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Accessible model predicts response in
hormone receptor positive HER2 negative
breast cancer receiving neoadjuvant
chemotherapy
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Hormone receptor-positive/HER2-negative breast cancer (BC) is the most common subtype of BC
and typically occurs as an early, operable disease. In patients receiving neoadjuvant chemotherapy
(NACT), pathological complete response (pCR) is rare and multiple efforts have been made to predict
disease recurrence. We developed a framework to predict pCR using clinicopathological
characteristics widely available at diagnosis. The machine learning (ML) models were trained to predict
pPCR (n = 463), evaluated in an internal validation cohort (n = 109) and validated in an external validation
cohort (n =151). The best model was an Elastic Net, which achieved an area under the curve (AUC) of
respectively 0.86 and 0.81. Our results highlight how simpler models using few input variables can be
as valuable as more complex ML architectures. Our model is freely available and can be used to
enhance the stratification of BC patients receiving NACT, providing a framework for the development
of risk-adapted clinical trials.

Breast cancer (BC) is the most common cancer in women, with the hormone ~ tumors operable’. In addition, neoadjuvant therapy allows assessment of
receptor (HoR)-positive/HER2-negative subtype accounting for approxi- response during treatment, with pathological complete response (pCR) being
mately 65% of cases'. Neoadjuvant therapy has become the standard of care  the best biomarker for predicting the risk of recurrence™.

in HER2-positive and triple-negative BCs due to the opportunity to down- Pathological complete response rates following neoadjuvant che-
stage the tumor and perform conservative surgery and makelocally advanced ~ motherapy (NACT) vary significantly depending on the BC subtype.
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Among HoR-positive/HER2-negative BCs, pCR rates are typically low,
ranging from 10% to 20%”’. Furthermore, while NACT may be more
effective than the same chemotherapy given after surgery in the early era-
dication of micrometastatic disease, it may increase the risk of metastasis for
cancers that are insensitive to chemotherapy by delaying surgery”.

Given the prognostic role of pathological residual disease after NACT
and the low pCR rate of this BC subtype, multiple efforts have been made to
identify patients most likely to respond to NACT. However, clin-
icopathological factors, especially when examined separately, have shown
only weak predictive value’™. A variety of machine learning (ML) techni-
ques have been extensively used in the past two decades to predict cancer
susceptibility, recurrence and survival'’, but few studies have looked into
their applicability in predicting pCR after NACT based on pre-therapy
clinicopathological ~characteristics. Particularly, studies that have
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investigated the use of ML models for predicting pathologic response to
NACT have not focused on the different BC subtypes, developing predictive
models in an unselected BC population''™. This study aimed to develop
and validate an ML model based on pre-NACT clinical and pathological
features, with the potential to help clinician in the prediction of pCR in HoR-
positive/HER2-negative BC.

Results

As per clinical practice, all patients receiving early BC diagnosis underwent
radiologic imaging and tissue sampling, followed by neoadjuvant che-
motherapy and surgery with pathological assessment. The study flow chart
and the time points when each variable was collected are shown in Fig.la.
This study was based on data from two retrospective observational cohorts,
one from Fondazione Policlinico Universitario A. Gemelli IRCCS (internal
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Fig. 1 | Overview of the study and model development workflow. a Key time
points, variables collection and endpoints assessment. b Schematic of the machine
learning workflow for model training, evaluation and validation. CONSORT dia-
gram information is embedded in the figure. The model for pCR was trained using

Confusion Matrix

463 patients from three different institutions of a single cancer center and model
performance was evaluated on the internal validation dataset (n = 109). The final
model was validated to the external validation dataset (n = 151), including patients
from three different cancer centers.
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set, n =572) and one from three other Italian institutions (external valida-
tion set, n =151, Fig. 1b). The internal cohort was randomly split into a
training (n = 463) and an internal validation set (n = 109). The training set
was used for feature selection, model training and hyperparameters tuning
using cross-validation. Predictions generated from the models were used to
evaluate the models’ performance in the internal validation set. Feature
importance was also evaluated. The performance of the best-performing
model was validated in the external validation dataset.

Patients’ characteristics

Overall, 87 patients (15.2%) achieved pCR in the internal dataset, of which
72 in the training dataset (15.6%). As expected, patients’ characteristics were
well balanced between the train and the internal validation set (Supple-
mentary Table 1). The external validation cohort differed from the internal
cohort: more patients were premenopausal and tumors were generally less
aggressive, with less nodal involvement, higher prevalence of lobular his-
tology, higher ER and PR expression and lower Ki67 levels. Accordingly,
PCR rate was only 8.6% (13 events, Supplementary Table 2). A comparison
of the three cohorts is shown in Supplementary Table 3.

Response to NACT can be heterogeneous in similar patients

We performed a RadViz analysis in the internal set to detect separability and
patterns among patients achieving or not pCR (Fig. 2a). A lack of clear
separation was observed between the two classes with wide overlapping
regions having similar features but different outcomes. We then inspected
the parallel plot to visualize the influence of the features on the likelihood of
achieving pCR (Fig. 2b). The analysis suggested how small tumor size and
negative lymph node status, alongside with low estrogen-receptor (ER)
expression and high Ki67 levels, are aligned with higher pCR rates. Potential
patterns were further investigated in the Uniform Manifold Approximation
and Projection (UMAP) analysis, which was applied by varying the number
of neighbors and the distance (Fig. 2c). While our analysis identified distinct
clusters of patients based on their multi-dimensional profile, these clusters
did not exhibit a clear overlap with pCR status: while some low-density pCR
regions could be identified, the majority of clusters with a high density of
PCR patients were nested into non-pCR regions. Consistently, focusing the
analysis on the training dataset, the heatmap distinctly showed clusters of
patients with similar features but different outcomes (Fig. 2d). The greater
density of pCR patients was observed in the cluster characterized by ER-low
and high Ki67 expression, a group of patients biologically closer to the triple-
negative subtype. Clusters of clinical features were also identified and
associations were found between ER and progesterone receptor (PR), Ki67
and grade (G), clinical tumor size (cT) and clinical lymph node status (cN).

