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Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous disease that remains
challenging to target with traditional therapies and to predict risk. We provide a comprehensive
characterization of 238 stage II-III TNBC tumors with paired RNA and DNA sequencing data from the
CALGB40603 (Alliance) clinical trial, alongwith 448 stage II-III TNBC tumorswith pairedRNAandDNA
data from three additional datasets.We identifyDNAmutationsassociatedwithRNA-based subtypes,
specific TP53 missense mutations compatible with potential neoantigen activity, and a consistently
highly altered copy number landscape. We train exploratory multi-modal elastic net models of TNBC
patient overall survival to determine the added impact of DNA-based features to RNA and clinical
features. We find that mutations and copy number show little to no prognostic value, while RNA
expression features, including signatures of T cell and B cell activity, along with stage, improve
stratification of TNBC survival risk.

Triple-negative breast cancer (TNBC), characterized by the lack of estrogen
receptor (ER), progesterone receptor (PR), and human epidermal growth
factor receptor-2 (HER2) overexpression or gene amplification, represents
approximately 15% of all breast tumors1. In early-stage TNBC, the addition
of carboplatin and an immune checkpoint inhibitor (ICI) to neoadjuvant
chemotherapy has recently demonstrated a significant increase in the
pathologic complete response (pCR) rate and a reduction in the risk of
recurrence. However, patients with residual disease after four che-
motherapies plus ICI still have a three-year event-free survival of only 67%2.
Thus, additional chemotherapy and other drugs are given with ICI adju-
vantly in this high-risk group of patients2–4. While several molecular pre-
dictors of breast cancer have been developed5–8, only clinical factors like pre-
treatment tumor size and node status, and the presence or absence of
residual disease, are currently used to tailor the treatment in early-stage
TNBC (exception: germline BRCA mutation status for PARP inhibitor

treatment). For this reason, the development of accurate TNBC prognostic
tools to guide escalation and de-escalation strategies is a key unmet need.

Fromamolecular perspective, TNBC tumors are largely basal-like (60-
80%) by PAM50 gene expression subtyping9, and they have the highest
mutation rates and copy number alteration frequencies when compared to
other breast cancer subtypes10. Notably, the tumor suppressor gene TP53 is
somatically mutated in approximately 80% of all TNBC tumors10. Many of
these are missense mutations that produce mutant p53 proteins, making
them attractive as potential TNBC therapeutic targets11,12. TNBC also
exhibits a unique tumor microenvironment, being the most immune-
activated breast cancer subtype by tumor-infiltrating lymphocytes (TILs)
levels, expression of the programmed death-ligand 1 (PDL1) protein, and
immune-gene expression signatures13. What is also important is that these
differences in tumor microenvironment have clinical implications. TNBC
patientswith higherTILs andB cell/T cell gene expression have significantly
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higher pCR rates to neoadjuvant chemotherapy with and without ICI, as
well as better survival outcomes14–17.

CALGB 40603 is a phase II clinical trial (now part of the Alliance for
Clinical Trials in Oncology) with a 2 × 2 factorial design that enrolled
participantswith stage II-III TNBCand tested the addition of carboplatin or
bevacizumab to neoadjuvant weekly paclitaxel followed by dose-dense
doxorubicin and cyclophosphamide. While the addition of either carbo-
platin or bevacizumab was found to significantly increase pathologic
complete response, the primary endpoint of the study18, the addition of
either carboplatin or bevacizumab was not found to significantly increase
event-free survival, the secondary endpoint of the study15. Importantly, both
DNA-sequencing and RNA-sequencing was performed on pre-treatment
samples from this study, providing a valuable dataset resource of stage II-III
TNBC samples with paired DNA and RNA data. While the CALGB 40603
RNA-sequencing data was initially presented along with the study’s sec-
ondary endpoint results15, we newly report here the CALGB 40603 DNA-
sequencing data in this study.

To expand our understanding of the molecular and prognostic land-
scape of TNBC, we present the DNA sequencing data from the CALGB
40603 randomized phase II clinical trial as part of an integrated,multi-omic
characterization of matched DNA and RNA sequencing data across
686 stage II-III TNBC patients from four datasets. Using this data, we train
and evaluate exploratory prognostic models of overall survival to gain
insights into how molecular features may be valuable in furthering TNBC
precision medicine efforts.

Results
Baseline patient characteristics
The primary dataset of interest is Cancer and Leukemia Group B (CALGB)
40603, for which we are newly presenting the pre-treatment targeted panel
DNA-seq data from 238 stage II-III TNBC patients. All 238 patients are
TNBC following current guidelines and havematched pre-treatmentDNA-
seq tumor, DNA-seq blood, and RNA-seq tumor samples (Supplementary
Fig. 1)15. To validate our findings and increase our sample size, we compiled
paired DNA and RNA data from stage II-III TNBC patients from three
additional publicly available datasets: Fudan University Shanghai Cancer
Center (FUSCC, n = 224)19, the Molecular Taxonomy of Breast Cancer
International Consortium (METABRIC, n = 91)20, and The Cancer Gen-
ome Atlas (TCGA, n = 133)10. In total, 686 stage II-III TNBC patients are
included in the study and are summarized in Table 1. Themedian age of all

patients is 51 years (IQR, 43–59) and the percentage of stage II patients in
each dataset ranges from 69.7% to 81.3%. In all four datasets, most samples
are PAM50 basal-like (56% to 81.9%), but the PAM50 intrinsic subtype
proportions differ significantly across the four datasets (p < 0.001).

In addition toDNAandRNAdata, eachdataset has long-term survival
data. For this study, we focused on overall survival, where an event repre-
sents death from any cause. The unadjusted overall survival proportions of
each dataset over time are shown in Supplementary Fig. 2. The four datasets
have significantly different baseline survival trajectories (p < 0.001), with the
FUSCCdataset having the highest overall survival rate and theMETABRIC
dataset having the lowest overall survival rate.METABRIC is also the oldest
datasetwith the longestmedian follow-up timeof 18.3 years (IQR: 12.3–21.3
years) (Table 1). TCGA has the shortest median follow-up time of 2.6 years
(IQR: 1.2–5.8 years), and the median follow-up time of all combined
samples is 7.3 years (IQR: 5.7–8.5 years). As expected, tumor stage is a
significant predictor of overall survival across all four datasets (Supple-
mentary Fig. 3), where higher stage (III vs II) corresponds to worse survival.

Mutational landscape of CALGB 40603
Somatic variant calling on the CALGB 40603 paired tumor-normal DNA-
seqdata identified a total of 2093mutations (1861 single nucleotide variants,
188 deletions, and 44 insertions) across the 1037 genes included in the
targeted panel. A visualization of the most frequent mutations (excluding
known passenger hotspot mutated genes) in the CALGB 40603 dataset is
shown in Fig. 1. Notably, TP53 mutations were present in 204 samples
(86%), followed by low (<20%) mutation rates for every other gene. Other
notablemutated cancer-related genes include PIK3CA (7%),CREBBP (6%),
KMT2C (6%), KMT2D (6%), RB1 (5%), PTEN (5%), and FAT1 (5%), all of
which are reported as “Tier 1” cancer-related gene mutations in the COS-
MIC Cancer Gene Census21. Interestingly, three mitochondrial genes,MT-
ND5 (16%), MT-ND4 (12%), and MT-ND1 (6%), were among the most
frequently mutated in the dataset.

