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Hormone receptor-positive breast cancers are a diverse group of tumours, with only some responding
well to immunotherapy. Alternative combination strategies such as radiotherapy present an exciting
opportunity to improve immunotherapy responses. We review an intriguing overlap between the
impact of oestrogen signalling and radiation on multiple signalling pathways and immune cells that
may be exploited for therapeutic gains in breast cancer. This is synthesised with the pre-clinical data
and clinical trial landscape supporting the use of combined radiation and immunotherapy to derive

insights for future neo-adjuvant trial design.

Breast cancer (BC) is the most common female malignancy. Approximately
70% are hormone receptor positive (HR+), denoted by oestrogen receptor
(ER) and/or progesterone receptor (PR) positivity on immunohistochem-
istry. Whilst many localised HR+ tumours are associated with favourable
long-term prognosis, around 10-40% experience metastatic relapse'. Many
relapses occur later than in other subtypes of BC (triple-negative and
HER2+), but some HR+ tumours behave aggressively with poor
prognosis’.

Immune checkpoint inhibition (ICI) is an established treatment for
triple-negative BC (TNBC) in combination with chemotherapy’. While
ICI has not yet been approved for HR+ BC, recent results from two phase 3
trials demonstrate a doubling of pCR in this patient population when ICI are
added to neo-adjuvant chemotherapy®’. However, pCR was achieved only
in ~24% of patients, indicating that patients may require additional thera-
pies such as radiotherapy (RT), which can induce immunological stimula-
tion to improve responses®’. Cellular responses to RT can induce an
inflammatory tumour immune microenvironment (TIME) and enhance T-
cell/dendritic cell (DC) activation, migration and tumour cell recognition'’.
There is significant interplay between the impact of RT and oestrogen
signalling on several molecular pathways and cells within the TIME, sug-
gesting an under-explored potential immunogenic role for RT in the
HR+ BC setting'""”.

Whilst RT is traditionally used in the adjuvant BC setting, neo-
adjuvant RT and ICI are feasible separately”"” and in combination". Neo-
adjuvant combined RT and ICI (RT-ICI) is an area of interest because the

ability of RT to promote priming of anti-tumour T-cells requires the pri-
mary tumour in situ’. Pre-clinical evidence also suggests immunotherapy
may also be more effective in the neo-adjuvant versus adjuvant BC setting'”.

This review discusses the pre-clinical and clinical trial evidence sup-
porting the concept of using RT-ICI for HR+/HER2- BC, alongside pro-
gress in HR+/HER2- BC mouse models that could advance research in this
field. These are synthesised to explore future directions for neo-adjuvant
RT-ICI trials in HR+ BC.

HR+/HER2- BCs are a heterogenous tumour group
Within the complex system of a primary BC tumour, cells possess differing
levels of ER expression and intrinsic dependence on oestrogen signalling.
Indeed, tumours can be considered ‘strongly’ ER+ if 211% of cells stain with
strong ER intensity'®. Transcriptomic profiling using PAM50 classification
highlights the heterogeneity amongst HR+/HER2- tumours, with most
categorised as luminal A or luminal B and smaller proportion as basal-like,
normal-like or HER2-enriched"’. Compared to luminal A tumours, luminal
B tumours are associated with inferior prognosis and defined by higher
histological grade, higher proliferation rate, lower PR positivity, lower ER
expression, and lower ER signalling dependence. They also possess
increased type 1 interferon gene products, antigenicity and T-cell clonality,
suggesting an increased sensitivity to immunotherapy”.

The role of the immune system in BC is complex and the BC TIME
varies greatly across receptor subtypes”. Luminal tumours are traditionally
viewed as particularly immune ‘cold’, with lower levels of stromal tumour
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infiltrating lymphocytes (sTILs), tumour cell MHC expression, and tumour
mutational burden (TMB)/genomic instability resulting in reduced neo-
antigen presentation’*””. However, luminal B tumours tend to possess
higher sTIL levels than luminal A”, and some HR+/HER2- tumours
(particularly those with lower ER positivity) harbour a TIME more similar
to TNBC/HER2+ BCs™ . High sTIL levels are a validated positive prog-
nostic biomarker in triple-negative and HER2+ tumours but their prog-
nostic role in HR+/HER2- BC is less clear; perhaps unsurprising given the
diversity of tumours encompassed within this tumour group™.

Deeper sub-classification of lymphocytic infiltrates and their spatial
arrangement in HR+ BCs also highlights TIME diversity and demonstrates
these approaches may improve prognostic correlations than sTIL levels
alone”*. Increased ER expression also correlates with reduced immune
infiltrates such as tumour-associated macrophages (TAMs) and CD4"
T-cells”. Other cell populations play an important role within the
HR+ TIME and can be associated with inferior prognosis, including TAMs
and cancer-associated fibroblasts (CAFs)**”". Further exploration of the
effects of neo-adjuvant therapies including chemotherapy and RT on the
HR+ BC TIME is required, although data suggests they may cause a lym-
phodepletive effect’”.

The heterogeneity of HR+ BC may be exploited to identify patients
who respond more favourably to immunotherapy, and those who will
benefit from additional combination therapies such as chemotherapy or RT,
ina similar fashion to TNBC***. For example, post-hoc analysis of an I-SPY2
trial arm using baseline MammaPrint classification identified that the 53% of
‘MP2 ultra-high risk HR+ tumours exhibited enhanced responses to neo-
adjuvant combined durvalumab/olaparib/chemotherapy”. Improved
understanding of the molecular impacts of oestrogen signalling on tumour
and immune cells could facilitate novel predictive biomarker identification.

Oestrogen signalling and radiation impact similar
pathways and cells implicated in anti-tumour immune
responses

The links between oestrogen signalling, inflammation and proliferation that
favour BC formation and progression are well established ™. ERs (principally
ERa and ERP) bound to oestrogens (principally E2; 17B-oestradiol) influ-
ence gene expression directly or indirectly via binding of coactivator/cor-
epressor proteins and oestrogen response elements on DNA. The
multifaceted nature of oestrogen signalling may explain how it can both
drive tumour growth/proliferation whilst also often conferring a less
aggressive phenotype. Mutations in ESR1 (encoding ERa) confer endocrine
therapy resistance and are implicated in luminal BC radioresistance
in vitro”.

