCAN-B

datasets (n = 6223). d Top differentially expressed genes in HER2-low vs HER2-
high, HER2-low vs Luminal, and HER2-low vs Basal subtypes. Asterisks show
adjusted p-value with FDR correction for each scaled feature calculated using
the limma package. ***: p-value < 0.001, **: p-value < 0.01, *: p-value < 0.05,
-: p-value < 0.1. e Kaplan–Meier survival curves for BCC subtypes. Survival rates
were analyzed based on historical data for the METABRIC, TCGA, and SCAN-B
cohorts. p-values for the logrank test are shown. The HER2-low subtype possessed
intermediate features among all BCC subtypes.

https://doi.org/10.1038/s41523-025-00723-0 Article

npj Breast Cancer |           (2025) 11:19 9

www.nature.com/npjbcancer


molecularly defined BCC HER2-low subtype because the IHC HER2-low
group also included samples of Basal (46%), LumA (97%), and LumB (86%)
subtypes, based onRNA-seq cut-offs (Supplementary Fig. 3d). On the other
hand, in this study, 92%of samples classified asBCCHER2-low satisfied the
requirements for IHC HER2-low status39. These observations are in con-
cordance with findings by Tarantino et al. revealing the IHC HER2-low
group as a heterogenous group of tumors rather than a distinct molecular
entity76.

It was previously reported that ERBB2-amplified tumors had high
expression of EGFR and amplification rate77. However, in our study, we
found 11%ofHER2-low samples withEGFR amplification (Fig. 3h) and the
highest frequency ofERBB2GOFmutations (Supplementary Fig. 3b) in our
HER2-low subtype compared to the other subtypes. These findings suggest
that ERBB2 signaling may still be activated in HER2-low tumors, possibly
through a different mechanism than in HER2-high or ERBB2-amplified
tumors. The perceived reliance on alternative growth and survival pathways
may constitute additional avenues for targeted EGFR, anti-HER2, and anti-

EGFR therapies78. By classifying tumors with the highest activation of the
EGFR-HER2 pathway as HER2-low without mandating ERBB2 amplifi-
cation or overexpression (Fig. 4a, c, d), the BCC can define non-HER2-
amplified samples more accurately. Our identification of the HER2-low
subtype as an intermediary between the Luminal and Basal subtypes
underscores its alignment with the IHC criteria for HER2-low and its
enrichment with ERBB2 mutations. Given this unique molecular char-
acterization, we advocate for the exploration of targeted ADC treatments,
specifically trastuzumab deruxtecan, as a viable therapeutic strategy for
patients within this distinct subgroup40,41. Reflecting on the efficacy of
trastuzumab deruxtecan in HER2-mutant lung cancer, we recognize the
promise of exploiting the ERBB2 mutation landscape for targeted ADC
treatments across different molecular subtypes of breast cancer79.

While the expression ofESR1 andPGR inHER2-low tumorswas lower
than in Luminal tumors (Fig. 4d), it was much higher than in Basal tumors.
The samewas observed forAR, the expression ofwhichhas been reported in
approximately 60% of all breast cancers, mainly in ER-positive tumors

Fig. 5 | Validation of the BCC on the breast cancermeta-cohort (15 datasets from
TCGA and SCAN-B datasets, total n= 3165, Supplementary Table 6). a UMAP
visualization of clusters corresponding to subtypes predicted by the BCC.bHeatmap
showing gene expression patterns across BCC subtypes (based on median z-scores

for expression of biomarker genes). cKaplan–Meier survival curves (overall survival
rate in %, right) for BCC subtypes from the validation dataset. d Barplot showing
distribution of sample characteristics across BCC subtypes. From left to right: IHC
phenotype, predicted molecular grade, reported stage, N stage.
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(about 70%)80. In agreement with this published report, we found AR to be
coexpressed with ER in HR+ breast cancer (Fig. 3d). Notably, contrasting
proliferative and anti-proliferative effects have been reported in breast
cancers expressing bothERα/ERβ andAR81. At the same time,AR-mediated
activation ofHER2/HER3 signaling enhancesMYC activity82 and activation
of the Wnt/β-catenin pathway. Studies in women with HER2+ breast
cancer have consistently indicated that AR-positive patients have a worse
prognosis83. Considering that the HER2-low subtype significantly over-
lappedwith the TNBC-LAR subtype (Fig. 3e), these tumorsmay potentially
respond to hormonal treatments targeting androgen receptor84,85. This
notion is also supported by the elevated expression of CLDN8 (androgen-
related gene) in the HER2-low subtype. Our current findings and those
published by others suggest that CLDN8warrants further investigation as a
potential biomarker for androgen receptor-targeted therapy or a new
therapeutic target23,24.