Additionally, pathogenic/likely pathogenic germline and oncogenic/
likely oncogenic somatic mutation calls were made for the BRCA1, BRCA2,
and PALB2 genes and were considered indicators of homologous recom-
bination deficiency (HRD). In total, there were 35 CALGB 40603 samples
with HRD mutations, including 27 samples with BRCA1 mutations,
5 samples with BRCA2 mutations, and 3 samples with PALB2 mutations
(Supplementary Fig. 4). If these HRD mutations are considered as a single
feature alongside somatically mutated genes, the mutation frequency (15%)

Table 1 | Baseline characteristics of TNBC patients by dataset

Characteristic Patients, No. (%) P-value

CALGB 40603 FUSCC METABRIC TCGA All
(n = 238) (n = 224) (n = 91) (n = 133) (n = 686)

Median age, years (IQR) 48 (40–56) 53 (45–60) 50 (41–59) 55 (47–62) 51 (43–59)

Clinical stage

II 166 (69.7) 180 (80.4) 74 (81.3) 104 (78.2) 524 (76.4) 0.026

III 72 (30.3) 44 (19.6) 17 (18.7) 29 (21.8) 162 (23.6)

PAM50 molecular subtype

Basal-like 195 (81.9) 153 (68.3) 51 (56.0) 105 (78.9) 504 (73.5) < 0.001

Claudin low 4 (1.7) 11 (4.9) 27 (29.7) 3 (2.3) 45 (6.6)

HER2-enriched 16 (6.7) 52 (23.2) 9 (9.9) 11 (8.3) 88 (12.8)

Luminal A 11 (4.6) 1 (0.4) 3 (3.3) 10 (7.5) 25 (3.6)

Luminal B 0 (0) 4 (1.8) 1 (1.1) 2 (1.5) 7 (1.0)

Normal-like 12 (5.0) 3 (1.3) 0 (0) 2 (1.5) 17 (2.5)

Overall survival

Median follow-up, years 7.6 (6.5–8.1) 7.3 (6.2–8.9) 18.3 (12.3–21.3) 2.6 (1.2–5.8) 7.3 (5.7–8.5)

Somatic mutation data 238 (100) 167 (74.6) 90 (98.9) 133 (100) 628 (91.5)

Copy number data 238 (100.0) 215 (96.0) 91 (100) 133 (100) 677 (98.7)
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would be the thirdmost frequent in theCALGB40603 set (Fig. 1);MYC and
CCNE1 were frequently amplified (75.2% and 37.4%, respectively), pre-
dominately in the samples with TP53mutations.

Differences in mutation frequencies across PAM50 RNA-based sub-
types were tested using univariate binomial generalized linear models. The
basal-like subtype (n = 195) was used as the reference subtype for the
comparison of mutation frequencies versus the HER2-enriched (n = 16)
and Luminal A (n = 11) subtypes. In total, there were six statistically sig-
nificant mutation differences by subtype (Table 2). Four genes had a sig-
nificantly higher mutation frequency in HER2-enriched vs. basal-like
samples: PIK3CA (FDR-adj p < 0.001), PTEN (FDR-adj p = 0.0043),
PIK3R1 (FDR-adj p = 0.0059), and NF1 (FDR-adj p = 0.027). PIK3CA was
also significantly higher in luminalA than in basal-like (FDR-adj p = 0.025),
and TP53 was significantly lower in luminal A than in basal-like (FDR-
adj p < 0.001).

We next tested the association of somaticmutationswith response and
survival. Using univariate binomial generalized linear models, we tested for
differences in mutation frequencies according to pathologic complete
response status. Comparisons of residual disease vs. pCR for all CALGB
40603 patients, patients receiving bevacizumab, and patients receiving
carboplatin were tested, but no gene was significant after multiple test
corrections. Tofindassociationswithmutation status andoverall survival in

the CALGB 40603 set, we fit univariate Cox proportional hazards models
and found thatmutatedPIK3R2 (2.5% frequency)was associatedwithworse
overall survival, with FDR-adj p < 0.001, HR = 11.98, 95% CI (4.91-29.20).
No other mutation was significant after multiple test corrections. Addi-
tionally, we tested the pathogenic/likely pathogenic germline and onco-
genic/likely oncogenic somatic mutation calls for the BRCA1, BRCA2, and
PALB2 genes in CALGB 40603. No combination of germline/somatic
mutation in these three genes (individually or combined) were associated
with pCR or overall survival for all CALGB 40603 patients and for only
patients receiving carboplatin.

Mutational landscape across TNBC datasets
We next looked at somatic mutations across all four datasets combined, as
this greatly increasedour sample size andpower (n = 628).Avisualizationof
themost frequentmutations across all combinedTNBCsamples is shown in
Supplementary Fig. 5. TP53 was again the most frequently mutated (84%),
and PIK3CA frequency rose to 14%. The cancer-associated genes PTEN
(7%), KMT2C (7%), KMT2D (7%), RB1 (6%), and CREBBP (4%), were
again among the 15 most frequently mutated and at similar frequencies as
observed in CALGB 40603. We did not have the germline data to make the
HRD mutation calls for the other three datasets, but somatic BRCA1
mutations alone comprised 3% of samples. Other “Tier 1” cancer-related
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Fig. 1 | The mutational landscape of the CALGB 40603 dataset. The columns
correspond to individual patients (n = 238) and the rows correspond tomutations of the
14 genes with the highest somatic mutation frequencies and a homologous recombi-
nation deficiency (HRD) feature, representing any BRCA1, BRCA2, or PALB2 patho-
genic/likely pathogenic germline mutation or oncogenic/likely oncogenic somatic

mutation. Color-coded labels correspond tomutation type, with light gray representing
wildtype. Patient-level and gene-levelmutation frequency distributions are shown at the
top and right, respectively. RNA-based (PAM50 subtype) and DNA-based (MYC and
CCNE1 amplification) annotations for each patient, including annotations for theHRD
gene mutations, are included at the bottom with corresponding legends.

Table 2 | Mutations that are significantly different between PAM50 subtype comparisons (FDR-adj p < 0.05)

Reference subtype Alternative subtype Gene mutation FDR-adj
p-value

Proportion of mutated basal-like
subtype

Proportion of mutated alternative
subtype

Basal-like HER2-enriched PIK3CA < 0.001 6/195 (3%) 7/16 (44%)

Basal-like HER2-enriched PTEN 0.0043 6/195 (3%) 5/16 (31%)

Basal-like HER2-enriched PIK3R1 0.0059 3/195 (2%) 4/16 (25%)

Basal-like HER2-enriched NF1 0.027 2/195 (1%) 3/16 (19%)

Basal-like Luminal A TP53 < 0.001 181/195 (93%) 3/11 (27%)

Basal-like Luminal A PIK3CA 0.025 6/195 (3%) 3/11 (27%)
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gene mutations in the COSMIC Cancer Gene Census21 present in the 15
most frequently mutated genes include PIK3R1 (4%), NF1 (4%), NOTCH1
(4%), APC (3%), and ATR (3%).

In the combined cohort, we identified 538 TP53 mutations across
525 samples. This gave a large enough sample size to look at recurrent TP53
mutations, with frequencies shown in Fig. 2a. There were seven TP53
mutations present in at least 10 patients: R175H (n = 27), R273H (n = 17),
R213* (n = 17), Y220C (n = 14), R273C (n = 13), R306* (n = 13), and
R248Q (n = 12). TP53 mRNA expression was significantly higher in sam-
ples with missense and in-frame mutations, while samples with nonsense,
frameshift, and splice site mutations had significantly lower TP53 expres-
sion than cancer-adjacent normal breast tissue samples (Fig. 2b). We
compared the overall survival of samples with each TP53 mutation classi-
fication (missense, nonsense, frameshift, in-frame, splice site) to the overall
survival ofwildtypeTP53 and found that sampleswith frameshiftmutations
had significantly worse overall survival than samples with wildtype TP53,
with p = 0.034, HR = 1.74, 95% CI (1.04-2.89) (Fig. 2c). We did similar
overall survival comparisons of the seven recurrent TP53 mutations vs.
wildtype TP53 and found samples with the R273C TP53 mutation had
significantly worse overall survival than wildtype TP53, with p = 0.015,
HR = 2.88, 95%CI (1.22–6.79) and sampleswith the R248QTP53mutation
had significantly worse overall survival than wildtype TP53, with p = 0.034,
HR = 2.57, 95% CI (1.08–6.16) (Fig. 2d).