In the validation dataset, low pCRregions were identified in the RadViz
plot, again without a clear separation from high pCR regions (Fig. 2¢). The
influence of features was similar compared to the internal set (Fig. 2f). In
UMAP analysis pCR patients tended to be grouped, even if nested into a
bigger cluster including also non-pCR patients (Fig. 2g). Due to the pre-
liminary and exploratory nature of this analysis and the possible informa-
tion leakage from validation sets, no information at this stage was used for
feature selection or model training.

Taken together, these data indicate that while pCR can be fairly
excluded in some groups of patients, similar characteristics can result in
different outcomes, underscoring the potential presence of unknown factors
that might play a role in treatment response.

Clinicopathological features are associated with pathological
complete response

Several feature selection techniques were applied to identify pCR predictors
and remove redundant variables.

In order to minimize biases, the final choice of included variables was
based on author consensus, considering results of the feature selection
techniques and domain literature knowledge.

At exploratory univariable logistic regression analysis, T, cN, G, ER, PR
and Ki67 were significantly associated with pCR (Supplementary Table 4). In

the correlation matrix, features with the strongest correlation were age with
menopausal status (r=-0.76) and Ki67 with grade (r=0.41). The features
with the highest correlation with pCR were Ki67 (r = 0.27), cT (r = -0.23) and
PR (r=-0.21). Notably, cN, cT, Ki67 and PR were selected by all the algo-
rithms, followed by ER and age (selected in five out of six feature selection
models). Feature selection is summarized in Supplementary Fig. 1. In the end,
cN, cT, Ki67, PR, ER, age and G were considered for the final models. A
reduction in multicollinearity was observed after feature removal (Supple-
mentary Table 5).

These analyses highlight the lack of a strong correlation between single
predictors and pCR, suggesting that multivariable models are required to
efficiently predict pCR.

Machine learning models can predict response to NACT

Several machine learning frameworks were trained and evaluated using
cross-validation. The Area Under the Receiver Operating Characteristic
(AUROC) was used as the primary metric for performance evaluation. In
the train set, cross-validated AUROCs were compared only among models
from the same framework and the model with the highest cross-validated
AUROC was selected for additional evaluation.

In this analysis, Generalized Linear Models (GLM) were identified
as the most performing model family and further GLMs were trained
and tuned using a Stochastic Gradient Descent (SGD) solver, imple-
menting both hyperparameter optimization and sigmoid calibration
within the pipeline to improve the reliability of pCR probability pre-
dictions. After hyperparameter tuning, the Elastic Net with SGD solver
and sigmoid calibration was found to be the best-performing model,
achieving a cross-validated AUROC of 0.81 in the train set (Supple-
mentary Fig. 2-3). In the internal validation set, the model achieved the
highest AUROC of 0.86 (95% CI 0.74-0.94) and an AUC PR of 0.55 (95%
CI0.31-0.77, Fig. 3a, b). The calibration curve indicates that the model is
relatively well-calibrated at lower predicted probabilities but tends to be
miscalibrated for predicted probabilities over 40% (Fig. 3¢). Notably the
TabPFN model without requiring extensive optimization, achieved and
AUROC of 0.85 (95% CI 0.72-0.95) and an AUC PR of 0.58 (0.35-0.82)
(Fig. 3a, b). In the internal validation set, we identified 0.1925 as the best
cut-off for model predictions to maximize F1-score; using this cut-off,
recall (sensitivity) was 0.80 and specificity 0.86 (Supplementary Fig. 4).
The decision curve analysis showed a relatively high net benefit at low
probabilities (Fig. 4d).

The best model’s performance was further validated in an external
dataset to test its generalizability. The Elastic Net model with SGD solver
achieved an AUROC of 0.81 (95% CI 0.70-0.90) and an AUC PR of 0.29
(95% CI0.13-0.54, Fig. 3e, f, Supplementary Fig. 5). In this population, using
0.1925 as cut-off, the pCR rate in the patients with positive pCR prediction
(precision) was 23%, almost three times the baseline pCR rate. Conversely,
PCR rate was 4% in patients with a non-pCR prediction. These findings
demonstrate the capability of our machine learning model to fairly predict
response to NACT using accessible baseline features.