Overexpression of genes involved in cell adhesion andmigration, such
as CDH3, SFRP1, MMP11 TMEM45B, and CLDN8 (Fig. 4d), suggests
alterations in cell-cell adhesion and potential changes in migratory or
invasive properties, impacting tumor aggressiveness and metastatic
capability86–91. Moreover, the expression of the insulin-like growth factor 1
receptor (IGFR1) has been associated with metastatic signatures92,93. This
was supported by substantial representation in samples of highermolecular
grades (mG3) and advanced cancer stages (III and IV) that closelymirrored
the Basal subtype (Fig. 5d). In terms of lymphnode involvement, therewas a
notable distribution across N stages, with N2 and N3 being prevalent in the
HER2-low subtype, underscoring the clinical observation of its metastatic
potential and survival rate (Figs. 4e, 5c, d).

Interestingly, the BCCBasal subtype showedGATA3 amplification, an
observation that contradicts previous findings where only GATA3 loss was
observed in Basal-like tumors94. GATA3 was recognized for its tissue-
specific transcriptional regulation, emerging as a master regulator in breast
cancer with its expression pattern serving as amarker of luminal cell lineage
and estrogen receptor-positive phenotypes95. In the BCC Basal subtype, no
deep deletions ofGATA3were found, although it had a low expression level
of GATA3 (Fig. 4b) that was not associated with CNA status (Supplemen-
tary Fig. 4b). This observation concurs with a previous report showing that
GATA3 mRNA level is not correlated with its amplification in Basal
tumors96.

Our study highlights the complexities of the Normal subtype in the
PAM50 breast cancer classification that is influenced by high normal cell
content and the presence of components like DCIS. Importantly, our
findings highlight the need for samples traditionally classified as Normal to
be viewed as an integral continuumof the Luminal subtypes that reflects the
spectrum of hyperplasia, DCIS, and normal cell proportions16,49.

By delineating subtypes LumA and B more distinctly using the BCC,
we can refine the therapeutic stratification for de-escalation therapy97. The
improvement in the recall score for LumB, as demonstrated in our study
(Supplementary Fig. 2b-d), accurately identifies patients with more
aggressive disease. Furthermore, the integration of molecular grade as a
feature in survival analysis reaffirms the biological distinction between
LumA and B52,98.

While the PAM50 classifier has been pivotal tomolecular subtyping of
breast cancer, it may not capture the full biological diversity of tumors,
particularly inmetastatic cases. Moreover, given the extremely high costs of
breast cancer drugs for seven major markets (the US, France, Germany,
Italy, Spain, United Kingdom, and Japan)—fueled particularly by the
demand for CDK4/6 inhibitors ($9.1 billion in 2023) and HER2-targeting
agents ($9.6 billion in 2023), and projected increases for drugs like trastu-
zumab deruxtecan ($9.5 billion by 2032)99—it is crucial that these costly
therapies are prescribed to patientswho aremost likely to benefit from these
treatments. Clinical trials, including PALOMA-2 and PALOMA-3, have
revealed non-Luminal breast cancer subtypes, representing 20–25% of
patients, to exhibit less pronounced responses to palbociclib, underscoring
the need for more precise patient stratification100,101. Similarly, the MON-
ALEESA-2, -3, and -7 trials showed that while Luminal breast cancers

benefited from ribociclib, patients with Basal-like subtype (2.6%) did not
gain significant therapeutic benefits102. Although the HER2-enriched sub-
type identified by PAM50 showed some response to ribociclib, this classi-
fication is problematic as it does not always represent HER2-driven tumors.
Studies like PAMELA and KEYRICHED-1 confirmed the HER2-enriched
subtype to be predictive for HER2-targeted therapy only when combined
with high HER2 expression103,104. The BCC improves upon this by distin-
guishing between the HER2-high and HER2-low subtypes, the latter being
more closely aligned with IHC HER2 1+ and 2+ scores. Given the
inconsistencies in identifying HER2-low samples by IHC among different
pathologists105 and the impact of intra-tumor heterogeneity on IHC
findings106, the BCC potentially offers a more reliable and cost-effective
approach for routine clinical practice, particularly in guiding treatment of
cases where current methods fall short. Ongoing trials, such as HARMO-
NIA SOLTI-2101107 and SOLTI-1303 PATRICIA108, are expected to further
demonstrate the clinical utility of molecular subtyping in breast cancer as a
viable alternative to IHC, especially in metastatic settings.

