
ARTICLE OPEN

Efficient search of compositional space for hybrid
organic–inorganic perovskites via Bayesian optimization
Henry C. Herbol 1, Weici Hu2, Peter Frazier2, Paulette Clancy3 and Matthias Poloczek4

Accelerated searches, made possible by machine learning techniques, are of growing interest in materials discovery. A suitable case
involves the solution processing of components that ultimately form thin films of solar cell materials known as hybrid
organic–inorganic perovskites (HOIPs). The number of molecular species that combine in solution to form these films constitutes an
overwhelmingly large “compositional” space (at times, exceeding 500,000 possible combinations). Selecting a HOIP with desirable
characteristics involves choosing different cations, halides, and solvent blends from a diverse palette of options. An unguided
search by experimental investigations or molecular simulations is prohibitively expensive. In this work, we propose a Bayesian
optimization method that uses an application-specific kernel to overcome challenges where data is scarce, and in which the search
space is given by binary variables indicating whether a constituent is present or not. We demonstrate that the proposed approach
identifies HOIPs with the targeted maximum intermolecular binding energy between HOIP salt and solvent at considerably lower
cost than previous state-of-the-art Bayesian optimization methodology and at a fraction of the time (less than 10%) needed to
complete an exhaustive search. We find an optimal composition within 15 ± 10 iterations in a HOIP compositional space containing
72 combinations, and within 31 ± 9 iterations when considering mixed halides (240 combinations). Exhaustive quantum mechanical
simulations of all possible combinations were used to validate the optimal prediction from a Bayesian optimization approach. This
paper demonstrates the potential of the Bayesian optimization methodology reported here for new materials discovery.
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INTRODUCTION
Hybrid organic–inorganic perovskites (HOIPs) are an exciting class
of emergent materials that exhibit extremely promising photo-
voltaic (PV) properties.1 Among solution processable solar cell
materials, HOIPs are—by far—the most efficient PV devices, with
over 22% photovoltaic conversion efficiencies (PCEs).2 This
combination of high efficiency and ease of fabrication promises
a more readily scalable approach to solar cell manufacturing.3,4

HOIPs form a sub-set of a larger class of perovskite materials, all of
which exhibit an ABX3 configuration. In HOIPs, the B-sites are
occupied by metal cations (invariably, Pb, but sometimes Sn, or a
mixture of both). A-site cations can be organic or inorganic in
nature, and are typically methylammonium (MA), formamidinium
(FA), or cesium (Cs). X denotes a choice of halide (Cl, Br, and/or I).
These perovskites are usually processed in a solvent blend (S0:
S1).

1,4,5 In this paper, we will focus on the following commonly
used HOIP solvents: Tetrahydrothiophene 1-oxide (THTO),
dimethyl sulfoxide (DMSO), dimethylformamide (DMF), N-methyl-
2-pyrrolidone (NMP), γ-butyrolactone (GBL), acetone, methacro-
lein, and nitromethane.
An exceedingly large combinatorial space thus exists from

which HOIP salts can be fabricated. In principle, any combination
of these species are possible, such as mixing 5% CsI with the
binary HOIP blend of (FAPbI3)0.83 and (MAPbBr3)0.17.

4,6–8 In
addition, the choice of solvent is critical for producing high-
quality films; hence, a wide variety of solvents, both pure and

blended, have been studied (e.g., DMSO, DMF, GBL, NMP).9–12

Despite intense experimental scrutiny of many combinations of
these species and different solvent processing protocols, there is
no way to know whether a currently untested, but higher
performing, material might exist, one comprised of an alternative
combination of A-site cation, B-site cation, halide, and solvent
blend.
We illustrate this combinatorial growth of the search space:

Suppose we choose our HOIP candidate from among three A-site
cations (MA, FA, Cs), one B-site cation (Pb), three X-site halides, all
of which are constrained by 10% increments (e.g., MA0.9Cs0.1 is
allowed, but not MA0.99Cs0.01), and allowing binary blends of
solvents (from a reduced list of only eight solvent choices) of 1

3 as
the smallest ratio increments (allowing for 1:1:1 as the largest
mixture). In that case, we would be faced with considering 522,720
possible combinations of species from which to form our ideal
HOIP material.
We are interested in understanding molecular-scale interactions

in solution. Unfortunately, no sufficiently accurate parameterized
force field currently exists to model HOIP systems, essentially
removing molecular dynamics (MD) as a viable information source
for this high-fidelity investigation.13,14 As a result, we will restrict
ourselves to using accurate ab initio density functional theory
(DFT) to capture this information.15,16