Clinical tumor size and Ki67 are the two most important features
Model explainability and feature importance was assessed in the internal
validation set. In the Elastic Net model Ki67 and T had the largest coeffi-
cients and all features had a negative coefficient except for Ki67 and G (Fig.
4a). Permutation importance analysis showed that permuting Ki67 and cN
led to a notable decrease in model performance (Fig. 4b). Consistently, the
highest mean Shapley Additive exPlanations (SHAP) values were observed
for ¢T and Ki67, which had the highest impact on model predictions
(Fig. 4c,d). In the SHAP heatmap, patients with the higher function had low
cT, high Ki6 and low ER (Fig. 4e). The decision plot traces the path of each
patient’s data through the model, observing how the cumulative SHAP
values led to the final prediction (Fig. 4f). Partial dependence plots and single
patients” predictions are reported in Supplementary Fig. 6-7. In summary,
cT and Ki67 were identified as the most critical predictors of treatment
response, with consistent results across various methods.
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Pathological complete response is prognostic for patients’
survival

In the internal cohort, 556 patients were evaluable for DFS and 564 for OS,
with a median follow-up of 57.7 months for both outcomes. A DFS event
occurred in 183 patients, 169 in the non-pCR group and 14 in the pCR
group. As expected, patients achieving pCR had a significantly longer DFS
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compared to those who did not achieve pCR (HR 0.39; 95% CI 0.23-0.68,
p<0.001, Fig. 5a). Median DFS was not reached in the pCR group vs
91 months (95% CI 76-NE) in the non-pCR group. Similar results were
observed for OS: an OS event occurred in 134 patients, 126 in the non-pCR
group and 8 in the pCR group. Coherently, patients achieving pCR had a
significantly longer OS compared to non-pCR patients (HR 0.31; 95% Ci
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Fig. 2 | Multidimensional visualization of patients’ characteristics in the different
cohorts. a Radial visualization (RadViz) of patients’ characteristics in the internal
cohort. RadViz algorithm plots each point normalizing its value on the axes from the
center to the arc. No clear separation according to pCR status was observed.

b Parallel coordinates plot for the relation between pCR status and patient’s char-
acteristics in the internal cohort. ¢ UMAP in the internal cohort. Different hyper-
parameters were used to highlight different possible clusters of patients. Columns
correspond to different distances (from left to right: Euclidean, Manhattan and
Chebyshev) while rows to different numbers of neighbors (from upper to lower: 10,
20, 50, 100). d Heatmap for patients’ characteristics in the training cohort. A

hierarchical clustering algorithm with ward distance was used to cluster features and
patients. The higher density of pCR was observed in patients with low ER and high
Ki67. e Radial visualization (RadViz) of patients’ characteristics in the external
validation cohort. Again, no clear separation according to pCR status was observed.
f Parallel coordinates plot for the relation between pCR status and patient’s char-
acteristics in the external validation cohort. g UMAP for the external validation
cohort. The hyperparameters used were Manhattan distance and neighbors=10,
which provided a good discriminative power in the internal cohort. A cluster of pCR
patients was observed, nested in a non-pCR region.

0.15-0.63, p = 0.001, Fig. 5b). Median OS was not reached in pCR group and
140 months (95% CI 98-NE) in the non-pCR group. The prognostic role of
PCR was consistent in the internal validation set both for DFS (Supple-
mentary Fig. 8a) and OS (Supplementary Fig. 9a). These analyses confirm
PCR as a prognostic factor for survival.

Model predictions could be independently prognostic of patients’
survival

In the internal validation set, using the defined cut-off of 0.1925, no sta-
tistical difference was observed between pCR- and non-pCR predicted
patients (HR 0.63, 95% CI 0.28-1.42). Interestingly, we observed an absolute
survival difference of 24% at 96 months (68% vs 44%, Supplementary
Fig. 8b). Using maximally selected rank statistics (MSRS) we identified
0.1366 as the best cut-off to maximize survival difference (Supplementary
Fig. 8¢c). Applying this value to pCR predictions, we observed a statistically
significant survival difference between the two groups (HR 0.42; 95% CI
0.22-0.84, p = 0.01), with a 39% absolute difference at 96 months (71% vs
32%, Fig. 5¢). This was confirmed in the exploratory analysis using restricted
mean survival time (RMST, p-value 0.001). (Supplementary Fig. 8e). In
terms of OS, using 0.1925 as cut-off, no clear difference was observed
between patients whose pCR was predicted by the model and those whose
PCR was not predicted (HR 0.62, 95% CI 0.24-1.63, Supplementary Fig. 9b).
However, using MSRS, we identified 0.1366 as the same cut-off to maximize
survival difference (Supplementary Fig. 9¢c). Applying this cut-off, whereas
not-statistically significant (HR 0.50; 95% CI 0.23-1.09, p=0.08), at
96 months we observed an absolute OS difference of 23% (74% vs 51%, Fig.
5d). At the exploratory analysis using RMST the p-value was 0.004 (Sup-
plementary Fig. 9e).

We further stratified patients according to MSRS model prediction in 3
groups: pCR, no pCR - pCR predicted and no pCR - pCR non predicted.
For DFS, a significant survival trend was observed (p-value test for trend
0.04): while pCR patients were prognostically similar to non pCR - pCR
predicted patients, a clear difference was detected in the no pCR group
according to pCR prediction, with a 34% absolute DFS difference at
96 months (67% vs 33%, Fig. 5e). For OS, whereas the trend was non-
significant (p-value test for trend 0.14), at 96 months survival probabilities
were 93% for pCR patients, 67% for no pCR - pCR predicted patients and
50% for no pCR - pCR non predicted patients (Fig. 5f).

Despite the relatively short follow-up, these exploratory analyses show
how model predictions could have a prognostic impact on patients’ survival,
especially providing a stratification in the majority of patients not
achieving pCR.

Discussion

In this study, we developed and validated a machine learning model to
predict the probability of pCR after NACT in HoR positive/HER2-negative
BC patients, based on the contribution of clinicopathological features
commonly available at baseline evaluation.