The complex nature of ER transcription with coregulatory proteins
results in intricate context-dependent interactions between oestrogen
signalling and signalling pathways/immune cells involved in the co-
ordination of anti-tumour immune responses, summarised by previous
reviews' "> GSeveral of these pathways (Fig. 1) and immune cells
(Fig. 2) are also implicated in radiation responses. Multiple immune cells
express ERs and RT/oestrogens can both increase PD-L1/PD-1 expression

on tumour cells and immune cells**'.

DNA damage and repair

Radiation causes cell death by inducing double strand DNA (dsDNA)
breaks. Tumour cells with deficient DNA damage repair pathways are more
susceptible to cell death from irradiation. Excess oestrogens can also induce
dsDNA breaks at oestrogen-responsive genes'”’. Oestrogens can exert
influence on DNA damage response pathways, including non-homologous
end joining (NHE]) and homologous recombination repair (HRR). For
example, they can downregulate ATM/ATR expression but increase DNA-
PKcs, BRCA1/2 and MRN complex protein expression, which may explain
a preponderance for oestrogen-dependent tumours in patients with
intrinsic HRR deficiencies”. ATM is a master regulator of DNA damage
responses to RT*, suggesting tumour oestrogen-dependence may alter
radiosensitivity. In HR+BC clonogenic survival assays and an

immunocompromised HR+ mouse model, the addition of endocrine
therapy to RT had a radiosensitising effect through NHE] inhibition*. Both
RT and oestrogens are also known to induce reactive oxygen species (ROS)
that contribute to indirect DNA damage.

Cell cycle and proliferation

Oestrogen signalling drives cell cycle progression, particularly through
the G1/S checkpoint, by increasing the expression and activity of cyclin
D1, c-myec, cyclin-dependent kinases (CDKs including CDK4/6) and
CDC25A"**, CDK4/6 binds to Rb, phosphorylates and inactivates it to
promote S phase and release of the E2F/DP transcription factors, whilst
E2 can also directly downregulate Rb expression*”’. Endocrine therapy
combined with CDK4/6 inhibition can therefore elongate a GO-GI1 state
to inhibit tumour proliferation. Oestrogen signalling can also inhibit
p53 function which can drive proliferation in hormone-dependent
cancers’'. The intrinsic radiosensitivity of tumour cells varies in dif-
ferent cell cycle phases, with late S phase the most radioresistant due to
increased HRR*. Oestrogen signalling may drive increased redistribu-
tion through the cell cycle, which may influence radiosensitivity to
fractionated RT regimens.

However, direct protein-protein actions of oestrogen signalling,
including upregulation of pro-survival pathways such as EFGR, MAPK and
PI3K/AKT, can confer radioresistance and drive tumour proliferation®**,
There is also evidence of a positive feedback loop between E2 and the pro-
inflammatory cytokine TNF-a, which is implicated in tumour proliferation,
epithelial-mesenchymal transition and immune evasion’**. Cell death from
RT canalso induce release of immunosuppressive cytokines including TNE-
a, TGF-p and IL-6”.

T-cells and type 1 IFN responses

DNA damage from RT triggers dsDNA translocation to the cytosol, leading
to an acute release of pro-inflammatory type 1 interferons (IFNs) including
IFN-B via the cGAS/STING pathway™. cGAMP, produced upon cGAS
recognition of cytosolic dsDNA, is taken up by neighbouring immune cells
which induces further type 1 IFN gene expression™. RT also triggers release
of damage-associated molecular patterns (DAMPs) such as calreticulin,
HMGBI and ATP, promoting cancer cell uptake by DCs and DC activation
mediated by Toll-like receptors (TLRs) and P2X7R’. Alongside promoting
release of tumour-associated antigens, RT increases tumour cell expression
of MHC-I and other cell surface molecules that improves their recognition
by CD8" T-cells”. Together, these processes promote recruitment and
activation of DCs that cross-present tumour antigens, leading to cytotoxic
T-cell activation which contributes to RT’s immunostimulatory anti-
tumour effects. Given that ERa signalling in HR+ BC cells can down-
regulate MHC-1 expression and IFN-y*', this suggests a role for RT to
overcome this mechanism of immune evasion.

Conversely, RT-induced chronic/constitutive cGAS/STING signalling
can have pro-tumour effects, including T-cell exhaustion and induction of
immature, dysfunctional or tolerogenic DCs**. These effects may be exa-
cerbated in HR+ BC* and are mediated by increased non-canonical NF-kB
signalling downstream to STING activation®”. Extracellular transport and
conversion of cGAMP to adenosine by overexpressed ENPP1/CD73 cell
surface proteins on tumour cells also promotes immunosuppression®.
Trexl, a DNA exonuclease inducible by high-dose RT, inhibits cGAS/
STING signalling and is itself regulated by type 1 IFN/STAT1 signalling as
part of an autocrine feedback loop®>®.

Intriguingly, ERa signalling can assist DCs to prime antigen-
specific T-cells following TLR stimulation”. In vitro, E2 prevents DC
growth in response to FLT3 ligand, whereas it stimulates CD11c"/
MHC-II* DC differentiation in the presence of GM-CSF”. ERa sig-
nalling in tumour cells can also inhibit type 1 IFN-stimulated gene
transcription through induction of H2A.Z expression and inhibition of
STAT?2 activity, which prevents the formation and function of ISGF3
complexes”. Increased interferon-stimulated gene expression is seen in
BC cells with endocrine and RT cross-resistance’’. Complex
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Fig. 1 | Interplay between oestrogen signalling and radiation on key cell signal-
ling pathways. (1) Radiation and excess oestrogens induce double strand DNA
(dsDNA) breaks, directly and indirectly via production of reactive oxygen species.
(2) Recognition of DNA damage by ATM/ATR induces DNA damage responses
including DNA repair (homologous recombination repair and non-homologous
end-joining) and cell cycle checkpoint arrest. This is achieved via activation of
proteins including p53 and inhibition of CDKs/cyclins/ CDC25A/c-myc. Oestrogen
signalling can influence multiple points in these pathways, for example increasing
expression/activity of CDKs/cyclin D1/CDC25A/c-myc whilst inhibiting tumour
suppressor proteins such as Rb and p53, with the overall effect of cell cycle pro-
gression which may influence radiosensitivity. (3) dSsSDNA breaks lead to cytoplasmic
dsDNA release which triggers cGAS/STING signalling. This typically leads to an
acute type 1 interferon response which activates and attracts DCs/cytotoxic T-cells,
but chronic or disrupted cGAS/STING signalling can lead to pro-tumour effects via
non-canonical NF-kB signalling. cGAMP can be taken up by neighbouring immune
cells and activate further cGAS/STING-mediated type 1 IFN responses. However,
tumour cells may upregulate CD73/ENPP1 to convert extracellular cGAMP to