With regards to the BCC, while it showed promise in our study in
refining breast cancer molecular classification—particularly in the identi-
fication of HER2-low cases—it is crucial to validate these findings in well-
designed clinical trials before consideringwidespread adoption. Prospective
studies are needed to confirm that BCC-driven stratifications align with
patient outcomes and accurately predict responses to targeted therapies.

Methods
Tumor datasets
The following publicly available gene expression datasets with clinical
annotation were used for this study: TCGA7, SCAN-B44, and Molecular
Taxonomy of Breast Cancer International Consortium (METABRIC)45,
totaling 6223 patients. Datasets of primary tumors were collected for dif-
ferent years, and patients were treated according to guidelines approved for
the corresponding period. The TCGA and METABRIC datasets also con-
tained information on mutations and amplifications. For classifier valida-
tion, gene expression data from 19 microarray cohorts and one RNA-seq
cohort were used (Supplementary Table 6). The selected cohorts contained
data on IHC phenotypes, except for the TNBC dataset for survival data
validation.

Datasets with reported PAM50 annotation (totaling 6217 samples)
were used to validate the BCC annotation. For annotation consistency, the
Claudin-low subtype was merged with the Basal-like subtype and the
Normal-like subtype with the Luminal subtype. The “ERBB2” and “HER2-
enriched” labels were merged into the HER2-enriched subtype for uni-
formity as previously reported7.

Collection and processing of WES and copy number alteration
(CNA) data
TCGAdatawere downloaded from theGDCTCGAdata portal7. CNAdata
were evaluated with ABSOLUTE109. Fully processedMETABRIC data were
downloaded from the European Genome-Phenome Archive45.

The collection and processing of gene expression data
TCGA transcriptomic data were downloaded fromUSCSXENA110 as TPM
units and processed as described previously in Bagaev et al.111. SCAN-B
RNA-seq data were downloaded from Gene Expression Omnibus (GEO):
GSE81538112 and GSE96058112.

Raw and processed microarray data were also downloaded fromGEO
(Supplementary Table 6). Wherever possible, expression data were re-
processed from raw files using affygcRMA and oligo R packages. All Affy-
metrix datasets with available CEL files (Cell Intensity File for raw micro-
array data) were re-normalized using the gcRMA package with default
parameters. Illumina array data were downloaded from GEO as is. Next,
probes were converted into genes using one probe with the highest mean
values in the cohort per gene. Samples with the following characteristics
were omitted: PCAoutlier and low correlationwith otherswithin the cohort
(<0.8 for Affymetrix platforms; <0.65 for Illumina platforms).
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BCC subtype definition
The BCC classification was created using a manual annotation approach
that combined clusterization and implementation of signature scores.
Clusterization was performed stepwise for each dataset (Supplementary
Table 6—discovery cohorts) with genes from the PAM50 subset and four
additional markers (discussed later in this section) corresponding to each
class. Specifically, upon identification of one class of samples, this class was
excluded and the remaining samples were reclustered. This step was repe-
ated until all samples were assigned into one of five subtypes: HER2-high,
HER2-low, LumA, LumB, and Basal (Fig. 1a, b).

In the initial phase of this study, a hierarchical clustering analysis was
performed using the standard PAM50 gene subset. This approach utilized
the cityblockmetric for distancemeasurement between two samples and an
average linkage criterion (which defines how distance between two clusters
is measured) for preliminary identification of the Basal, HER2-high, and
Luminal clusters. Samples that clustered together with HER2-high but had
low expression of ERBB2 were classified as HER2-low. Further differential
expression analysis between HER2-low and Luminal samples identified
fourmarkers as additional features for automatic separation:ACE2,FABP7,
AKR1B15, and GATA3. For exact class separation, UMAP was performed,
followed by subtype division in this projection using Hierarchical
DBSCAN113,114 clusteringwithdifferent arguments (the list of genes for each
subtype is presented in Supplementary Table 1). In the first iteration,
UMAP defined the Basal subtype. In the second iteration, the HER2-high
subtype was segregated from the remaining samples. Finally, the last pro-
jection uncovered the HER2-low subtype (Fig. 1a, b). The remaining
samples were classified as Luminal and subjected to further differentiation
into subtypes LumA and LumB. An approach based on KI67-positivity
(≥ 20%by IHC)was applied. Briefly, the availableKI67values in the SCAN-
B luminal samples were used (n = 1270), and sets of proliferative and anti-
proliferative genes (each with the top nine genes) were defined by differ-
ential expression analysis (Fig. 2g, Supplementary Fig. 2b). Enrichment
scores (ESs)115 for each of these two gene sets were calculated and used as
explanatoryvariables to train a logistic regression classifier (Fig. 2g).Metrics
for regression were F1 scores between the LumA and LumB subtypes and
the threshold that provided the highest F1 scorewas chosen. The position of
this threshold is reflected on the ROC curve (Supplementary Fig. 2b).