With regard to feature selection, we initially selected ten clin-
icopathological variables known to be related with pCR in HoR-positive/
HER2-negative tumors. Previous research has demonstrated that age and
menopausal status are correlated with sensitivity to chemotherapy'>™"” as
well as tumor stage at diagnosis and grading'®*. Ki67, ER and PR levels are
also important predictive markers of pathologic response to NACT, with

tumors that have low Ki67 and strong ER or PR expression associated with
limited benefit from chemotherapy™*. Specifically, in the context of HoR-
positive/HER2-negative BCs, a high Ki67 value and PR negativity correlate
with pathologic response to NACT’. Recently, low HER2 expression has
also been questioned as an additional discriminatory variable of pathologic
response to NACT***, particularly among HoR-positive tumors” .

In our study, analysis of the clinicopathological features” importance
suggested that Ki67 and cT are the most significant factors in predicting pCR
in the context of HoR-positive/HER2-negative disease, according to dif-
ferent metrics. Of note, even if not included in the final model, feature
selection algorithms acknowledged HER2 zero status as having some sig-
nificance in predicting pCR in this population. On the contrary, menopausal
status and tumor histology did not appear to have a substantial impact on
the models” performance.

Interestingly, considering both age and menopausal status, age appears
to be a strong predictor of pathologic response, whereas menopausal status
does not have a relevant impact on the probability of achieving a pCR. The
literature data indicate an overlapping effect of these two parameters in
predicting the benefit of chemotherapy in a HoR-positive/HER2-negative
population, which is consistent with the correlation between the two vari-
ables found in our work'®"”. In a HoR-positive cohort, another ML study
found that, in the absence of the age variable, menopausal status affects the
likelihood of pCR following NACT"*. Taken together, these considerations
suggest that in HoR-positive HER2-negative disease, age-related circulating
estrogen levels may influence the pathological response to NACT'. How-
ever, the effect of age as a continuous variable might outweigh that of
menopausal status as a binary variable in contributing to the prediction of
PCR in a ML model and this could be particularly true for tree-based
algorithms. Furthermore, it should be noted that the impact of age may also
be attributable to differences in the capacity to complete the planned
treatment regimens.

To develop a model that was accurate but also easily generalizable, we
chose the clinicopathological features at the baseline of NACT known for
predictive value and ready accessibility. In this regard, the two methods for
selecting relevant variables have been compared: the expert model, with
clinical, pathological, and treatment parameters chosen based on oncolo-
gists’ opinions, and the data-driven model, which used factors chosen by the
feature selection algorithms'”. The variables selected by the data-driven
process were equivalent to those made by experts and the performances of
the two models were similar. When few variables are considered, training a
model to automatically choose a set of features did not increase the pre-
diction performance obtained from variable selection by the expert subjects.
Moreover, if the single selection method is not included in a pipeline it could
result in a biased cross-validated performance due to information leakage of
the cross-validated test folds. In our study we used a hybrid approach: we
initially considered a set of variables based on literature data, evaluated
feature selection algorithm results and then made the final selection based
on domain knowledge.

Regarding pCR, the Elastic Net model obtained an AUC of 0.81 in the
external validation set, confirming the good discriminative power observed
in the internal validation set despite the differences in patient’s baseline
characteristics. The good AUROC value indicates the model learned some
meaningful patterns in the training data, which were fairly generalizable in a
diverse population. However, the consistent AUROC value coupled with a
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sensible decrease in the AUC-PR suggests that, while patients unlikely to
achieve pCR tend to have similar characteristics and can be consistently
detected by the model, the actual ability to predict pCR could be more
challenging in different populations. This drop in the AUC-PR performance
was expected in light of the results of our preliminary analysis, where a clear
separation of patients could not be observed based only on pCR status: while

Recall

there were regions with a high density of non-pCR patients, in the external
validation cohort the only region with a higher density of pCR patients was
nested inside a wider non-pCR patients’ region. This means that while non-
responders can be predicted with a fair discriminative power, pCR is quite
hard to predict based only on clinicopathological characteristics since
women with similar features can have different outcomes.
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Fig. 3 | Model performance, feature importance and external validation of the
machine learning model for pCR prediction. a Comparison of ROC curves in the
internal validation set. The best model was Elastic Net trained with SGD solver and
calibrated using Platt’s logistic model (sigmoid calibration). The performance of the
other models is presented in gray solid lines. The performance of a random classifier
is represented in a gray dashed line. The red dot corresponds to the cut-off 0.1925.
b Comparison of precision-recall curves in the internal validation set. The Area
Under the Precision-Recall Curve (AUC-PR) is a metric used to evaluate the per-
formance of binary classification models, particularly when dealing with imbalanced
datasets. It provides a summary measure of the trade-off between the precision and
recall for different threshold settings of the classifier. Higher AUC-PR values indi-
cate better overall performance. The baseline performance is represented in a gray

dashed line. ¢ Calibration curve. The model showed a fair calibration between 0.1
and 0.4, but systematically tended to be miscalibrated for pCR probabilities greater
than 0.4. In the internal validation set, only 4 patients (4%) had a predicted prob-
ability above 0.4. d Decision curve analysis and net benefit. The net benefit is a
measure that incorporates the true positive rate and false positive rate. Higher net
benefit indicates better model performance in terms of clinical decision-making. At
low threshold probabilities the model’s net benefit is relatively high, indicating that
the model is useful for identifying patients who should be treated. At higher
threshold probabilities the net benefit of the model declines. The black dashed line
indicates the cut-off 0.1925. e Area under the ROC curve of the Elastic Net model in
the external validation set. f Precision-Recall curve of the Elastic Net model in the
internal validation set.