Recent work has shown that some recurrent TP53missensemutations
may act as neoantigens, with evidence of immunogenicity and recognition
by humanT cells22,23. Given this, we looked at the expression of 233 immune
signatures (Supplementary Data 2) to see if there were any that had sig-
nificantly high expression in samples with any of the six recurrent (n ≥ 10)
TP53 missense mutations from the combined TNBC samples (R175H,
R273H,Y220C, R273C, R248Q) compared to expression in normal samples
(Wilcoxon FDR-adj p < 0.05). As a control, we selected only signatures
without significantly high expression in samples with nonsense TP53
mutations (unlikely neoantigens) compared to expression in normal sam-
ples (Wilcoxon FDR-adj p ≥ 0.05); 25 total immune signatures fit these
criteria,manyofwhichwere signatures of adaptive immunity (Fig. 3).Of the
six recurrentTP53missense mutations, three (R175H, R273H, Y220C) had
significantly higher expression in at least six of these immune signatures
than in normal samples (Wilcoxon FDR-adj p < 0.05).

Copy number alteration patterns within and across TNBC
datasets
We evaluated DNA copy number alterations in each of the four TNBC
datasets at the level of 534 predefined chromosomal segments, including
whole-arm segments and regions with demonstrated importance across
cancers24. Notably, the copy number landscapes of each of the four TNBC
datasets were very similar, characterized by the same distinct shape of
segment-level gain/loss frequencieswhenplotted (Supplementary Fig. 6 and
Supplementary Fig. 7). In each dataset, the highest gain frequencies come
from 8q segments, followed by 1q, 3q, and 10p segments, and the highest
loss frequencies come from 5q segments, followed by 4p, 4q, 8p, 15p, and
17p segments. The characteristic regions of high and low copy number
alterations for these TNBC datasets closely resemble those of the genomic-
based classification IntClust 10 from Dawson et al., which is known to be
highly associated with the basal-like molecular subtype25. For each dataset,
differences in segment-level copy number gains and losses in PAM50 non-
basal-like vs. basal-like subtype were tested using univariate binomial gen-
eralized linearmodels (Supplementary Fig. 6, SupplementaryData 1).Many
segment gains and losses in each dataset were found to be associated with
basal-like subtype after adjusting formultiple test corrections; copy number
gains from 1q, 3q, 6p, 9p, and 12p segments had FDR-adj p < 0.05 in at least
3 datasets, and copy number losses from 4p, 4q, 5q, 12q, and 14q segments
had FDR-adj p < 0.05 in all four datasets. We then performed the same
analysis after combining the TNBC samples from all four datasets to give a
larger sample size (n = 677).A total of 225 segment-level copynumber gains
and 309 segment-level copy number losses were associated with higher

frequency in basal-like samples compared to non-basal-like samples (FDR-
adj p < 0.05), and a total of 12 segment-level copy number gains and 18
segment-level copy number losses were associated with higher frequency in
non-basal-like samples compared to basal-like samples (FDR-adj p < 0.05)
(Fig. 4a, Supplementary Data 1). We next tested associations of segment-
level copy number gains and losses with overall survival using univariate
Cox proportional hazards models. No segment-level copy number gain or
loss was statistically significant in any individual dataset or in the 677TNBC
samples combined after multiple test corrections, though some segments
were associated with either better or worse overall survival without FDR
adjustment. (Fig. 4b, Supplementary Fig. 7, Supplementary Data 1). For
CALGB40603, we found no segment-level copy number gains and losses in
patients statistically associatedwith residual disease or pCRusing univariate
binomial generalized linear models after multiple test corrections (Supple-
mentary Fig. 8, Supplementary Data 1).

ExploratorymolecularelasticnetmodelsofTNBCoverall survival
Finally, we wanted to see if we could build prognostic models of TNBC
overall survival using DNA-based, RNA-based, and clinical features.
Importantly, we wanted to explore if DNA- and RNA-based features
showed any prognostic value in early-stage TNBC, both on their own and
when considered with tumor stage. To evaluate this, we chose to train
Cox proportional hazards models with elastic net regularization, as
elastic net models are interpretable and can handle high-dimensional
data. Our input feature space consisted of one clinical feature (tumor
stage), 759 RNA features (predetermined RNA expression signatures26),
and 1929 DNA features (the gain/loss status of 534 predetermined DNA
copy number segments24, the somatic mutation status of 727 genes, and
the somatic mutation status of 134 recurrent TP53mutations). For each
combination of input feature data (clinical, DNA, RNA), we trained a
separate Cox proportional hazard model of stage II-III TNBC overall
survival on theCALGB40603 dataset (n = 238). Because the clinical-only
model had only one input feature, no elastic net regularization was used.
In all other models, features were selected via elastic net regularization
with a bootstrapping approach used to select the optimal regularization
parameters. All models were then evaluated using data from three
independent tests FUSCC (n = 157), METABRIC (n = 90), and TCGA
(n = 133) (Fig. 5a) that were not used to train the models.

Among the sevenmodels, only eleven total features were selected from
the possible combined n = 2662 input feature space. These included tumor
stage, twoDNA features (loss of chr 17q and 22q segments), and eight RNA
features (immature dendritic cell, T-follicular helper cell, XBP1, IgG, and
HER2 amplification signatures, as well as three unsupervised RNA sig-
natures labeled Unknown8, Red18, and Green7). To better characterize
these three unsupervised signatures, we performed gene set enrichment
analysis of each signature using the Human MSigDB gene sets; the most
enriched gene sets included RAY_TUMORIGENESIS_BY_ERBB2_UP
(FDR-adj p < 0.001) for Unknown8, GSE11884_WT_VS_FUR-
IN_KO_NAIVE_CD4_TCELL_UP (FDR-adj p = 0.003) for Red18, and
GSE4142_NAIVE_VS_MEMORY_BCELL_UP (FDR-adj p = 0.002) for
Green7, suggesting HER2 amplification, T cell, and B cell associations,
respectively (SupplementaryData 4)27. The tumor stage, chr17q loss, chr22q
loss, and immature dendritic features had positive model coefficients and
were associated with worse overall survival, while all other features had
negative model coefficients and were associated with better overall survival.
(Fig. 5b). The coefficient values of the selected features for each model are
listed in SupplementaryData 3.Model discriminationwas assessedwith the
Harrell’s C-index metric of each model on the independent test set data,
shown inFig. 5c.Allmodels except for theDNA-onlymodel, which selected
no features during training, appeared prognostic, with C-index values
greater than0.6 on the combined test set data.Overall,DNAfeatures didnot
appear to addmuch value to any of the models. Even thoughDNA somatic
mutations were included in the input feature space, none of these features
were selected by themodels, andwhile twoDNAcopynumber featureswere
selected by the models that considered other feature types in addition to
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DNA, the C-index values did not appear to be any strongerwhen compared
to the models with the same input feature space but without DNA features.
On the other hand, RNA features were prognostic on their own, achieving
an equivalent C-index (C = 0.63) in the combined test data to the clinical
stage-only model. Additionally, the clinical+ RNA model had the highest
C-index (C = 0.68).