To probe the solution processing of species that ultimately form
thin films of perovskites, understanding the solubility of HOIP
reagents in a so-called “bath” solvent is an important first step.
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Ideally, optimizing the enthalpy of solvation would be used as the
metric by which to evaluate the ideal set of species that leads to
the greatest solubility. However, an accurate estimate of the
enthalpy of solvation requires the consideration of a full solvation
shell around the lead salt, which can take weeks (or months) to
compute using DFT. An appealing alternative is to use the
Unsaturated Mayer bond order (UMBO), laid out by Stevenson
et al.,17 as a measure of effective solubility. In contrast to enthalpy
of solvation calculations, the UMBO typically takes only hours to
compute, with the calculation time depending on the composition
of the mixture and the level of theory used for the DFT. However,
the UMBO is a descriptor that was solely designed for pure
solvents, not solvent blends. As such, a good starting objective for
validation purposes would be the limiting case of the enthalpy of
solvation: the intermolecular binding energy between a perovskite
salt (ABX3) and a pure solvent (S0).

RESULTS
In the first test case, we searched the perovskite compositional
space for an ABX3 combination with optimal intermolecular
binding energy to a solvent molecule, S0. Note that only
compositions with “pure” halides are considered, that is, all three
halides are the same element. Each system contains a single
halide, cation, central ion, and a pure solvent molecule. Hence,
there exists a total number of 72 combinations. Using our
approach, the Physical Analytics pipeLine (PAL), the intermolecular
binding energy of a pure halide ABX3− S0 was optimized, as
shown in Fig. 1. The “optimal” mixture was found to be MAPbI3 in
THTO.
In the second test case, a full-scale Bayesian optimization was

run while also considering mixed halide systems (e.g., a Br/Cl/I
mix). This involves a total of 240 possible combinations. An
exhaustive search of all options was made using DFT calculations
to provide a target (optimal) binding energy for validation
purposes, as in test case 1. Starting with a randomly sampled
combination, we iteratively update our hyperparameters until 10
total samples have been made. We then optimize hyperpara-
meters every subsequent 10 iterations until we found the HOIP

composition that minimized the ABX3− S0 intermolecular binding
energy (maximizing its magnitude). As seen in Figs. 2 and 3, the
Bayesian optimization method identified a HOIP-solvent combina-
tion that produced a maximal target value within 50 iterations,
with a mean of 31 and a standard deviation of 9 (averaged over
1000 replications). We also compare the results of our new
method against a state-of-the-art optimization approach, pySMAC,
as well as two Bayesian optimization methods that use Gaussian
process (GP)-based models for the objective and differ in their
handling of categorical variables (see below for details). Moreover,
we compare to a random search:18

● pySMAC19,20 is a highly optimized Bayesian optimization
technique originally developed for the automated configura-
tion of mathematical optimization algorithms. Its statistical
model, based on random forests,21,22 is able to handle

Fig. 1 Predictions of the binding energy between ABX3 and three
solvent molecules during a single run of PAL to find the lowest
energy for a given ABX3 composition (A∈ {MA, FA, Cs} and X∈ {Cl, Br,
I}). The blue line depicts the binding energy of the composition
recommended by PAL after iteration t= 1, …, 50 to the solvent. The
red line gives the optimal binding energy of all 72 combinations,
found by DFT calculations, thus identifying the optimal ABX3− S0
mixture. PAL finds the optimal combination after about 12 iterations
(16% of the 72 possible options). This particular demonstration was
performed for five solvents. The molecule shown is an example of
one such combination

Fig. 2 Test case 2: Bayesian optimization of the ABX3 HOIP-solvent
intermolecular binding energy (A∈ {MA, FA, Cs} and X∈ {Cl, Br, I}). In
this instance, we considered mixed halides. All 240 possible
combinations of the binding energy were simulated using DFT
calculations in order to find the most negative (and most favorable)
binding energy, which is shown as a horizontal red line. Here, the
optimal value for the binding energy was achieved in under 20
iterations (this may vary depending on initial sampled points)

Fig. 3 Performance evaluation of PAL, Simple BO, Hutter BO,
pySMAC, and random searches for the minimization of the
intermolecular ABX3-solvent binding energy (maximizing its
strength).44 PAL obtains a global optimum binding energy at
considerably lower cost than the other methods. A shaded region of
±2 standard errors (SE) is shown for each method
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categorical variables, making it eligible to optimize over
combinatorial spaces. pySMAC also employs the expected
improvement acquisition criterion.