Identifying patients who are unlikely to respond to NACT may hold
greater clinical significance in this context: since NACT is the standard
therapeutic approach for this population, patients with a high predicted
probability of response will still receive the most effective treatment avail-
able. On the other hand, the identification of patients with a low probability
of pCR is indeed crucial because this is the population that could benefit
more from a risk-adapted approach. The analysis of SHAP values and the
decision plot highlighted how large tumors with nodal involvement, high
PR or ER expression and low Ki67 values were generally associated with low
predicted probabilities. In this scenario, the model could potentially be
included in the decision framework between an adjuvant or neoadjuvant
approach: patients with low scores and small tumors could be the best
candidates for upfront surgery, reducing the risk of metastasis for cancers
that we have predicted to be insensitive to chemotherapy. Accordingly,
patients with low scores due to high hormone-receptor expression could be
referred to neoadjuvant endocrine therapy if preoperative downstaging is
required. On the other hand, ER-low expression with high Ki67 levels were
associated with the highest scores: biologically these tumors are similar to
triple-negative BCs and could benefit more from the addition of immu-
notherapy to NACT**,

To ensure model accessibility and implementation in clinical practice,
we further developed an open-source interactive web app, which is available
at https://coralaine-whxxbg8wwtwnntoxbxqjhu.streamlit.app. The pre-
dicted pCR can be used to stratify patients into different risk categories. For
this scope, we believe that 20% can be considered by clinicians as a useful and
easily applicable cut-off to categorize patients into high and low-likelihood
groups for achieving pCR. In this scenario, NACT should be proposed to the
former group while low-likelihood patients might be considered for alter-
native treatment strategies or inclusion in clinical trials. Using this cut-off,
approximately 20% of patients are predicted to have a high likelihood of
pCR. It should be noted that the model is well-calibrated for patients with a
predicted pCR probability below 40%, but tends to be miscalibrated for
values above 40%. Importantly, this miscalibration affects only a small
number of patients, as only 4% of patients in the internal validation set had a
predicted probability greater than 40%. This suggests that the model
remains reliable and robust for the majority of scenarios.

This is, by our knowledge, the model with the highest performance
specifically trained in HoR positive/HER2 negative patients. In general,
none of the tested algorithms exceeded 0.85 for AUROC, which on one side
explains a significant part of variability but on the other hand suggests that
clinicopathological features can only explain part of response patterns and
other predictors should be identified, making pCR prediction a complex
task. Several regression-based models have been proposed to predict
pathologic response to NCT in HoR-positive HER2-negative BCs****. Linear
models are widely used and easily interpretable, but fail in considering
nonlinearity and interactions, unless pre-specified. Machine learning
approaches are more adaptable since they can discover patterns directly
from the data without presuming any underlying statistical model***. The
results of our research and the abovementioned papers suggest that while
ML methods could be in general more effective, GLMs can still be perfor-
mant under determinate circumstances'. In our study, the Elastic Net with

SGD solver outperformed more complex algorithms such as XGBoost or
DNNs, offering a positive trade-off between model complexity and
explainability. This trend was consistent independently of the encoding
method and the number of features: as confirmed by the small changes in
AUROC:s. This is not unsurprisingly: when the features tend to have a linear
relationship with the outcome and the dataset is relatively small, regularized
GLMs can perform well, while more powerful and data-hungry methods
can overfit noise in the training data or fail to utilize their full potential. The
second-best model was TabPFN, which achieved an AUROC of 0.85
without requiring hyperparameter tuning. This performance is notable,
confirming the impact of transformers on tabular classification problems,
but it should be noticed how in the scenario a more complex model did not
consistently improve the performance of a simpler model.

Exploratory survival analysis according to the pathological response
confirmed the well-established prognostic value of achieving pCR in rela-
tion to DFS and OS’. While pCR predictions from the base model were not
associated with better outcomes, the exploratory analysis using MSRS cut-
off revealed how MSRS-based predictions were associated with improved
DFS and OS. Remarkably, the same cut-off value was identified for DFS and
OS, suggesting a consistent predictive capacity of the model across these
survival metrics. These observations suggest that the model could provide a
prognostic stratification independently from pCR status: even when the
model fails and detects a false positive patient, this prediction could still be
valuable since could be associated with a positive impact on a patient’s
survival. The different cut-off compared to the one for pCR predictions
could indicate that the model captured meaningful patterns within the data
that extend beyond pCR achievement. This effect was more noticeable in
patients not achieving pCR, the population in which a prognostic stratifi-
cation is more needed. Limitations of this analysis should be acknowledged:
the small sample size and the relatively short follow-up impose cautious
interpretation and validation of these observations in a larger external
cohort with longer follow-up is needed.

Several limitations remain in our study, such as its retrospective nature:
as such, data about CT delivery (dose reductions, administration delays and
dose interruptions) or adverse events were not homogeneously collected
and were not included in the analysis to avoid availability bias. Another
drawback is the lack of information on tumor-infiltrating lymphocytes and
BRCA mutational status, which are known to be relevant to the pathologic
response following NCT*~’. However, both data were not routinely ana-
lyzed when the BC patients were diagnosed. Beyond these variables, the
inclusion of other features of interest could increase the discriminatory
power of the model. A high recurrence risk score of gene expression panels
such as the 21-gene assay on diagnostic biopsy has been shown to predict
pCR*", as well as the assessment of circulating tumor DNA and particu-
larly its early dynamic changes during over the course of NCT*. Further-
more, in the BC NCT setting, ML and deep learning models have been
explored to predict the pathological response based on pre-NCT histo-
pathological and radiological images* . In view of multimodal integration,
in addition to the Elastic Net model, we trained the TabPEN, a transformer
that harnesses the transfer learning capabilities of deep learning
models. This allowed the training of a pre-trained model which can be
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Fig. 4 | Model performance, feature importance and external validation of the
machine learning model for pCR prediction. a Coefficients of the Elastic Net
model. Positive coefficients are plotted clockwise and negative counterclockwise.
Age: - 0.036, cN: -0.056, G: 0.059, PR: -0.073, ER: -0.075, cT: -0.075, Ki67: 0.095.