The following BCC subtype annotation was used for validation: Basal,
HER2-enriched (HER2-high and HER2-low), and Luminal (LumA and
LumB). The previously reported annotation7,116 was also simplified tomerge
the Normal-like, LumA, and LumB subtypes into the Luminal subtype,
while the HER2-enriched and Basal-like subtypes remained unchanged.

Classifier training for the BCC
Manual subtype annotation performed on the SCAN-B andTCGAdatasets
was subsequently used to train a machine learning-based hierarchical
classifier. At each step, a separate classifier made a binary prediction to
assign a test sample to one of two groups. The architecture of the classifier is
the same as in the manual annotation approach. Dead-end groups are
assigned to molecular subtypes; composite groups are subjected to separa-
tion by the subsequent classifier in the next step.

The Basal, HER2-high, and HER2-low subtypes were distinguished at
steps 1, 2, and 3 respectively (Fig. 1a). These steps were performed by
LightGBM-classifiers that processed the expression of specific genes (fea-
tures) in ranks. The PAM50 gene list3 with transcriptional factors included in
the annotation was used as initial features for each LightGBM-classifier.
Then, feature selectionwas performed for each classifier. This process started
with a full set of 52 biomarker genes. The LightGBMmodel was launched on
data with this subset of features. The impact of each feature on the model
result was calculated, and the cross-validation performancemetric (F1) of the
model was saved using the Shapley values117 (shap.TreeExplainer function
with standard parameters). Shapley values were chosen as a feature selection
algorithm because they showed utility and reliability as a feature selection
method in transcriptome data118. Then, a feature with lower impact values
was eliminated and the process was repeated until the number of features

became lower than the limit (5 features). Finally, the subset of features which
showed the highest F1 scores was chosen as the optimal set of features
(Supplementary Table 1). Hyperparameters for each model were selected
using a randomized search with a cross-validation splitting strategy. The
following parameters were optimized: learning_rate, n_estimators, num_-
leaves, colsample_bytree, subsample, reg_alpha, reg_alpha. A list of optimal
parameters for each model and the code can be shared upon reasonable
request. This processwas repeated for each LightGBMmodel. Thereafter, the
classifiers were trained and tested on subsets from the SCAN-B and TCGA
datasets combined (Supplementary Table 6—discovery cohorts) and vali-
dated on 16 cohorts (Supplementary Table 6—validation cohorts).

Statistical analysis and visualization of WES data
METABRICandTСGAcohortswere examined to estimate the incidence of
various genetic events in different BCC subtypes (Fig. 3i). The events of
interest were: somatic mutations in coding regions, deep deletions (com-
plete loss of a gene), and amplifications (total number of gene copies
≥2*ploidy). Sampleswith detailedannotation anddata on anyalterations of
interest were analyzed. All types of alterations—coding mutations, ampli-
fications, and deletions—were examined to obtain a panoramic view of
driver events across BCC subtypes (Fig. 3i). The right-tailed Fisher’s exact
test, calculated using the scipy Python package119, was used to determine
whether a particular BCC subtype could be characterized by the presence of
a particular genetic event (somatic mutation, oncogene amplification, or
oncosuppressor deletion) (Fig. 3h). Each subtype was compared against the
sum of the other subtypes. Statistics on germline mutations in BRCA1were
also included in the analysis.