adenosine, with immunosuppressive consequences. Type 1 interferon/

STATI1 signalling can also increase Trex1 levels as part of a self-regulatory feedback
loop. (4) Type 1 interferons (e.g. IFN-p) released in response to radiation increase
expression of interferon-stimulated genes via JAK/STAT signalling. Oestrogen
signalling can inhibit type 1 IFN responses by inhibition of STAT2 and exerts other
non-genomic effects on cells including upregulation key oncogenic pathways
including EGFR/MAPK and PI3K/AKT. There is also complex context-dependent
cross-talk between transcriptional activity of oestrogen receptors and NF-kB. (5)
Radiation triggers release of DAMPs which can promote DC activation. Radiation
can also increase MHC-I expression on cells which increases recognition by immune
cells, but oestrogen signalling and radiation can both lead to PD-L1 upregulation on
tumour cells which reduces T-cell activation. Finally, radiation and oestrogen sig-
nalling can both increase release of TNF-a which has further impacts on NF-kB
signalling. ES oestrogen signalling, dsDNA double-strand DNA, DAMPs damage-
associated molecular patterns, HRR homologous recombination repair, NHE] non-
homologous end-joining, ROS reactive oxygen species, IFNs interferons, IFN-Rs
interferon receptors, DC dendritic cell, CDK cyclin-dependent kinase.

interactions between NF-kB and oestrogen signalling including evi-
dence of synergy and trans-repression in different contexts may drive
endocrine resistance and radioresistance’".

Overall, effects of oestrogen signalling on T-cells may increase
immunosuppression. Oestrogens can reduce migration of naive T-cells to
the thymus and influence T-cell selection”. ERa can bind to the FOXP3
promoter which promotes T-cell differentiation to Tregs”*. Aromatase
inhibition can decrease TIME Treg levels in BC”. ERa is also linked to
downregulation of HLA-II on BC cells. High E2 levels favour Th2 CD4*
T-cell differentiation through increased IL-4 release”.

TAMs

RT and oestrogen signalling exert complex effects on TAMs, including their
maturation, migration and polarisation. TAMs polarise on a spectrum
between a pro-inflammatory M1 phenotype and a pro-healing immuno-
suppressive M2 phenotype. The acute type 1 IFN response, DAMP release,
ROS production and increased NF-KB signalling in response to RT activates
M1 TAMs™”. M2 macrophages decrease in response to RT in triple-
negative mouse models®. Conversely, RT-related increases in CSF-1, IL-10,
TGF-B and CCL2 levels favour M2 TAM polarisation®'. Doses <2 Gy favour
an M2 TAM phenotype whereas cumulative doses of 10 Gy favour an M1

phenotype**”. RT also induces TAM recruitment to tumours via the CCL2-
CCR2 and CCL5-CCRS5 axes™.

Oestrogen signalling also increases CCL2 and CCLS5 secretion by many
ER+ BCs which increases M2 macrophage infiltration*. Oestrogen sig-
nalling tends to steer TAMs towards an M2 phenotype by upregulating the
STAT3-IL-10 axis and suppressing NF-kB signalling, which can be pre-
vented with oestrogen inhibition**’. However, in some circumstances
oestrogens may also lead to M1 polarisation via upregulation of STAT1". In
patients with highly immune-infiltrated tumours, higher levels of TGF-f
signalling are present in HR+ tumours versus TNBCs, which may derive
from M2 TAMs”. Conversely, ER+ tumour cells can also decrease TGF-
signalling by increasing Smad ubiquitination®.

Neutrophils

Most evidence implies TIME neutrophils typically exert immunosuppres-
sive pro-tumour effects. Although the impact of RT on neutrophils is not
well-defined, recent evidence suggests RT reduced TIME neutrophil
abundance in an HR+ BC mouse model®. Oestrogen signalling influences
neutrophil production of pro-tumoural neutrophil extracellular traps™.
Oestrogens also increase infiltration of neutrophils expressing lymphocyte
function-associated antigen 1 and TGF- release in the HR+ TIME".
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Fig. 2 | Impact of oestrogen signalling and radiation on immune cells in the
HR+ TIME. Both radiation and oestrogen signalling can also have divergent
immunomodulatory effects on multiple immune cells within the HR+ TIME, with
multiple immune cells expressing oestrogen receptors. Via CAFs and generation of
reactive oxygen species, radiation induces TGF-{ release which can increase DNA
damage responses, induce Treg differentiation, promote M2 TAM polarisation, and
inhibit dendritic cells which reduces cytotoxic T-cell activation. Oestrogen signalling
can reduce TGF-p signalling by reducing Smad levels and TGF-p signalling from
CAFs can reduce tumour cell oestrogen signalling dependence although TGF-f
levels may be higher in HR+ BCs with high levels of M2 TAMs. TGF-p (pre-
dominantly released by CAFs) and oestrogen signalling have both been implicated in
extracellular remodelling which could possibly promote an immune-excluded
microenvironment in HR+- breast cancer. Both radiation and oestrogen signalling
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can increase release of various other immunosuppressive cytokines which further
influence multiple immune cell populations. Oestrogen signalling can induce Treg
differentiation via ERa binding to the FOXP3 promoter. Oestrogen signalling tends
to steer TAMs towards M2 polarisation via IL-10/STAT3/CCL2/CCL5 signalling,
whereas the effect of radiation of TAM polarisation remains unclear. Oestrogen
signalling can increase the production of pro-tumoural neutrophil extracellular
traps, whereas radiation may reduce neutrophil abundance. Radiation can attract
CAFs to tumours via increased expression of NOTCH ligand on HR+ tumour cells
but can also trigger their senescence and reduce their invasive capability. ES oes-
trogen signalling, DCs dendritic cells, Tregs T regulatory cells, TAMs tumour
associated macrophages, ECM extracellular matrix, Neuts neutrophils, CAFs
cancer-associated fibroblasts, NETs neutrophil extracellular traps, NOTCH-1
NOTCH ligand.