● Simple BO follows a standard approach in Bayesian optimiza-
tion and uses a standard GP model combined with the
expected improvement acquisition function. Note that the
latter is also employed by PAL. Simple BO incorporates
categorical variables via “one-hot” encoding commonly used
in Bayesian optimization, for example, in Google’s vizier.23

● Hutter BO uses a tailored kernel for categorical variables that
was proposed by Hutter in his Ph.D. thesis24 and follows
Simple BO otherwise.

● Random search18 picks an as-yet unevaluated combination
uniformly at random in each iteration.

The optimization process was replicated for multiple randomly
chosen initial data sets. PAL, Simple BO, Hutter BO, and pySMAC
were run for a thousand replications each, and Random for one
million replications. The results of these evaluations are depicted
in Fig. 3 and Table 1. The x-axis of Fig. 3 shows the number of
observed points of each algorithm and the y-axis the binding
energy of the best composition found after t iteration. We plot the
highest found mean binding energy ±2 standard errors.
We observed that pySMAC initially obtains better combinations

than any other method; however, PAL consistently obtains the
global optimum first. That is, PAL involves the lowest number of
DFT computations to find the best perovskite composition.
Further, we can see the benefit of our statistical model when
comparing PAL to Simple BO, in which PAL achieves global
optimization in a under half the number of iterations than that of
Simple BO (when comparing 99.9th percentile). Hutter BO
performs worse than Simple BO. This is somewhat unexpected
as Hutter BO uses a tailored covariance function designed for
combinations of real-valued and categorical variables, whereas
Simple BO uses an ad hoc encoding. Note that while both GP-
based optimization methods perform worse than pySMAC initially,
they require less steps to find an optimum on average (see Table 1
for details). All methods beat Random search eventually.

DISCUSSION
We have proposed a new Bayesian optimization approach that
overcomes challenges unique to materials discovery. While
Bayesian optimization is commonly used for problems in machine
learning and engineering with continuous rectangular search
spaces, the specific perovskite design problem that we consider, in
common with many chemical design problems, has search spaces
with binary variables, indicating the presence or absence of a

constituent species. Another critical challenge in this system is
that the data are particularly scarce since the evaluation of a single
design is often expensive, whether determined computationally or
experimentally.
For challenging situations like these, we have demonstrated the

promise of a Bayesian optimization approach that maximizes (or
minimizes) an objective function, in this case, maximizing the
intermolecular binding energy, to explore the combinatorial space
of HOIP lead ion solvation. Our two test cases have demonstrated
an improvement of close to 90% compared to that of an
exhaustive search of 240 possible combinations of mixed-halide
HOIP space. The same optimal compositions were found with
both the Bayesian optimization prediction and the ab initio
calculations. In addition, some of the top performers predicted by
the Bayesian optimization approach have been found experimen-
tally to be promising HOIP materials. Other, more unexpected,
candidates promise potentially high-performing ABX3− S0 mix-
tures that we suggest should be tested using experimental studies
to validate these Bayesian optimization/DFT predictions. The
improvement to Bayesian optimization using our Linear Belief
model, laid out in the section “Linear Belief model”, suggests that
atomic components contribute additively toward functions of
cohesive energy. This can be seen by the considerable improve-
ment of PAL over alternative benchmarked methods (pySMAC,
Simple BO, Hutter BO, and Random). While we demonstrate our
work in the context of HOIPs, the proposed methodology
represents an advance that is broadly applicable for other
materials design problems and constitutes a powerful new tool
for the optimization of the design of chemical systems.
Applying Bayesian maximization of the intermolecular binding

energy allowed us to predict the optimal HOIP–Solvent mixture (in
a pure halide system), which was found to be MAPbI3 in THTO.
This prediction corresponds well with the prevalence of experi-
mental studies of MAPbI3 in the literature, in which it has been
considered one of the best-performing compositions.3,25,26 In
addition, experiments by Choi et al. have shown the particular
efficacy of the THTO additive to dissolve Pb, corroborating these
BO-guided/DFT-driven predictions.27

The caliber of the prediction for the mixed halides case is more
difficult to evaluate since the experimental community has not yet
decided on an optimal composition, probably because the
number of options is overwhelming. Our Bayesian optimization
studies predicted the maximized intermolecular binding energy to
occur between FAPbI2Cl and THTO. This specific mixture of halides
in conjunction with FA is unlike those normally studied
experimentally. This, in itself, is an interesting result since the
Bayesian optimization has clearly found a “disruptive” prediction.
Once more, we find that THTO is a superior additive for dissolving
ABX3.