Statistical analysis and visualization of gene expression data
PROGENy score48 was calculated based on the gene expression patterns of
samples fromMETABRIC, TCGA, and SCAN-B datasets (Fig. 4c) to assess
the activity of various signaling pathways in different BCC subtypes. The
following unified algorithm was used to describe the identified BCC sub-
types based on the expression patterns of selected genes, cell percentages, or
PROGENy pathways. First, for processing the outliers for each feature,
values outside the 2ndand98thpercentileswere trimmed fromeachdataset.
Further, featureswere linearly and independently scaled from0 to 1 for each
dataset. Then, these processed values from the datasets were merged and
subsequently used to compare the BCC subtypeswith one another. For each
feature, the ad-hocKruskal–WallisH test, calculated using the SciPyPython
package119, was used to confirm that all groups do not originate from the
same distribution. The p-value for each scaled feature was calculated using
the Dwass-Steel-Critchlow-Fligner all-pairs comparison test, calculated
using the scikit-posthocs Pythonpackage120. For heatmaps in Figs. 4e and 5b
and Supplementary Fig. 2a, the median value of each feature for each BCC
subtype was calculated for ease of visualization. Differential expression
analysis was performed using the limma R package101. Transcription
factors121 with high expression were identified for each subtype in the
subtype description step using decoupler package v. 1.3.1122.

Signature construction for the Normal-like subtype
For comparison of the Normal-like subtype with the Normal subtype,
adipose, proliferation, and keratin signatures were used. Genes analyzed for
the adipose signature wereCAV1, FABP4, PPARG, ADIPOQ, LEP, PPARG,
and PLIN150. The proliferation signature used was developed in-house and
has been reported previously94. The keratin signature was constructed using
the following genes:KRT5,KRT14,KRT15, andKRT1616,21. Lists of genes are
presented in Supplementary Table 7. Signature scores were calculated using
the ssGSEA algorithm115.

Selection of features for subtype description
Each BCC subtype was described based on its mutations, gene expression
patterns, andCNAs.Highly and lowly expressed genes for each subtypewere
selectedusingdifferential expressionanalysis. For this purpose, geneswith the
highest standard deviation in their expression values were included.
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Differential expression analysis was performed on the METABRIC and
SCAN-B datasets. For each dataset, 20 genes with top fold changes between
subtypes were intersected. Additionally, highly expressed transcription fac-
tors were identified for each subtype. All genes from these steps were further
merged into one list that was then refined by removing genes that have not
been reported as biomarkers in breast cancer. Genes with specific mutations
were selected for each subtype using a chi-squared test. For each gene, ratios
between thenumber ofpatientswith themutated andwild-type variantswere
calculated across all five subtypes and evaluated using the chi-squared test
with FDR correction to select for genes with ratios that differed significantly
from each other. Then, these genes and those with a ratio ofmore than 5% in
at least one subtypewereused for subtypedescription.GeneswithCNAswere
selected based on reports on their status as biomarkers in breast cancer.

Differential expression analysis was also used to compare the HER2-
low subtype with other subtypes. Here, the HER2-low subtype was subse-
quently compared with the Basal, HER2-high, and Luminal (LumA and
LumB) subtypes using the TCGAdataset. The difference in gene expression
was calculated using the DESeq2 algorithm121.

Histological examination of the Normal-like subtype
A histological re-examination was conducted for 49 PAM50 Normal-like
samples using available FFPE tissue slides from the TCGA dataset. This
procedure was performed by two experienced pathologists blinded to the
original PAM50 molecular annotations to ensure an unbiased assessment.
These samples were selected to represent the diversity within the Normal-
like TCGA PAM50 subtype.

The histological evaluation focused on the following aspects: visual
assessment of neoplastic cellularity (in %), the measurement of DCIS areas,
breast cancer grading according to standard criteria123, the organization of
stromal tissue, and the evaluation of areas occupied by normal breast tissue.
These characteristics were selected to delineate the histological features
associated with the molecular profile of a sample.

Survival analysis
Survival differences were assessed using log-rank tests from lifelines version
0.27.3124 and presented on Kaplan–Meiers plots. For survival analysis based
on the expression of biomarkers, single-variate or multivariate Cox
regression was conducted.

IHC labels by RNA-seq cut-offs
For defining IHC status for estrogen (ER) and progesterone (PR) receptors
andHER2, analternativeRNA-seqapproachutilizing theexpressionofESR1,
PGR, and ERBB2with selected cut-offs reported by Kushnarev et al. 55,125 was
used. Samples from the TCGA dataset were labeled using this approach, as
shown in Fig. 3a. The selected cut-offs were (High/Low) 3.5 for ESR1 and
(High/Medium/Low) 8.5/6 for ERBB2 (Supplementary Table 4).

Data availability
All steps of BCC subtype annotation andmodel trainingwere performed on
publicly available data listed in Supplementary Table 6. This study did not
generate any dataset that warrants deposit into public registries.

Code availability
The underlying code for this study will be made available upon reasonable
request.
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