Because the RNAmolecular feature type appeared to have prognostic
value in the test data, we chose to highlight the RNA-only model and the
clinical+RNAmodel inmore detail (Fig. 6). First, in the RNA-onlymodel,
all six selectedRNA features hadnegative coefficients (associatedwith better
overall survival), with the IgG signature having the strongest contribution to
the risk score, followed by the Green7 (B cell associated) signature (Fig. 6a).
The ability of theRNA-onlymodel risk score to discriminate overall survival
in the combined test set samples was visualizedwith aKaplan–Meier plot in
Fig. 6b, with high/medium/low risk patients separated by tertile (log-rank
p < 0.001). Corresponding Kaplan–Meier plots of the RNA-onlymodel risk
score in each individual test set are included in Supplementary Fig. 9a–c.
Furthermore, we wanted to estimate whether the RNA-only model pro-
vided independent information from tumor stage (the “clinical standard”);
to evaluate this, we incorporated the continuous RNA-only risk score and
tumor stage as predictors in Cox proportional hazards models on the
combined test data, stratified by set. Notably, the RNA-only risk score
coefficient remained significant after the addition of tumor stage (p < 0.001),
and the likelihood-ratio (LR) statistic increased 47% when the RNA-only
risk score was added to tumor stage. In the opposite order, the tumor stage
coefficient also remained significant after the addition of the RNA-only risk
score (p < 0.001) (Fig. 6c). The clinical+ RNA model contains eight total
features, including tumor stage and five of the same features from the RNA-
only model (IgG, Green7, XBP1, Unknown8, and Red18). Tumor stage
(associatedwithworse overall survival) has the strongest contribution to the
model, followedby the IgGsignature (associatedwithbetter overall survival)
(Fig. 6d). A Kaplan–Meier plot visualizing the ability of the clinical+RNA
model’s ability to discriminate high/medium/low risk patients by tertile in

the combined test data (log-rank p < 0.001) is included in Fig. 6e, and
corresponding individualKaplan–Meierplots for each individual test set are
included in Supplementary Fig. 9d–f. While the clinical+ RNA model
incorporates tumor stage as a feature, we wanted to assess whether it pro-
vided any additional meaningful prognostic information compared to
tumor stage alone. As with the RNA-only model, we evaluated this by
incorporating the continuous clinical+RNA risk score and tumor stage as
separate predictors in univariate andmultivariate Cox proportional hazards
models of overall survival on the combined test data. The clinical+RNA
risk score remained significant after the addition of tumor stage (p < 0.001),
and the LR statistic increased 52% when the clinical+RNA risk score was
added to tumor stage. In the other direction, the tumor stage coefficient did
not remain significant (p = 0.68) after the addition of the clinical+RNA
risk score,which is consistentwith the fact that tumor stagewas alreadyused
to calculate the risk score and should not add any new information (Fig. 6f).

Lastly, because the CALGB 40603 DNA-sequencing data came
from a 1037 gene targeted panel, we didn’t have the appropriate cov-
erage to accurately calculate HRD scores based on genomic scar
algorithms28, but we were interested in if these scores may have added
prognostic value to our models. To assess this, we took publicly avail-
able HRD scores calculated on two of our test datasets, namely the
FUSCC and TCGA cohorts19,29 and incorporated the continuous HRD
score and the clinical+ RNA risk score as separate predictors in uni-
variate and multivariate Cox proportional hazards models of overall
survival on the respective FUSCC and TCGA test sets. In the FUSCC
test set, HRD score was not significant in a univariate model (p = 0.42),
and it remained insignificant when it was added to the clinical+ RNA
risk score in a multivariate model (p = 0.22) (Supplementary Fig. 10a).
In the TCGA test set, HRD score was significant in a univariate model
(p = 0.013), and it remained significant when it was added to the clin-
ical+ RNA risk score in a multivariate model (p = 0.042), although we
note that the LR statistic had a very small increase with this addition
(0.7%) (Supplementary Fig. 10b).
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Discussion
Treatment of early-stage TNBC remains a challenge in oncology because of
limited targeted therapies, low survival rates, and a lack of clinical predictors
of survival other than tumor stage and the presence of residual disease after
neoadjuvant treatment. The analysis of integrated, multi-omic high-
throughput sequencing data provided here from CALGB 40603 provides a
greater molecular resolution and is an important community resource of
TNBC genomic and clinical data, which has increased our understanding of
the disease. In this study, the CALGB 40603 mutational and DNA copy
number landscapewas largely characterized by features that have previously
been reported in other studies, including a high TP53 mutation rate and
widespread genomic instability with frequent 8q gains and 5q losses10.
Interestingly, multiple mitochondrial genes were among the most

frequently mutated in CALGB 40603 (MT-ND5, MT-ND4, MT-ND1).
Previous work has identified mutations in these mitochondrial genes,
though more research is needed to evaluate the role they may play in
TNBC30.

Next, gene expression subtype-specific analyses of CALGB 40603
mutations confirmed the enrichment of TP53mutations in PAM50 basal-
like vs. luminalA tumors,whichhasbeendocumented10. These analyses also
highlighted a possible association of the PAM50 HER2-enriched vs. basal-
like subtype with the PI3K/AKT pathway, with significantly higher relative
mutation frequencies of PIK3CA, PIK3R1, PTEN, and NF1 in the HER2-
enriched subtype when analyzed within those clinically defined as TNBC.
PIK3CAandPIK3R1mutations arebothknownactivators of thePI3K/AKT
pathway, while PTEN is a known inactivator of the pathway31. NF1 is a

Associated with worse overall survival
p < 0.05, HR > 1 FDR-adj p < 0.05, HR > 1 p < 0.05, HR < 1 FDR-adj p < 0.05, HR < 1

Associated with better overall survival

Associated with basal-like molecular subtype
p < 0.05, coef > 0 FDR-adj p < 0.05, coef > 0 p < 0.05, coef < 0 FDR-adj p < 0.05, coef < 0

Associated with non-basal-like molecular subtypea

b
Relative segment position by chromosome

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

Lo
ss

 fr
eq

ue
nc

y 
   

   
   

 G
ai

n 
fre

qu
en

cy

10
0%

50
%

0%
50

%
10

0%
x

x

x

x

x

x

MYC

PIK3CA

BRCA1

TP53
RB1

HER2

Lo
ss

 fr
eq

ue
nc

y 
   

   
   

 G
ai

n 
fre

qu
en

cy

10
0%

50
%

0%
50

%
10

0%

x

x

x

x

x

x

MYC

PIK3CA

BRCA1

TP53
RB1

HER2

Relative segment position by chromosome

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

Fig. 4 | Segment-level copy number landscape plots of the combined TNBC
samples.On the x-axis, each of the 534 copy number segments is plotted in relative
order, with height above the x-axis corresponding to the gain frequency of the
segment within the sample set and height below the x-axis corresponding to the loss
frequency of the segment within the sample set. a segment gain/loss frequencies are
colored by statistical significance and direction of association of binomial general-
ized linear models using segment gain/loss status to predict basal-like subtype.
Orange-colored segment gains/losses are statistically more significant in basal-like
samples vs. non-basal-like samples with (dark orange) and without (light orange)

multiple test corrections. Blue-colored segment gains/losses are statistically more
significant in non-basal-like samples vs. basal-like samples with (dark blue) and
without (light blue) multiple test corrections. b segment gain/loss frequencies are
colored by statistical significance and direction of association of Cox proportional
hazards models using segment gain/loss status to predict overall survival. Orange-
colored segment gains/losses are associated with worse survival, with (dark orange)
and without (light orange) multiple test corrections. Blue-colored segment gains/
losses are associated with better survival, with (dark blue) and without (light blue)
multiple test corrections.

https://doi.org/10.1038/s41523-025-00740-z Article

npj Breast Cancer |           (2025) 11:24 7

www.nature.com/npjbcancer


known inactivator of RAS signaling, which stimulates the PI3K/AKT
pathway32. NF1 loss has also been identified as a resistance mechanism to
PI3K33. Separately, mutated PIK3R2, another known activator of the PI3K/
AKTpathway, was found to be associated withworse overall survival across
all CALGB 40603 samples, but its overall mutation frequency was
low (2.5%).