b Barplot for SGD Elastic Net permutation importance coefficients. Weights are
presented with respective errors. ¢ Barplot of mean SHAP values. The barplot
represents the mean global feature importance. The most important features in the
dataset were cT and Ki67. d Beeswarn plot for SHAP values. Each patient is

Model output value

represented by a single dot on each feature row. The position of the dot is determined
by the SHAP value. Positive SHAP values indicates greater probability of pCR.

e SHAP heatmap. In the SHAP heatmap patients are reported on the x-axis and
features on the y-axis with SHAP values encoded on a color scale. Patients are
ordered in descending order based on the model predicted output and the global
importance of each feature is shown on the left barplot. f SHAP decision plot. SHAP
decision plots show how the model arrives at its predictions. Each line represents a
single patient with corresponding SHAP values for each feature.

further fine-tuned for specific datasets, an advantage that is largely absent in
tabular data. Whereas this model suffers from quadratic memory com-
plexity scaling (due to the underlining attention architecture), it matches the
performance of tree-based models in small datasets, making it is particularly
suited in this scenario®. Moreover, survival data are still immature and
longer follow-up is needed considering the favorable prognosis of these
patients. In this context, analyses on disease-free interval or distant disease-
free interval were not included: while these are critical endpoints for

evaluating recurrence, we decided not to include them in order to maintain
the focus on short-term predictors of pathologic response to NACT. In
addition, due to the lack of validation, the MSRS analysis should be con-
sidered hypothesis-generating.

In the end, the choice of the external validation set was primarily driven
by availability of a high-quality dataset. The different characteristics of the
populations can be related to baseline differences in the patients referring to
the different centers of to the inter-rater heterogeneity in the assessment of
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Fig. 5 | Survival analysis according to pCR and model predictions. a Kaplan-Meier
curves of DFS according to pCR in the whole internal cohort. There were 169 events
in pCR No group and 14 events in pCR Yes group. b Kaplan-Meier curves of OS
according to pCR in the whole internal cohort. There were 126 events in the pCR No
group and 8 events in pCR Yes group. ¢ Kaplan-Meier curves of DFS according to
PCR prediction in the internal validation cohort. Predictions were based on the
threshold value obtained using MSRS. There were 32 events (57%) in the predicted
pCR No group and 12 events (24%) in the predicted pCR Yes group. Since a violation
of proportional hazard was graphically suspected and confirmed with Schoenfeld’s
test, an exploratory analysis using the p-value for RSMT differences was reported.
d Kaplan-Meier curves of OS according to pCR prediction in the internal validation

cohort. Predictions were based on the threshold value obtained using MSRS. There
were 23 events (40%) in the predicted pCR No group and 9 events (18%) in the
predicted pCR Yes group. Again, since a violation of proportional hazard was gra-
phically suspected and confirmed with Schoenfeld’s test, an exploratory analysis
using the p-value for RSMT differences was reported. e Kaplan-Meier curves of DFS
according to pCR stratified for pCR prediction in patients without pCR in the
internal validation cohort. Predictions were based on the threshold value obtained
using MSRS. f Kaplan-Meier curves of OS according to pCR stratified for pCR
prediction in patients without pCR in the internal validation cohort. Predictions
were based on the threshold value obtained using MSRS. MSRS maximally selected
rank statistics. RSMT restricted mean survival time.
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biomarkers. However, it must be noticed that although the external vali-
dation set included more patients with lower risk categories, the training set
had enough support on this population to retrieve meaningful patterns. To
allow independent external validation, the model is freely available using the
web app.

In conclusion, we developed and externally validated a ML model to
predict pCR following NACT in HoR-positive/HER2-negative BC patients.
Results suggest that a combination of easily accessible clinicopathological
features can be used to reliably describe and predict response to NACT. Our
framework is highly reproducible: the methodologies employed are agnostic
and applicable across various types of cancers, making the models scalable to
different clinical settings. By restricting the patient population, we were able
to show which clinicopathological features have a greater predictive impact
and to identify a population of patients that could benefit the most from
risk-adaptive strategies. In addition, the patients included in the different
cohorts were from different settings and almost the totality of them received
an anthracycline and taxane-based NACT, providing reliable real-world
evidence. Longer follow-up is needed to validate the prognostic role of
model predictions on survival outcomes and, once confirmed, possibly
include them in survival models. In the end, we believe that adopting the
developed model may help the decision-making in the management of
HoR-positive/HER2-negative BCs.

Methods

Patients’ population

The CORALAINE study is a retrospective longitudinal cohort study that
describes the development of a prediction model in accordance with the
guidelines for transparent reporting of multivariable prediction models for
individual prognosis or diagnosis (TRIPOD-AL Supplementary Table 6)*".
The collection of anonymous data was approved by the institutional ethical
review board (Prot. ID3315 1n.0029524/20, July 15™, 2020).

Patients who fulfilled the following inclusion criteria were included: (1)
pathologically confirmed diagnosis of HoR-positive/HER2-negative inva-
sive BC between January 1" 2001 and 31" May 2021; (2) early or locally
advanced, stage I-II-III BCs, (3) patients receiving neoadjuvant anthracy-
cline and/or taxane-based chemotherapy, concurrently or sequentially; (4)
patients undergoing surgery for primary BC. Clinicopathological infor-
mation and survival data were retrospectively collected from electronic
medical records including reports from multidisciplinary tumor boards
(MTB). Clinical data were collected until December 2022, and each patient’s
follow-up was updated through January 31% 2023.