CAFs

CAFs are a heterogeneous radioresistant stromal cell population that exhibit
pro-tumourigenic or tumour-restraining properties. RT can induce CAF
senescence and reduce their invasive capabilities via increased integrin
expression””. RT can induce NOTCH ligand expression in luminal tumour
cells which increases CAF attraction®. Increased TGF- release in response
to RT may also be predominantly CAF-mediated™.

Recent pre-clinical evidence in luminal BC models also suggests that
increased CAFs are linked to a TGF-B-mediated reduction in expression of
ERa and reduction in oestrogen signalling dependence’. ERa36-expressing
CAFs release pro-tumourigenic cytokines including CXCL5 when co-
cultured with TNBC cells and may contribute to M2 macrophage
polarisation”. CD146" CAFs and CAFs expressing an alternative ER
(GPR30) have also been associated with tamoxifen resistance in
ER+ BC™*”". Finally, oestrogen signalling can increase extracellular remo-
delling, which may contribute to the ‘immune excluded’ nature of many
HR+ tumours'*”.

Summary

Oestrogen signalling drives tumour cell cycle progression and RT acts
through DNA damage, suggesting RT may be particularly beneficial in
HR+ BC (Fig. 1). In particular, many immunostimulatory effects of RT
arise downstream from responses to DNA damage, so may be enhanced
in HR+ tumours. Conversely, overall oestrogen signalling appears to
exert immunosuppressive influences on many TIME subpopulations
(Fig. 2).

Notably, many studies discussed above relied on models that cannot
fully capture the complexity of the human HR+ BC TIME. The interplay
between RT and oestrogen signalling and resultant impact on anti-tumour
immune responses is not yet fully understood, particularly in specific pre-
clinical immunocompetent HR+ BC models. Local oestrogens produced by
aromatase enzymes in breast tissue are likely to exert the influences of
oestrogen signalling discussed above on immune cells in the HR+ BC
TIME. However, where effects are mediated through oestrogens on ER-
expressing immune cells in the TIME, these may not be exclusive to HR+
BCs and may affect all cancer-bearing pre-menopausal females with higher
levels of circulating oestrogens. Finally, the context-dependent influence of
oestrogen signalling on ER-expressing cancer cells may have specific
downstream effects on other immune/stromal cells which require further
characterisation in HR+ BC.

RT-ICI in preclinical BC models

The abscopal effect, where an unirradiated lesion responds following RT,
was demonstrated to be immune-mediated using a 67NR syngeneic
mammary carcinoma mouse model”. Since then, multiple studies have
shown that tumour irradiation promotes immune cell recruitment into
tumours seeded in immunocompetent mice, including CD4" T-cells, CD8*
T-cells and DCs'®. This partly occurs due to tumour cell secretion of IFN-f
following a ¢cGAS/STING-mediated DNA damage cascade, and can be
augmented by a STING agonist™'”". RT can also lead to improved DC
antigen processing'” and increase presentation of RT-upregulated neoan-
tigens, leading to improved T-cell recognition and tumour cell killing'”.
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Together, these studies demonstrate the potentially immunogenic effects of
RT and underline the potential for additional immunomodulatory agents
that enhance T-cell/DC activity to maximally exploit an RT-induced
immunogenic TIME.

The ability of RT to sensitise resistant tumours to anti-CTLA-4
treatment, resulting in increased control of the irradiated tumour and non-
irradiated lung metastases, was first demonstrated in the 4T1 mouse model
of TNBC'™. These observations were subsequently confirmed in other BC
models and with the combination of RT and anti-PD-1/anti-CTLA-4
treatment, including demonstration of antigen-specific clonal expansion of
tumour-specific CD8" T-cells and abscopal effects'”'*.

Timing and treatment sequencing may influence RT-ICI responses.
Dovedi et al. demonstrated that PD-L1 expression on tumour cells peaks
3 days after the final fraction of RT due to CD8" T-cell production of IFNy"
°. Concurrent anti-PD-L1 with RT (5x4Gy) reduced tumour burden in the
4T1 model whereas sequential ICI treatment with anti-PD-L1 7 days post-
RT did not enhance survival in a colorectal model. Similarly, increased PD-
L1/PD-1 expression on tumour/immune cells were observed 3 days post-RT
in a HER2+ lobular BC model'"’. Addition of anti-PD-L1 treatment to RT
increased survival and protected mice from tumour regrowth following
rechallenge experiments. Wei et al. also observed primary tumour control
and abscopal effects with the combination of RT (3x8Gy) followed by anti-
PD1 treatment commencing on the final day of RT in the 4T1 model'".
Conversely, they observed anti-PDI1 treatment prior to RT prevented
abscopal responses and reduced TIME CD8" T-cell expansion in a color-
ectal model, as it increased CD8" T-cell susceptibility to RT-induced
apoptosis. These studies highlight the importance of targeting the PD-L1/
PD-1 axis within the window of its RT-induced upregulation. Regarding
dose/fractionation, fractionated RT regimens (either 3x8Gy or 5x6Gy) with
anti-CTLA-4 treatment controlled growth of both a primary tumour and an
unirradiated secondary tumour in a TS/A model, whereas a single 20 Gy
fraction with anti-CTLA-4 treatment did not achieve an abscopal effect'”.

Targets that modulate anti-tumour immune responses have been
trialled alongside RT-ICI in murine pre-clinical models (Table 1)**'"*""*,
For example, TGF-P blockade enhances T-cell reactivity and extends sur-
vival when added to RT-ICI' . This study also showed upregulation of PD-1
on intratumoral T-cells limited long-term responses to RT but could be
overcome by anti-PD-1 blockade.