To the best of our knowledge, this is one of the largest molecular and
prognostic analyses of stage II-III TNBC using samples with paired DNA
and RNA data, with n = 686 total samples across datasets. This large,
combined sample size provided increased statistical power for the analysis of
recurrent TP53 mutations. We identified a total of seven recurrent TP53
mutations found in ten or more patients across the combined data, all of
which have been previously reported across multiple cancer types34. Com-
pared to normal breast tissueTP53mRNAexpression,we found that TNBC
TP53mRNA expression was significantly higher in samples with missense
and in-frame mutations and significantly lower in samples with nonsense,

frameshift, and splice sitemutations.Thisfindingmakes sense in the context
of nonsense-mediated mRNA decay (NMD), the cellular surveillance
pathway that degrades mRNAs containing premature stop codons. Non-
sense, frameshift, and splice site TP53 mutations can all trigger NMD,
leading to reduced TP53 mRNA levels, while missense and in-frame
mutations do not typically degrade NMD, which may lead to increased
TP53 mRNA levels. From a survival standpoint, we found samples with
TP53 frameshift mutations, TP53 R273C, and TP53 R248Q mutations to
have significantly worse overall survival compared to sampleswithwildtype
TP53. This is consistent with a recent analysis by Pal et al. that characterized
the phenotypes of cancer cell lines expressing common missense p53
mutations and foundp53R273C andR248Qmutants to be among themost
aggressive (in addition to R248W and Y220C)35. Additionally, we found
three recurrentTP53missensemutations (R175H, R273H, andY220C) that
showed immune signature expression associations consistent with possible
neoantigen activity. This is reinforced by previous findings by Kim et al.,

Clinical

DNA

RNA

RNA + DNA

Clinical + DNA

Clinical + RNA

Clinical + DNA + RNA

stage
chr17q

loss
chr22q

loss
Immature
dendritic TFH Unknown8 Red18 XBP1 Green7 IgG

HER2
amplified

Feature type

Clinical
DNA
RNA

Feature typeCoefficient
Positive (associated with worse outcome)
Negative (associated with better outcome)
Coefficient not in model

b c
METABRIC TCGA Combined

Test set C-index
FUSCC

0.63 0.56 0.75 0.63

0.50 0.50 0.50 0.50

0.64 0.63 0.68 0.63

0.63 0.61 0.69 0.63

0.62 0.59 0.76 0.64

0.69 0.63 0.82 0.68

0.67 0.63 0.81 0.67

Input feature space (n = 2,662)

DNA somatic 
mutation status

(n = 834)

DNA copy number
segment alterations

(n = 1,068) 

Sparsity filter
Keep only features

with non-zero values
in ≥ 5% of samples

Remove perfectly 
correlated features
Keep only one feature

among those with a
perfect correlation Fit Cox proportional

hazards models with
elastic net regularization 

Bootstrapping

Tuning grid
Alphas: 0.1 to 0.9 by 0.1

Lambdas: 0.01 to 100, n = 20

(n = 100 resamplings)

Predict: overall survival
(time, event)

CALGB 40603
(238 samples)

Training Set

Model evaluation
Harrell’s C-index

Kaplan-Meier
Likelihood ratio tests

a

Final model
Fit using α, λ with 
lowest average 

out-of-bag deviance

RNA expression 
(n = 759)

Clinical 

Tumor
stage

(n = 1)

Train a model for each combination
of feature type (Clinical, RNA, DNA) 

TCGA

FUSCC
(157 samples)

Independent 
Test Sets

METABRIC
(90 samples)

(133 samples)

Tumor

Fig. 5 | Multi-platform models of overall survival in patients with stage II-
III TNBC. a Schematic overview of the workflow used to train and evaluate the Cox
proportional hazardsmodels with elastic net regularization. This workflowwas used
to train a model for each combination of input feature type (clinical, RNA, and
DNA). Note that the clinical-onlymodel only has one input feature (tumor stage), so

this workflow was not used and instead a Cox proportional hazards model was fit to
the training set without bootstrapping or regularization. b Each model by the
coefficients in the final model, colored by positive (red) or negative (blue) coefficient
value. c The C-index values of each model in the three individual test sets and in the
combined test set.

https://doi.org/10.1038/s41523-025-00740-z Article

npj Breast Cancer |           (2025) 11:24 8

www.nature.com/npjbcancer


which identifiedhumanTcell receptorswith tumor cell reactivity that target
both p53 R175H and Y220C23. Concrete steps toward therapeutically tar-
geting p53 R175H andY220C in patients are already underway. A synthetic
bispecific antibody that binds to p53 R175H, activating T cells to kill tumor
cells developed byHsiue et al. was effective at lysing tumor cells both in vitro
and in vivo in animal models36, and a phase I/II clinical trial (PYNNACLE)
evaluating the efficacy of PC14586, a p53 reactivator developed by PMV
Pharmaceuticals that is selective for p53 Y220C, alone and in combination
with pembrolizumab is currently underway37. The potential ofTP53R273H
as a neoantigen is also supported by work from Yuan et al., which
demonstrated that TP53 R273H elicited peptide-specific T cells in vitro38.

One of the goals of this study was to evaluate the prognostic value of
DNA and RNA features in early-stage TNBC, both alone and when con-
sidering tumor stage,which is already used for clinical decision-making.We
explored this by training Cox proportional hazards models of overall sur-
vivalwith elastic net regularization for each combinationofDNA,RNA, and
clinical features. While we did not find strong evidence to support the
prognostic value of DNA features, RNA features did appear to be prog-
nostically valuable, both on their own and, more importantly, after tumor
stagewas considered.The eightRNAexpression signatures selected by these
elastic net models help provide biological insight into these prognostic
associations. Most notably, we see themes of B cell and T cell activity being
associated with better overall survival among the selected features. In both
the RNA-only and the clinical + RNA elastic net models, the immu-
noglobulin G (IgG) signature39 had the strongest model contribution of all

selectedRNA features. This is consistent with IgG evenness being one of the
most prognostic features of CALGB 40603 event-free survival in Shepherd
et al.15. IgG is an antibody created and released by released by plasmaB cells;
another selected unsupervised RNAsignature, Green726 showed association
with B cell activity through gene set enrichment analysis. Selected RNA
features associated with T cell activity include the Red1826 signature (via
gene set enrichment analysis) and a T follicular helper cell (TFH) signature.
This observation of B cell and T cell signatures being associated with better
TNBC overall survival is supported by findings from Hollern et al., which
found that TFH activation of B cells facilitated anti-tumor response in
TNBCmurine models40. Interestingly, even though these elastic net models
were trained entirely on HER2 negative (by IHC/FISH) patients, a HER2
amplified signature26 was among the selected RNA features, along with the
Unknown826 unsupervised signature, which was associated with ERBB2
(HER2) tumorigenesis through gene set enrichment analysis. Both sig-
natureswere associatedwithbetterTNBCoverall survival.Among the genes
that comprise the RNA signatures selected by these models are CXCL13,
which encodes a B cell chemoattractant, CCL19, which encodes a T cell
chemoattractant, ICOS, which encodes a T cell costimulator, and PDCD1,
which encodes the PD-1 cell surface receptor on T cells and B cells and is a
cancer immunotherapy target41.