Patients treated at two Italian institutions (Unit of Medical Oncology
and Unit of Gynaecological Oncology, Fondazione Policlinico Universitario
A. Gemelli IRCCS, Universita Cattolica del Sacro Cuore, Rome) were
considered eligible for the internal cohort. The internal cohort was ran-
domly split into a training set and an internal validation hold-out set. The
train set was used as an exploratory dataset for feature selection and to train
the ML models. The internal validation set was set aside and used only to test
model predictions. A second dataset was used as external validation set: data
of patients referring to three Italian institutions in the same time frame were
gathered (Medical Oncology ‘A’, Istituto Oncologico Veneto IOV-IRCCS,
University of Padova; Medical Oncology, Azienda Ospedaliera Uni-
versitaria Integrata, University of Verona and Unit of Oncology, University
of Udine).

Clinical data
The following pre-surgery variables were collected: menopausal status, age,
primary tumor size, clinical lymph node status, histology, grading, estrogen
receptor and progesterone receptor status, HER2 expression, Ki67 value,
chemotherapy regimen and timing (concomitant or sequential). Typical
combinations included anthracyclines and cyclophosphamide either con-
comitant or sequential with a taxane.

Women were considered postmenopausal if they met one of the fol-
lowing requirements: (1) age less than 60 years and amenorrhea for at least
12 months in the absence of chemotherapy, tamoxifen or ovarian

suppression; (2) previous bilateral oophorectomy; (3) age over 60 years™.
Clinical stages were collected from preoperative imaging and were defined
according to the criteria of the American Joint Committee on Cancer, gh
Edition”. Specimen handling was performed according to the national
guidelines provided by the Italian Ministry of Health. Hormone receptor
positivity was defined as ER or PR positivity with a percentage of immu-
nohistochemistry (IHC)-positive nuclei of at least 1%. HER2 positivity was
defined as a 34 score at IHC or 2+ with amplified FISH, according to the
2018 ASCO-CAP guidelines™. HER2 zero was defined as HER score 0 and
HER2 low as HER2 1+ or HER2 2+ with non-amplified FISH". The Ki67
value was calculated using the percentage of nuclei that were MIB-1
positive”. The following post-surgical data were collected: pCR, tumor size
(ypT), lymph node status (ypN), G, ER and PR expression, Ki67, HER2, type
of surgery and adjuvant hormonal therapy.

The primary endpoint was pCR, defined as the absence of residual
invasive cancer on hematoxylin and eosin evaluation of the complete
resected breast specimen and all sampled regional lymph nodes following
completion of neoadjuvant systemic therapy (ie., ypT0/Tis ypNO in the
current AJCC staging system)**. Pathological stage (ypT and ypN) was
defined according to the criteria of the American Joint Committee on
Cancer, 8" Edition®. Each assessment was confirmed by at least one expert
pathologist in the referring center.

Sample size considerations

Target sample size and events per predictor were calculated as reported by
Riley et al. using the R package pmsampsize™*”. The number of candidate
predictors was set to 8, the event prevalence to 0.15 and the C-statistics to
0.2, with a shrinkage factor of 0.9. The minimum sample size required for
the training set was 435 and the minimally required events per predictor
were 8.16, with at least 66 events. The sample size of the whole internal
cohort was then calculated considering an 80/20 train/test split, requiring at
least 544 patients and 83 events. The minimum sample size of the external
validation set was considered equal to the internal validation cohort. Using
this approach, 2/3 of the total sample size were used for model training and
1/3 for internal and external validation.

Statistical analysis

Clinicopathological characteristics at baseline were described using stan-
dard descriptive statistics. Continuous variables were reported as mean and
standard deviation and evaluated with the Student t-test. Categorical vari-
ables were reported as frequency and percentage and assessed using a Chi-
Square test or Fisher’s exact test, as appropriate.

Exploratory visual analysis of the internal dataset was performed using
the RadViz and Parallel Coordinates functions from the yellowbrick package.
A UMAP analysis using umap package with different hyperparameters was
performed to visually inspect patients’ characteristics and preliminarily
identify potential clusters based on clinicopathological features.

Statistical analyses were performed using R Studio (ver 4.2.2) and
Python (ver 3.10). All hypotheses were two-sided and p <0.05 was con-
sidered statistically significant.

Pre-processing

The internal cohort was split in a train/internal validation set using an 80/
20 split. Variables with zero variance and near-zero variance were grouped
with other variables or eliminated, due to the risk of spurious results and
non-informative predictors. Age, ER, PR, and Ki67 expression were con-
sidered as continuous variables. Menopausal status was categorized as
premenopausal and postmenopausal. Clinical tumor size and lymph node
status were treated as ordered categorical data. Grading was considered as
ordinal and categorized in G1-2 and G3. Histology was divided in three
subcategories: ductal, lobular, and others. HER2 status was categorized as
HER zero and HER2 low. The pathological response following NACT was
considered a binary variable (pCR or residual invasive disease). All cate-
gorical variables were encoded using OHE and OE. The OE was conducted
according to aggressiveness or to a clinically meaningful order, as
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appropriate. For example, cT was encoded by assigning an ordinal number
for 0 to 3. The exact mapping is listed in Supplementary Fig. 3. All features
were scaled using z-score standardization as a preprocessing step. Missing
data, covering less than 1% of the total data, were considered missing at
random (MAR) and were imputed using chained random forests via the
missForest function of the missForest package in R. Missing data were
imputed after train/test split and after removing the target column in order
to avoid information leakage.