OX-40 targeting has helped demonstrate that immune checkpoint
pathways are not only non-redundant but temporally distinct in the context
of RT""*'", Targeting CD137 and CD40 demonstrated that RT can enrich
the TIME with cytotoxic lymphocytes and simultaneous ICI overcomes
resistance that RT alone cannot'"*. CD40 agonism also improves RT-ICI
responses by improving DC activation and enhancing priming of de novo
T-cell responses, which is particularly relevant for immune-cold tumours™.

CD73 is upregulated in response to RT in 4T1 and TS/A mouse
models. Addition of an anti-CD73 antibody to anti-CTLA4 treatment and
RT (1x20Gy) resulted in improved local tumour control, reduced lung
metastasis burden and increased DC migration in a TS/A model'*.
Bromodomain-containing protein 4 (BDR4) is upregulated in tumour cells
and exerts pro-proliferative/immunosuppressive effects. BDR4 inhibition
can enhance the effect of RT (3x8Gy) in the 4T1 model, in part by decreasing
M2 macrophage TIME infiltration'”’. In TS/A and 4T1 mouse models, LTX-
315 (an oncolytic peptide that induces immunogenic cell death) improves
tumour controls by RT (3x8Gy), possibly through NK cell-mediated
immunity'*. Finally, in the 4T1 model, RT has also improved responses to
an irradiated induced stem cell vaccine'”, cancer vaccine against fibroblast
activation protein alpha'”, and neoantigen-based vaccines through
increased immunostimulatory effects'”.

Overall, pre-clinical BC studies demonstrate that RT-ICI can improve
tumour control. Responses may be enhanced with additional agents tar-
geting alternative aspects of anti-tumour immune responses. Importantly,
studies have begun to address questions regarding optimal RT-ICI dose-
fractionations and sequencing which are critical when considering clinical
translatability. However, the success of RT-ICI in BC mouse models,

including induction of abscopal responses, has not yet been reliably
reproduced in clinical trials.

The requirement for immunocompetent HR+

mouse models

Current pre-clinical challenges

The paucity of immunocompetent HR+ BC murine models has been a
fundamental limitation to investigating the impact of RT and immu-
notherapy in HR+ disease', hence most above studies used triple-negative
models. Immunodeficient HR+ BC models are not compatible with
interrogation of anti-tumour immune responses to therapies”'. Breast
tumours in immunocompetent mice induced by carcinogens (e.g. proges-
terone receptor agonists) can possess luminal B features and ICI resistance,
but grow slower than implanted HR+ cell lines which limits their
feasibility'**'**. Transgenic models are also used, such as MMTV-PyMT
where mammary tumours are generated via expression of polyoma virus
middle T oncoprotein by mouse mammary tumour virus LTR'”. In this
model, mammary cells are initially ER/PR+ but often lose their expression
once tumours become established, and can express HER2 at low levels.
Transgenic models are not well recognised by immunosurveillance due to a
low TMB'"*.

Therefore, immunocompetent models with tumours derived from
transplantable TNBC cell lines such as 4T1 are commonly preferred. The
4T1 model is considered poorly immunogenic in comparison to other
tumour types'”. It also possesses high metastatic potential, is poorly dif-
ferentiated, and has relatively poor immune cell infiltration with a pre-
dominance of immunosuppressive TAMs"”®'". It may not optimally
capture the distinct TIME and immune responses in HR+ BC and may
exhibit distinct immune signatures to RT versus HR+ models.

Advances in immunocompetent HR-+ models

There is variation in the defining features of an HR+ mouse model, which
can include some/all of ER/PR expression, demonstration of ER signalling,
and requirement of oestrogen dependence for tumour growth in vivo.
Several immunocompetent HR+ BC murine models have been developed
and used in the RT-ICI setting.

The non-basal ER+TS/A mammary adenocarcinoma cell line, devel-
oped in 1983, has been used in immunocompetent mouse models to
investigate RT + immunotherapy'">'"*’. TS/A tumours have less propensity
for distant metastases than 4T1 tumours, possess low immunogenicity, and
exhibit an immunosuppressive TIME enriched for M2 TAMs'*. Turrell
et al. used a TS/A cell line variant (TSAE1) to form epithelial mammary
tumours in syngeneic immunocompetent BALB/c mice and demonstrated
that increased rates of distant metastases were induced by a PDGEF-C-
dependent aged tumour microenvironment'”.

Improved outcomes with endocrine therapy and RT-ICI in HR+ BC
were recently demonstrated using an orthotopically transplanted TC11 cell
line in an immunocompetent mouse model'*’. TC11 cells were developed
from a prolactin-induced tumour in an NRL-PRL mouse model which
allows spontaneous development of HR+ BCs, commonly driven by Kras
mutations'”. This simulates advanced endocrine therapy-resistant
HR+ BC, which grows independently of oestrogen signalling but exhibits
transcriptomic changes in response to anti-oestrogens.

The E0771 cell line possesses luminal B characteristics including PR
and ER positivity, with less ERa positivity'**. An immunocompetent E0771
C57BL/6] mouse model was used to show that an IL2/IL15 receptor agonist
(NL-201) can enhance RT and anti-PD-1 responses by increasing cGAS/
STING-mediated antigen presentation and T-cell infiltration'*’. Buque et al.
have also developed a luminal B-like model, with mammary tumours
induced by the carcinogens medroxyprogesterone acetate and 7,12-dime-
thylbenz[a]anthracene in C57BL/6 mice'”. This model may better mimic
aspects of human BC including effective immune escape following immu-
nosurveillance and immune-editing. In this model, ablative RT (2x20Gy)
achieved control of 90% of the irradiated tumours, but the improvement in
overall survival (OS) was similar to non-ablative RT regimens due to
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increased secondary tumour development™’. The addition of various
immunotherapies (anti-PD1 + FLT3 ligand, anti-CTLA4, anti-IL-1f) to
fractionated RT (given at 6x8Gy, 3x10Gy and 2x20Gy) did not increase OS
over RT alone, possibly partly explained by the RT dose/fractionations used
and higher degree of intertumoural heterogeneity in this model.