There are several important limitations of our study.While we tried to
maintain a uniform sample group by selecting stage II-III TNBC patients
receiving chemotherapy, there were significant differences in the distribu-
tion of important phenotypes between the four datasets analyzed in this
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study that we couldn’t control for, including tumor stage, PAM50 intrinsic
subtype, and baseline overall survival. Given the inherent heterogeneity
within TNBC, future efforts that perform similar analyses on more
homogeneousTNBCsubpopulationsmaybe valuable.Whilewefilteredour
patients for those only receiving chemotherapy, we acknowledge that there
was uncontrolled variability in the exact treatment regimen across patients
and datasets. We also acknowledge that because all patients received some
sort of treatment, our efforts to define “prognostic” biomarkers is more
technically an effort to define “mixed prognostic/predictive” biomarkers.
Additionally, there were differences between sequencing technologies used
to quantify the DNA and RNA data used in this analysis. The METABRIC
dataset is older than the other three sets, somicroarray technologywas used
to quantify RNA expression instead of RNA-seq. CALGB 40603 and
METABRIC mutation calls were made from targeted DNA sequencing
data,while FUSCCandTCGAmutation callsweremade fromwhole exome
sequencing (WES) data. DNA copy number was quantified from targeted
DNA sequencing data for CALGB 40603, SNP array data for METABRIC
and FUSCC, andWES data for TCGA. Given the coverage limitations of a
1,037 gene DNA-sequencing panel in detecting genome-wide measure-
ments in the CALGB 40603 dataset, we did not perform mutational sig-
nature analyses or compute HRD scores based on genetic scar algorithms.
Though we could not include these features in our prognostic model
training space, we did attempt to evaluate whether a genome-wide HRD
score would add value to our models in the TCGA and FUSCC sets, which
have publicly available HRD scores. While the HRD score did not add
significant prognostic value to the clinical+RNA model risk score in the
FUSCC data, it did add significant prognostic value in TCGA, although it
only provided a very small increase to the likelihood ratio statistic (<1%);
thus, knowledge of HRD status may not addmuch additional value beyond
the clinical+ RNA model for TNBC patients receiving multi-agent che-
motherapy. Furthermore, we would have liked to train multivariate elastic
net models that predict pCR with clinical, RNA, and DNA features in a
similar approach to our survival models. Because CALGB 40603 was the
only dataset with pCR information, wewere underpowered to train and test
such models, though this would be an interesting future analysis with
more data.

In conclusion, we performed a comprehensive characterization of the
RNA- and DNA-based molecular and prognostic landscape of stage II-III
TNBC. Future studies are needed to validate the findings of TNBC patients
with recurrent TP53 missense mutations that show phenotypes consistent
with neoantigen activity. While somatic molecular features are not yet
clinically evaluated for stage II-III TNBC, we show that RNA-based features,
including thoseofBcell andTcell activity,mayaddprognostic value to tumor
stage when considering overall survival. Thinking to the future, improved
prognostic estimates could be important to informing treatment escalation/
de-escalation efforts; however, further work and validation are needed before
creating amolecular predictor that is appropriate and feasible for clinical use.

Methods
CALGB 40603 study design and patient cohort
CALGB 40603 is a 2 × 2 factorial, randomized phase II trial that evaluated
the impact of adding carboplatin and/or bevacizumab to standard che-
motherapy. The study design and clinical results of CALGB 40603 have
previously been published15,18. Eligible patients for the trial included stage II-
III triple-negative (ER and PR staining ≤10%, HER2 IHC 0-1+ or FISH < 2
if IHC 2+ or no IHC available) invasive breast cancer. Patients received
paclitaxel 80mg/m2 once aweek for 12 treatments, followed by doxorubicin
plus cyclophosphamide once every two weeks for four treatments. Each
patient was randomly assigned to receive no additional treatment, the
addition of bevacizumab 10mg/kg once every 3 weeks for 9 treatments, the
addition of carboplatin (area under the curve = 6) once every 3 weeks for
four treatments, or both. The UNC Office of Human Research Ethics has
determined that the correlative science research does not constitute human
subjects research as defined under federal regulations (Study #: 18-0846).
The CALGB 40603 trial protocol was approved by the central institutional

review board of theNational Cancer Institute, as well as institutional review
boards at the participating sites. All patients enrolled in CALGB 40603
provided informed consent in accordance with federal and institutional
guidelines. CALGB is now part of the Alliance for Clinical Trials in
Oncology.

CALGB 40603 targeted DNA sequencing data
Genomic DNA (gDNA) was extracted from tumor tissue frozen in liquid
nitrogen and matched blood samples using the Qiagen DNeasy Blood &
Tissue Kit, according to the manufacturer’s protocol as previously
described42. gDNA quantity was assessed using the Invitrogen Qubit
dsDNA broad range assay (Q32853) with the Thermo Scientific Qubit 3.0
Fluorometer (Q33216), following the MAN0002325 protocol. gDNA
quality was assessed using the TapeStation DNA Genomic ScreenTape
analysis (5067-5365) with the Agilent TapeStation 4200 instrument
(G2991AA), following the G2991-90040 protocol. Up to 1.5 µg of gDNA
was used as input for library preparation with the Agilent SureSelect XTKit
(G9641B) and Agilent Bravo Automated Liquid Handler, following the
G7530-90000 protocol. Fragmentation was performed with the Covaris
Ultrasonicator Instrument (Model E220) and single, 8 bp indexeswereused.
The UNCseqTM version 10.0 (Design 3065031) targeted capture panel,
manufactured by Agilent (5190-4833) was used. Library quantity was
assessed using the InvitrogenQubit dsDNAhigh sensitivity assay (Q32854)
with the Thermo Scientific Qubit 3.0 Fluorometer (Q33216), following the
MAN0002326 protocol. Library quality was assessed using the DNA
ScreenTape analysis (5067-5582) with the Agilent TapeStation 4200
instrument (G2991AA), following the G2991-90031 protocol. Sequencing
was performed on an Illumina HiSeq4000 instrument with 2 × 75 bp
paired-end reads to an average sequencing depth of 30 million clusters per
library (~1700X raw sequencing depth).

Patient inclusion in analysis
To be consistent with the current clinical definition of TNBC, CALGB
40603 samples with ER and PR staining >1% were excluded from analysis
alongwith samples that did not passDNAquality controlmetrics. The three
external datasets evaluated, FUSCC, METABRIC, and TCGA, were addi-
tionally filtered to resemble the CALGB 40603 patient population as closely
as possible given the available phenotypic data. For the FUSCC dataset, all
sampleswere TNBC (ERandPR staining≤1%,HER2-), andwere filtered to
include only stage II-III samples treated with chemotherapy. For the
METABRIC dataset, PR IHC and HER2 FISH data were unavailable, so
TNBCwas defined as IHCER- (staining≤10%) andHER2- (IHC 0-1+ , or
HER2 SNP6Loss/Neutral if IHC2+ or no IHCavailable). TheMETABRIC
dataset was filtered to include only stage II-III TNBC samples treated with
chemotherapy. Additionally, the TCGA dataset was filtered to include only
stage II-III TNBC (ER and PR staining≤ 10%,HER2 IHC0-1+ or FISH < 2
if IHC 2+ ).