Feature Selection

Univariable logistic regression was performed to identify differences
between the pCR and the non-pCR cohorts. Spearman correlation coeffi-
cient was used to evaluate the correlation among predictors and between
features and pCR. A hierarchical clustering algorithm using single linkage
distance was then applied. An absolute value of r > 0.10 was considered for
feature selection. Permutation importance was evaluated training a TabPFN
classifier with all variables using the eli5 package. A ranking feature selection
algorithm was used using the Boruta package, training a RF classifier. All
features performing outperforming the best shadow feature were considered
as rank one and included. Three RFE algorithms with stratified 5-fold cross-
validation were applied: logistic regression (maximizing accuracy and
weighted F1) and a random forest classifier with 10 estimators (maximizing
weighted F1). A LASSO regression with stratified 10-fold cross-validation
was applied and features with non-zero coefficients were retrieved. The
number of times each subset of variables was selected by each algorithm was
summarized using an UpSet plot. Multicollinearity was inspected using the
variance inflation factor (VIF). All analyses for feature selection were con-
ducted using only the train set: none of the models had access to the internal
or external validation data during this step.

Model development

At first, the models were trained using the AutoML framework from the
H20 package (H20AutoML). This version trains and cross-validates
the following algorithms: XGBoost, GLMs, RF, XRT, GBM and DNN. At
the end of the process, additional stacked ensembles are trained using all the
base models and only one of the best models from each algorithm family.
For each run, the maximum number of models was set to 20 and over-
sampling was allowed to balance class distribution. For H20O models,
hyperparameter tuning was performed using grid search and each model
was evaluate using 5-fold cross-validation, using the AUROC as the scoring
metric. The model with the best cross-validated AUC was evaluated on the
internal validation set. We trained preliminary models using one-hot
encoding and ordinal encoding, including both selected variables and all
variables as a sensitivity analysis. After identifying GLMs with OE as the
best-performing model family, further GLMs (H2OGeneralizedLinear-
Estimator) were trained with controlled hyperparameter optimization using
the optuna package. Other GLMs were then trained using SGD solver from
sklearn, including in the pipeline hyperparameter tuning with optuna and
sigmoid calibration using Platt scaling, using 25% of the observations of the
train set as calibration set. The TabPFN model was trained using the
TabPFNClassifier function of the tabpfn package®.

Model evaluation and feature importance

Hyperparameter tuning was performed using 5-fold cross-validation on the
train set using the internal validation set only to test models’ performance.
We evaluated the confusion matrix, the learning curve and the performance
metrics with respective thresholds (AUROC, AUC-PR, Fl, accuracy, pre-
cision and recall). The decision curve analysis was performed using the
statkit package.

The best models were evaluated on the internal validation set using the
area under AUROC and the AUC-PR. The calibration curve was also
inspected. 2000 bootstrap replicates were adopted to calculate 95% con-
fidence intervals (IC) for the AUROC and the AUC-PR. The F1 score was
used to choose the prediction threshold.

Finally, the best model for each strategy was evaluated on the external
validation set comparing the confusion matrix, the AUROC and the
AUC-PR.

For each model, we inspected variable importance, partial dependence
plots (PDP), SHAP values and permutation importance. Feature’s coeffi-
cient for the Elastic Net were computed and displayed using a radial bar
chart. For TabPFN model, feature importance was evaluated using per-
mutation importance from the eli5 package.

Survival Analysis

DFS was assessed as the time from surgery to local and/or distant relapse or
death from any cause. Patients alive without disease recurrence were cen-
sored at the last follow-up visit. OS was defined as the time from surgery to
death from any cause. The choice of starting OS assessment from surgery
was made to minimize the possibility of led-time bias due to different
intervals between diagnosis and surgery timings. Patients who were still alive
at the last follow-up visit were censored. Both DFS and OS were determined
by the attending physician based on reports of disease recurrence, imaging
or clinical evaluation. Where relapse/progression date was unclear from
radiology reports alone, clinical interpretation was incorporated in the
decision.

Survival estimates were evaluated by the Kaplan-Maier method. Dif-
ferences between groups were assessed by the log-rank test and survival
trends by the test for trend. Median follow-up time was calculated by the
reverse Kaplan-Meier method. Median survival and survival probabilities at
specified time-points were reported, as well as absolute survival differences.
Cox proportional hazard regression models were applied to estimate HRs.
The Efron method was used to handle ties in the Cox likelihood. The
prognostic role of pCR in terms of DFS an OS was assessed in the full
internal cohort and then in the internal validation cohort. The prognostic
role of the best model predictions in terms of DFS and OS was explored in
the internal validation cohort. A cut-point analysis based on MSRS was
conducted to evaluate the best cut-off in the probability of achieving pCR
that could maximize the survival difference. Proportional hazards
assumption was evaluated graphically and tested using Schoenfeld residuals.
When the assumption was not met (p <0.10), we performed a sensitivity
analysis using the RMST and the restricted mean time lost (RMTL). The R
packages survival and survminer were used for survival curves and diag-
nostic, maxstat for MSRS and survRM?2 for RMST.

Data availability
The datasets used and/or analysed during the current study are available at:
https://github.com/LucaMastrantoni/CORALAINE_pCR.

Code availability

The underlying code for this study is not publicly available but may be made
available to qualified researchers on reasonable request from the corre-
sponding author.
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