Perez-Lanzon et al. recently developed an ICI-resistant HR+ BC cell
line (B6BC) which establish tumours in syngeneic immunocompetent
C57BL/6 mice'. They tend to exhibit low T-cell and high macrophage
infiltration which recapitulates many typical HR+ TIMEs. Langsten et al.
have genetically engineered the triple-negative 4T1.2 cell line to express ERa
and produce mammary tumours in immunocompetent mice' . They found
ER+4T1.2 tumours display a ‘colder’ TIME than triple-negative 4T1.2
tumours and display less preponderance for bone metastases. Orthotopic
HR+ BC models with immunocompetent 129/SvEv mice and ER+ SSM3/
SSM2 cell lines have also been established "',

Human ER+ cell lines such MCF-7 (luminal A-like) and 59-2-HI
(HR+ epithelial) have been used in NOD-scid mice with xenografts of
human CD34+ haemopoietic stem cells or BALB/C murine bone marrow
to create a functioning immune system'™"*". In this model RT (1x6Gy) +
anti-PD-L1 controlled MCF-7 tumours and TIME changes in response to
treatment could be assessed'”’. Furthermore, Bruss et al. transplanted a HR
+/HER2- patient-derived tumour xenograft within this humanised mouse
model and demonstrated differential expression of immune checkpoints in
immune cell populations'".

Homogenous cell line transplantation is unlikely to recapitulate the
complexity of human TIMEs or heterogeneity of the broad group of HR+
BCs. Cell lines derived from late-stage tumours may not represent early BCs
as they possess more mutations conferring immune evasion'”. HR+
models which require exogenous oestrogens to promote metastases may
confound TIME analyses, given the immune impacts of oestrogen signal-
ling. The radiosensitivity and impact of dose/fractionation on HR+ cell lines
in immunocompetent mouse models also requires further delineation.

Future pre-clinical work should recognise the difference between dis-
tinct HR+ tumour subtypes (e.g. luminal A or B) and build models which
can recapitulate these, or encompass experiments using multiple models.
Rat mammary gland tumours are largely ER+-, which can be more repre-
sentative of human BC ER signalling and its interplay with anti-tumour
immune responses, particularly in immunocompetent models'*’. Immune-
compatible models utilising humanised mice with patient-derived xeno-
grafts may also provide a more representative TIME but have not yet been
used to explore the effects of RT + ICI, which could be explored. BC orga-
noid models can also be useful for examining cancer cell responses to RT"*.
Correlation of pre-clinical results with translational analyses is crucial as
these samples allow the most reliable assessment of TIME changes in
response to therapies.

Clinical data supporting RT-ICI in HR + BC

Combined systemic agents with ICI

The evidence of benefits from chemotherapy-ICI combinations for TNBC
that has led to licensed indications for such combinations has not yet been
followed by similar evidence to support routine use in HR+/HER2- BC. The
modest responses to ICI monotherapy in HR+- disease broadly mirror those
in TNBC. This highlights the requirement for improved identification of
responding sub-populations and additional therapeutic agents to augment
responses. In response to pembrolizumab, expanding T-cells from HR+
BCs expressed more genes associated with higher naivety compared to
expanded T-cells from TNBC'”, suggesting a potential role for RT to attract
and activate functional cytotoxic T-cells within the TIME.

There have been many trials reporting mixed results with ICI for
HR+ BC patients (comprehensively summarised in Supplementary Table
1). Phase 2-3 trial results have reported significant increases in pathological
complete response (pCR) rates with the addition of neo-adjuvant ICI versus
NACT alone®*”"*, Notably, the I-SPY2 trial and subsequent KEYNOTE-
756 trial selected for ‘high-risk’ HR+/HER2- tumours. Maximal pCR rates
were 30%, suggesting a potential role for additional therapies. Interestingly,

in Checkmate 7FL’, higher sTILs were associated with improved pCR rates,
raising the possibility that additional therapies (e.g. RT) to increase sTIL
infiltration may further improve outcomes.

Chemotherapy-ICI responses have generally been weaker in meta-
static HR+ BC. However, three phase 2 trials in metastatic BRCA-
mutated and HRR-deficient tumours yielded response rates of 41-69.2%,
with higher response rates for HR+ BCs versus TNBCs'”""*’. Finally,
combining CDK4/6 inhibitors with ICI has produced encouraging
response rates up to 55% but often alongside high rates of severe adverse
events (notably hepatotoxicity) which has limited progress'*>'". It could
therefore be beneficial to identify a subset of patients that can benefit from
a more local immunostimulatory stimulus alongside ICI, with less asso-
ciated toxicity.

Lessons learnt from TNBC RT-ICl trials

Discordance exists between promising pre-clinical data for RT-ICI and
divergent trial outcomes in multiple tumour types'**'*'®. Efforts to
improve metastatic TNBC outcomes with RT-ICI directed at metastatic
lesions have also proved largely unsuccessful in phase 2 trials, with response
rates between 8-17.6%'**"'*.

Possible reasons for the limited efficacy in these metastatic trials
include choices of RT dose/fractionation, timing of RT in relation to
ICL, and site of RT'”. Upregulated neo-antigen presentation from RT to
a metastatic site may have limited effects on anti-tumour immune
responses to other lesions within a patient. Metastases may also harbour
a more immunosuppressive TIME which may be challenging to over-
come with RT compared to irradiation of a primary lesion'*".

Contrastingly, in the neo-adjuvant setting, the combination of RT-ICI
using 3x8Gy stereotactic body RT (SBRT) and concurrent pembrolizumab
followed by NACT resulted in a response rate of 67.6%". Translational
multiomic studies assessed TIME changes induced by anti-PD-1 and RT
and identified that RT can induce responses in a group who would otherwise
fail to respond to immunotherapy. Similar approaches may identify RT-ICI
responsive HR+ subgroups.