There was a total of 686 tumor samples with available RNA and DNA
data after combining the four datasets, but only a total of 677 samples with
available copy number data, 628 samples with somatic mutation data, and
619 samples with both copy number and somatic mutation data. In total,
there were 618 samples with RNA expression, DNA copy number, DNA
somaticmutation, and overall survival data (all features needed for training/
testing the elastic net model). The corresponding largest subset of samples
not including NAs was used for each type of analysis. For some combined
analyses involving TP53 expression, 97 TCGA cancer-adjacent normal
samples were included.

Mutation calling
For CALGB 40603 and TCGA samples, paired tumor and normal DNA
fastq files were aligned to the hg38 reference genome by BWA mem, with
sorting, indexing, and marking of duplicate reads by Biobambam2
bamsormadup43. Somatic mutations were called from bam files with
Strelka244 and Mutect245. Mutation calls were merged and filtered for only
those marked as ‘PASS’ by both variant callers. Calls were annotated and
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converted toMAF formatwith EnsemblVariant Effect Predictor (VEP) and
the vcf2maf tool46.

For FUSCC and METABRIC samples, where paired tumor and normal
DNA fastq files were not accessible, already-processed mutation calls were
used.FUSCCmutationcalls (FUSCCTNBC_Mutations_Extended_hg38.maf)
were downloaded from Figshare (https://doi.org/10.6084/m9.figshare.
19783498.v5)47 and METABRIC mutation calls (somaticMutations.txt) were
downloaded fromGitHub (https://github.com/cclab-brca/mutationalProfiles/
tree/master)48. All downloaded mutation calls were then re-annotated using
Ensembl VEP and the maf2maf tool46.

To avoid the downstream analysis of known passenger hotspot
mutations, any mutations in the list of 194 genes confidently under neutral
selection fromHess et al. were filtered out from each dataset49. Additionally,
for consistency, onlymutations present in the 1037 genes from theUNCSeq
v10 targeted panel were considered for any dataset in all analyses.

Gene-level somatic mutation analysis was performed by binarizing
somatic mutation calls at the gene level for each patient, where a status of 1
indicates at least onemutation called for a gene in a patient and a status of 0
indicates no mutation calls for a gene in a patient.

For BRCA1, BRCA2, and PALB2 in CALGB 40603, filtered somatic
mutations were evaluated using the ClinGen/CGC/VICC2022 guidelines50.
Mutations labeled oncogenic or likely oncogenic following these guidelines
were considered a potential source of homologous recombination defi-
ciency. Additionally, germline BRCA1, BRCA2, and PALB2 mutations in
CALGB40603 calledby Strelka2 in germlinemodewere evaluated using the
ACMG/AMP 2015 guidelines51. Mutations labeled pathogenic or likely
pathogenic following these guidelines were considered a potential source of
homologous recombination deficiency.

Mutational landscape plots (oncoplots) and lollipop plots were created
using themaftools R package (v2.18.0). Mitochondrial genes were removed
from the oncoplot of the combined data (Supplementary Fig. 5) because
these genes are not included in most whole exome capture panels.

DNA copy number data
For CALGB 40603 and TCGA samples, paired tumor and normal DNA
fastq files were aligned to the hg38 reference genome by BWAmem, with
sorting, indexing, and marking of duplicate reads by Biobambam2
bamsormadup43. Bam files were used as input for ASCAT (v3.1.2), run
with the default workflow for targeted sequencing data for CALGB40603
and with the default workflow for whole exome sequencing data for
TCGA52. For FUSCC samples, probe-level OncoScan CNV Assay data
were downloaded via the NCBI Gene Expression Omnibus
(GSE118527)19. 23 of the FUSCC tumor samples had paired white blood
cell samples available; these were used as input for ASCAT (v3.1.2), run
with the default workflow for SNP array data. The other 401 FUSCC
tumor samples that had no paired normal samples available; were run
with the ASCAT (v3.1.2) default workflow for SNP array data without
matched normal data. For the METABRIC samples, copy number seg-
ment files generated via ASCATwere downloaded fromGitHub (https://
github.com/cclab-brca/mutationalProfiles/tree/master)48.

The allele-specific ASCAT outputs were used to produce log2 ratio
copy number scores by dividing the total copy number by the tumor ploidy
estimate: log2ðnArawþnBraw

ploidy Þ. For each dataset, this was used to run GISTIC2

(v2.0.23), with the following parameters changed from the default:
–genegistic 1 –broad 1 –brlen 0.5 –conf 0.95 –armpeel 1 –savegene 1 –ta
0.3 –td 0.3 –rx 053. The gene-level GISTIC2 copy number output was then
collapsed to 534 segment-level copy number scores, which include whole-
arm segments and predefined chromosome regions that have previously
been published and shown to be significant in pan-cancer analyses or breast
cancer subtype-specific analyses24,54–58. Segment-level copy number scores
were calculated by taking the mean of the GISTIC2 copy number scores of
geneswithin each segment. The full lists of genesused todetermine the copy
number scores of the 534 segments are given in Xia et al. (excluding the two
Y chromosome segments)24. Segment-level copy number scores above 0.3

were considered a copy number gain, and segment-level copy number
scores below −0.3 were considered a copy number loss.

RNA expression data
ForCALGB40603,TCGA, and FUSCC samples, tumorRNA-seq fastqfiles
were aligned to the hg38 reference genomewith Gencode v36 annotations59

via STAR (v2.7.6a)60, and quantification was performed with Salmon
(v1.4.0)61. Salmoncountswerenormalizedusing afixedupperquartile based
on all non-zero transcripts and were subsequently log2 transformed with a
pseudocount of one. For METABRIC, normalized Illumina HT 12 micro-
array RNA expression data was downloaded from the European Genome-
phenome Archive at the European Bioinformatics Institute
(EGAS00000000083) and were subsequently log2 transformed with a
pseudocount of one20.

759 published RNA expression signatures representing biological
pathways, cell types, disease states, and important single genes were calcu-
lated from the normalized RNA expression data of each dataset. These
signatures have been previously partially summarized26, and a complete list
of each signature, its source, and themethod used to calculate it (e.g.median
expression, correlation to centroids, special algorithm from original meth-
ods) is given in Supplementary Data 2. RNA expression signatures were
initially calculated from the entire normalized sample set of each initial
study before each dataset was subset to include only stage II-II TNBC
samples. Once a dataset was filtered to only include samples relevant to the
analysis, gene signature expression estimates were median-centered. These
are the gene signature expression estimates that were used in downstream
analyses.

For a few analyses, TP53 expression values were combined between
datasets (including TCGA adjacent normal samples). To minimize batch
effects,TP53 expression in eachdatasetwas scaledandcenteredbefore itwas
combined.

Tumor subtyping
PAM50 molecular subtypes were determined using a clinical subgroup-
specific gene-centering method based upon Zhao et al.62, as previously
detailed63. For the CALGB 40603 and FUSCC datasets, the TNBC samples
from the original PAM50 training set were used to create TNBC subgroup-
specific gene centering columns, which were used to individually normalize
the expression values of thePAM50genes in theCALGB40603/FUSCCsets
and apply the PAM50 predictor64. For the TCGA andMETABRICdatasets,
which initially contained samples belonging to all three clinical subtypes,
samples were split into HER2+, HR+/HER2−, and TNBC sample groups
and the expression values of the PAM50 genes in the TCGA/METABRIC
sets were normalized separately based on the respective original PAM50
HER2+, HR+/HER2−, or TNBC training set samples. The normalized
expression data of each clinical subtype was then recombined before
applying the PAM50 predictor. Claudin-low classifications were made for
each dataset after the initial PAM50 calls as previously documented, by
cross-referencing a Claudin-low centroid predictor65 with hierarchical
clustering of the dataset by the intrinsic gene list fromParker et al.64; samples
thatwere centroid positive and clustered togetherwere labeledClaudin-low.
As with the PAM50 calling, for each dataset, calls were made from the full
RNA datasets of each initial study (including samples with RNA but no
matching RNA and non-TNBC samples, if any).

Prognostic model building
We were interested in the ability of three types of input features to predict
overall survival in stage II-III TNBC: clinical features (tumor stage), DNA
features (700 gene-level somatic variants, 134 TP53 somatic variants, 534
segment-level copy number gains, and 534 segment-level copy number
losses), and RNA features (759 gene expression signatures). Therefore, we
trained seven unique models on the CALGB 40603 dataset (n = 238), with
each model considering each combination of input feature type (clinical,
DNA, RNA) (Fig. 5). Because there was only a single input feature for the
clinical-only model (tumor stage, representing the current “clinical
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standard”), we fit a Cox proportional hazards model with no regularization
to the entire training set. For the six other models, we fit Cox proportional
hazards models with elastic net regularization the same multi-step training
workflow. Because sparse features can make feature selection via elastic net
less stable, the first step of the training workflow was to remove sparse
features, defined as features with non-zero values in ≤5% of training sam-
ples. Features were further filtered to keep only one feature among any with
perfect correlations in the training set to avoid model instability and non-
unique solutions. A bootstrapping approach was then used to fit Cox pro-
portional hazards models with elastic net regularization to the training set.
The elastic net regularization is a combination of the lasso (L1) and ridge
(L2) regularization penalties, and it is incorporated to prevent the Cox
proportional hazards model from overfitting when incorporating many
model coefficients66. A total of n = 100 bootstrapped resamplings were fit to
a tuning grid of nine alphas (0.1–0.9 by0.1) and twenty lambdas (102 to 10−2,
evenly spaced on a logarithmic scale), using the glmnet R package (v4.1-8).
The alpha/lambdacombinationwith the lowest average out-of-bagdeviance
was then chosen to fit a final model on all training set samples. All seven
models were then evaluated using three independent test sets: FUSCC
(n = 157), METABRIC (n = 90), and TCGA (n = 133). For the models that
used feature selection, the model coefficients in their original scale were
extracted from the fit glmnet model, and the corresponding scaled coeffi-
cient values following the default standardization method used by glmnet
were manually re-calculated so the relative contribution of each selected
feature to the model could be evaluated. Additionally, Harrell’s C-index
values were used to assess model discrimination, along with Kaplan–Meier
plots split by tertile-based risk scores (survminer R package v0.4.9). Because
tumor stage is the feature representing the “clinical standard”, we also
wanted to test if the models incorporating molecular features could dis-
criminate overall survival risk beyond the predictions made from tumor
stage. To evaluate this, for the elastic net models incorporating molecular
features, we performed likelihood ratio tests, using the elastic netmodel risk
score and tumor stage as predictors in univariate and multivariate Cox
proportional hazards models on the test data. In the test data, models were
first conditioned on tumor stage, and then the significance of the elastic net
model was tested (the same was done in the opposite order).

Gene set enrichment analysis was performed on three unsupervised
RNA expression signatures (Green7, Red18, Unknown8) that were selected
by the elasticnetmodels, using the enricher function fromthe clusterProfiler
R package with all human gene sets from MSigDB, with the Benjamini &
Hochberg method use for p-value adjustment27,67,68. The enrichment results
with adjusted p-values < 0.05 for each unsupervised signature is included in
Supplementary Data 4.

Statistical analyses
All statistical analyses were performed in R (v4.3.3). Comparisons of dif-
ferences in baseline phenotypic variables in Table 1 were made using Chi-
squared tests. Kaplan–Meier plots were created using the R package surv-
miner (v0.4.9), with default log-rank p-values displayed. All multiple test
correction was done using the p.adjust function in R with the Benjamini &
Hochberg method to control the False Discovery Rate (FDR)68. The sig-
nificance threshold of p < 0.05 was used for all analyses unless otherwise
specified.

The Wilcoxon rank sum test was used to calculate the statistical sig-
nificancewhen comparing continuous expression values across sample sets.
Two-sidedWilcoxon rank sum tests were run with multiple test correction
testing unequal TP53 expression of samples with TP53 mutation types vs.
normal samples (Fig. 2b). In analyses relating to Fig. 3, one-sidedWilcoxon
rank sum tests were run with multiple test correction testing greater
expression of 233 immune signatures for sampleswithTP53mutation types
vs. normal samples. Immune signatures that had an FDR-adj Wilcoxon
p < 0.05 in samples with a recurrent (n ≥ 10) missense TP53mutation and
an FDR-adj Wilcoxon p ≥ 0.05 in samples with a TP53 nonsense mutation
were subjected to complete-linkage hierarchical clustering with Euclidean
distance.

For all univariate survival analyses, overall survival associations were
modeled byCoxproportional hazardsmodels:Overall survival (time, event)
~feature, using the survival package in R (v3.7-0). For survival analyses that
combined samples across datasets, the model was stratified by set: Overall
survival (time, event) ~feature+ strata(set). pCR and subtype associations
weremodeledwith binomial generalized linearmodels: pCR status ~feature
and subtype ~feature. For subtype analyses that combined samples across
datasets, the dataset was added as a fixed effect to the model: subtype
~feature+ set.

Mutation subtype, pCR, and survival analyses considered any gene-
level mutation or TP53 mutation present in five or more CALGB
40603 samples, as well as HRD mutation status.

For all boxplots, the center line represents themedian value, box limits
represent upper and lower quartiles, and whiskers represent the 1.5×
interquartile range. Any points outside of these ranges represent outliers.

Data availability
Information on the CALGB 40603 clinical trial can be found at the Clin-
icalTrials.gov website (NCT00861705). The CALGB 40603 targeted panel
DNA-seq and phenotypic data used in this paper are available via theNCBI
database of Genotypes and Phenotypes (dbGaP) (phs003801.v1.p1), along
with the CALGB 40603 RNA-seq data (phs001863.v1.p1)15. TCGA whole
exome DNA-seq and RNA-seq data are available via the NCBI dbGaP
(phs00178).TCGAphenotypic data are available via theNCIGenomicData
Commons (GDC) Data Portal (https://portal.gdc.cancer.gov/projects/
TCGA-BRCA)10. FUSCC RNA-seq data are available via the NCBI
SequenceReadArchive (SRA) (SRP157974). FUSCCprobe-levelOncoScan
CNV Assay data are available via the NCBI Gene Expression Omnibus
(GEO) (GSE118527). FUSCC mutation data is available via Figshare
(https://doi.org/10.6084/m9.figshare.19783498.v5)47. FUSCC phenotypic
data are available in Jiang et al., with overall survival data provided by
request to the first author19. METABRIC somatic mutation calls and
ASCATcopynumber segment data are available viaGitHub (https://github.
com/cclab-brca/mutationalProfiles/tree/master)48.METABRICphenotypic
data are available via cBioPortal (https://www.cbioportal.org/study/
summary?id=brca_metabric)48. METABRIC expression data are available
via the European Genome-phenome Archive at the European Bioinfor-
matics Institute (EGAS00000000083)20. All other data supporting the
findings of this study are available from the corresponding author upon
reasonable request.

Code availability
The underlying code for this study is not publicly available, but it may be
made available to researchers upon reasonable request to the corresponding
author.
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