HR+ BC RT-ICl trials

The Neo-CheckRay trial has reported results of a safety run-in adding
concurrent neo-adjuvant SBRT (3x8Gy), durvalumab and oleclumab (an
anti-CD73 antibody) to NACT". Patients have HR+/HER2- luminal B
disease, defined as Ki-67 score 215% or grade 3 disease, plus high-risk
MammaPrint status. Axillary nodes were delineated as avoidance structures
during SBRT planning. 2/6 patients achieved pCR and 2/6 patients had only
scattered residual disease. Following these promising preliminary results, a
randomised phase 2 trial is ongoing'®. Another neo-adjuvant RT-ICI trial,
PEARL/IIT2017-07-HO-PembroRT (1 =66), used two doses of pem-
brolizumab in combination with primary tumour RT (3x8Gy) prior to
neo-adjuvant chemotherapy'”’. This included 12 patients with high-risk
HR-+/HER2- BC, 4 of whom achieved pCR.

Metastatic HR+/HER2- BC RT-ICI trials have been less successful to
date'”". KBCRN-B002, which included 20/28 HR+/HER2- patients, com-
bined RT (1x8Gy) to a bony metastasis with nivolumab'”. The ORR was
7%, with both partial responses in HR+/HER2- patients. Barroso-Sousa
et al. did not observe any clinical responses in 8 HR+/HER2- patients
treated with RT (5x4Gy) to =1 metastatic lesion and concurrent
pembrolizumab'”. Trials including HR+/HER2- patients have demon-
strated feasibility and intracranial control with the ICI and whole brain RT
or stereotactic radiosurgery to BC brain metastases'”*'”. All patients in these
RT-ICI studies had bony or brain metastases irradiated. The TIME of brain
and bony metastases is likely distinct from the TIME of soft tissue/visceral/
nodal metastases and primary tumours, for example more immunosup-
pressed or immune-excluded, so may not represent the optimal target for
RT to trigger immunogenic effects'”*'””. Some of the disconnect between
robust pre-clinical data and these trials may also reflect the over-
representation of triple-negative mouse models which may not be repre-
sentative of the HR+TIME.
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There are twelve registered HR+-/HER2- BC RT-ICI trials ongoing in
the early and metastatic settings (Table 2). These trials build upon the pre-
clinical data discussed above, including targeting additional immunomo-
dulatory receptors such as CD73, FLT3 and CD40 that have shown promise
in BC mouse models.

Three neo-adjuvant trials are evaluating the combination of pem-
brolizumab with RT (P-RAD, CBCV and BreastVax). In contrast to
CBCYV and BreastVax, P-RAD selects ‘high-risk’ HR+/HER2- patients
and will deliver NACT + pembrolizumab following RT-ICI. Impacts of
dose/fractionation and timing of RT in relation to ICI may start to be
addressed given the variation in schedules between these trials. The
BreastVax co-primary endpoint defines ‘major’ pathological response as
tumours with <10% viable tumour remaining, while CBCV employs the
residual cancer burden (RCB) calculator which has been developed and
validated in multiple studies of neo-adjuvant chemotherapy for BC'".
Given the lower pCR rates in HR+ disease, these may prove preferable
endpoints to identify patients deriving clinical benefit from RT-ICI in
HR+ disease, as they capture patients with good responses without pCR.
The selection of nodal pCR as a co-primary endpoint in P-RAD rein-
forces an expectation that RT and ICI will improve systemic anti-tumour
immune responses. Finally, all three trials include secondary transla-
tional endpoints such as longitudinal immune cell subpopulation
mapping, which is important for evaluating disease biology and guiding
future HR+/HER2- BC RT-ICI trial design.

Considerations for future neo-adjuvant HR+ RT-ICI trials
Neo-adjuvant RT is an attractive proposition in HR+ BC. Fractionated RT
is safe prior to definitive surgery'*"”’ and neo-adjuvant RT-ICI appears
feasible'. Neo-adjuvant RT may improve local recurrence rates for HR+
tumours versus adjuvant RT'”. Delivery of RT with tumour in situ can
potentially prime new T-cell responses and/or increase the ability of pre-
existing T-cells to eliminate the cancer cells that survive RT.

In contrast, adjuvant RT is thought to work by eliminating residual
microscopic disease, but there is no evidence that it can enhance ICI
effectiveness. Indeed, adjuvant RT in BC may not effectively stimulate the
TIME in immune-infiltrated tumours'®'. Upcoming randomised trials of
neo-adjuvant vs adjuvant RT will include patients that have received neo-
adjuvant chemo-immunotherapy and would be well placed to provide
translational insights (e.g. PRADA-II; NIHR163836, in set-up).

A potential downside to neo-adjuvant RT (versus adjuvant RT) is that
full pathological information is not available to clinicians for patient risk
stratification and selection of RT dose/fractionation and volumes. Adjuvant
tumour bed boost RT is widely used to increase local tumour control in
high-risk patients. Therefore, an appealing strategy (utilised by Neo-
CheckRay) transfers this to the neo-adjuvant setting with ICI in the form of a
‘primary tumour boost’, followed by adjuvant whole breast/chest wall +/—
regional nodal RT based on response. Fractionated regimes may be pre-
ferable in HR+ disease due to the impact of oestrogen signalling on pro-
motion of cell cycle progression.

Neo-adjuvant RT is associated with low toxicity, and based on
experience from current trials is unlikely to cause significant delays to
surgical intervention", although theoretically possible in isolated cases. RT-
ICI could be delivered concurrently with NACT or trialled in an early-phase
‘window of opportunity” trial for high-risk HR+/HER2- patients that
respond less well to NACT. Patient selection could incorporate emerging
predictive biomarkers. This type of neo-adjuvant RT-ICI trial design could
be used to test emerging novel immunotherapies and is well placed to deliver
translationally rich outputs as biopsy sites are easily accessible for long-
itudinal sampling,

HR+ BC mouse data suggests fulvestrant may improve RT-ICI
responses and improve TIME CD8:T-regulatory cell ratios'*. This data,
combined with the overall immunosuppressive effects of oestrogen signal-
ling discussed above, raises the possibility that combining hormonal
therapies with RT-ICI may improve the immunogenicity of RT and
response rates. This concept merits further consideration and is undergoing

testing in the CBCV trial, in which HR+ BC patients receive letrozole and
neo-adjuvant RT with/without addition of FLT3 ligand and/or anti-PD-1.

Much of the existing RT evidence base in BC has been derived from
trials conducted before the use of immunotherapy for non-metastatic dis-
ease. The optimal axillary management strategy, particularly following neo-
adjuvant treatment, is a topic of debate with support for both treatment
escalation (e.g. inclusion of the internal mammary chain) and de-escalation
(e.g. omission of regional nodal RT) in certain settings. Elective regional
nodal RT may be detrimental to RT-ICI responses and delaying nodal RT
improves RT-ICI responses in melanoma/colorectal mouse models'**'®.
Furthermore, inclusion of regional nodes in RT fields influences the com-
position of the primary TIME including reduced CD8 T-cell levels versus
tumour-only RT'*. In the context of ICI, BC is a strong candidate to explore
the influence of nodal RT on treatment response, given the feasibility of
separating targeted neo-adjuvant RT to the primary tumour from broader
adjuvant RT fields (including nodal areas if required) for eradication of
microscopic disease.

Finally, consideration regarding optimal definitions of clinical benefit
is required in the neo-adjuvant HR+ RT-ICI setting. A key benefit for
ICI + RT may be improved systemic disease control, but will require longer
follow-up periods to prove within trials (e.g. for disease-free survival). This is
particularly relevant as (a) HR+/HER2- BC is more associated with late
relapses, and (b) the correlation of pCR with long-term survival is less strong
for HR+/HER2- BC, so may be less reliable as a short-term surrogate
outcome in this setting'®”. Circulating biomarkers such as cell-free circu-
lating DNA, extracellular vesicles, non-canonical circulating tumour cells,
cell-free RNAs, and specific immune cell subsets may emerge as candidates

to predict likelihood of recurrence or response to therapy'®.

Conclusions

Whilst most HR+ tumours do not respond to ICI (with or without
adjunctive therapies such as RT), there is clearly a subgroup of HR+
tumours that do derive significant benefit from ICI. Pre-clinical/clinical data
refute the traditional view of HR+ tumours always exhibiting a non-
immunogenic ‘cold’ TIME and demonstrate there is scope for RT-induced
TIME modulation for immunotherapy sensitisation. Summarising the
above data, the following key points emerge as considerations for current
and future HR+ BC RT-ICI trials:

1. The rationale for neo-adjuvant RT-ICI has more evidence versus
metastatic or adjuvant RT-ICI, so could be considered as a preferred
treatment context for further investigation.

2. Afocus on identification of subgroups within higher-risk HR+/HER2-
tumours may yield improved outcomes.

3. Patient selection by BC biological subtype appears crucial. Studies
should investigate emerging HR+/HER2- specific predictive bio-
markers for ICI+RT beyond sTILs and account for quantitative
receptor analysis.

4. Neo-adjuvant RT can comprise a targeted tumour-only volume with
the aim of eliciting an immunostimulatory response. Adjuvant whole
breast/chest wall +nodal volumes can be delivered to tissue outside this
resected target.

5. Given the immunosuppressive effects of oestrogen signalling on several
immune/stromal cell subpopulations, further trials of anti-oestrogens
in combination with RT-ICI should be considered, especially for higher
stage tumours that are strongly ER+.

6. Alternative endpoints to dichotomised pCR versus non-pCR analyses,
such as ordinal or continuous scores like RCB, or emerging liquid
biopsy-based biomarkers, may be preferable for identifying patient
subgroups benefiting from neo-adjuvant RT-ICL

7. Empirical approaches to the investigation of RT-ICI may fail to detect
effective regimens in biologically defined subgroups. Patient selection
and clinical trial design should continue to be underpinned by
emerging pre-clinical data. In the HR+ BC setting, this should make
use of the increasing availability of immunocompetent HR+ BC
animal models and BC organoid models.
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Higher-risk HR+ tumours broadly appear to derive more benefit from
ICI combinations. These tumours tend to possess luminal B phenotype,
with higher grade, higher Ki67 score or less dependence on oestrogen sig-
nalling. Earlier use of ICI combinations in a patients’ disease course appears
preferable, with improved responses largely seen in neo-adjuvant trials. A
shift towards testing ICI combinations in the neo-adjuvant setting perhaps
reflects lessons learnt from metastatic BC trial results. Some of the best
responses to date with ICI combinations for HR+ disease have resulted
from integration of improved selection of high-risk HR+- tumours and early
neo-adjuvant intervention in dedicated HR+/HER2- BC-specific trials.

However, improved understanding of the impact of RT on the TIME
and anti-tumour immune responses is required to further refine patient
selection and harness maximal outcomes with RT-ICI in HR+ BC.
Advances in immunocompetent HR+ BC mouse model development are a
significant step towards this. RT and oestrogen signalling both produce
divergent immunomodulatory effects, so deeper understanding of the
interplay between these may produce novel therapeutic targets to combine
with RT. If novel endocrine therapies that inhibit the immunosuppressive
effects of oestrogen signalling on immune cells whilst maintaining its
influence on cell cycle progression were developed, this could be beneficial in
combination with RT-ICI for HR+BC. Given the prevalence of
HR+/HER2- BC, establishing RT-ICI in the neo-adjuvant HR+-/HER2-
setting would be clinically significant, even if only for a selected sub-
population within this diverse group.

Data availability

No datasets were generated or analysed during the current study.

Abbreviations
BC breast cancer

CAF cancer-associated fibroblast

DC dendritic cell

Gy Gray

HR+ hormone-receptor positive
HRR homologous recombination repair
IFN interferon

ICI immune checkpoint inhibition
MDSC myeloid-derived suppressor cell
NACT neo-adjuvant chemotherapy
NHEJ non-homologous end-joining
pCR pathological complete response
RCB residual cancer burden

RT radiotherapy

RT-ICI radio-immunotherapy

SBRT stereotactic body radiotherapy

sTILs stromal tumour-infiltrating lymphocytes
TAM tumour-associated macrophage

TIME tumour immune microenvironment
TMB tumour mutational burden

TNBC triple-negative breast cancer

Treg T regulatory cell
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