26,27

It is important to note that the Bayesian search produces a
ranked list in which a number of candidates may produce close-
to-optimal suggestions that meet the target value within the
uncertainty of the methodology. That is true in this case, where
four compositions are the highest performers with binding
energies within 0.84 kJ/mol (0.2 kcal/mol) of each other, making
them essentially inseparable. These candidates are FAPbI2Cl,
MAPbI3 (an experimentally known high performer), and CsPbI3
in THTO, and finally CsPbICl2 in DMSO. All these candidates are
predicted to be excellent choices, and notice that two of the four
favor a single (rather than a mixed) halide. The ranked list serves a
second, practical purpose, it predicts combinations not worth
testing in the laboratory if complexation is the metric for success.
The choice of the objective function is crucial when employing

Bayesian optimization and is a user-supplied aspect of our
method. If, for example, we had chosen to optimize the
photovoltaic conversion efficiencies (PCE), then the solvent would
not be a factor, as the crystal exhibiting the PCE is solvent-free;
this assumes that a single crystal is formed during the solution

Table 1. Comparison of PAL to the state-of-the-art

Method Mean STD 99.9th percentile

PAL 30.8 8.6 45

Simple BO 47.7 19.6 96

Hutter BO 51.6 21.9 104

pySMAC 61.6 34.7 160

Random 119.3 69.3 239

Comparison of the performance of PAL is done against state-of-the-art
optimization approaches, pySMAC, Simple BO, Hutter BO, as well as a
random search of ABX3 compositions. The first column shows the average
number of iterations required to find a composition with optimal mixed-
halide ABX3− S0 intermolecular binding energy. The standard deviation of
this number is stated in column 2, while the third column gives the 99.9th
percentile. PAL requires considerably fewer DFT calculations to find an
optimal solution, on average, and shows a robust performance with its
significantly lower 99.9th percentile
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processing, in which the presence of solvent is important. If the
objective were to find the most readily crystallized HOIP–Solvent
combination, we would need to take more than the intermole-
cular binding energy into account.
Our model can readily be extended to take into account mixed

ions and mixed halides/cations (e.g., 92% MA and 8% Cs) and
beyond a 1:1:1 ratio of halide mixing. Our future work will
investigate mixed solvents, for which mixing rules will need to be
defined in order to provide appropriate solvent descriptors of
density and permittivity, or an alternative descriptor.

METHODS
In this section, we outline the design of PAL, which incorporates any test cases
we may ultimately want to study, the Bayesian optimization approach, and
finally the way that the PAL code implements this Bayesian approach.

Test cases
DFT calculations are sufficiently computationally intensive that an
exhaustive computational search will generally be intractable, unless the
compositional space is constrained sufficiently to make a validation study
possible. We conducted two such tractably constrained, proof-of-concept
studies that highlight the efficacy of using a Bayesian optimization
approach to accelerate the search for an optimal HOIP composition.

Pure halides. Our first proof-of-concept was small enough in scope to
allow us to validate the Bayesian optimization prediction of the optimal
HOIP composition by comparison to an exhaustive search using DFT. This
test case sought the optimal pure halide perovskite that maximizes the
lead ion's solubility. In our model, a perovskite “composition” consists of
four major components: a halide anion, an A-site cation, one pure solvent,
and a lead cation (B-site) that serves as the central ion of the cluster. The
halide anions are selected among I, Br, or Cl. The A-site cation can be MA,
FA, or Cs. For the solvent, we considered only one of eight common pure
solvent choices: THTO, DMSO, DMF, NMP, GBL, acetone, methacrolein, and
nitromethane. The solubility was approximated as the intermolecular
binding energy between ABX3 and N solvent molecules (for benchmarking
purposes, 3 was chosen), which we can reasonably assume to be positively
correlated with the enthalpy of solvation (Hsolv).
A given perovskite composition can be described by an eight-

dimensional vector x 2 X, where X ¼ f0; 1g6 ´R ´R. x1:6 are binary
values that together indicate the presence of a particular halide in the
solution. We require that

P3
i¼1 xi ¼ 1, and the non-zero xi indicates that

the corresponding halide is present. For example, (0, 1, 0) indicates a
perovskite salt of ABBr3. x4:6 are also binary values that together indicate
the presence of a particular cation. Similarly, we require

P6
i¼4 xi ¼ 1, in

which the non-zero xi indicates that the corresponding cation is present. x7
and x8 are real-valued solvent descriptors with x7 being the relative
dielectric (εr) and x8 the density (ρ). Since the lead ion is present in every
composition, it is omitted here in the description of x. Note that different
central ions (e.g., Sn instead of Pb) could be added to the description in a
similar fashion. We remark that we neglect x8 when we compare PAL to
the other baseline methods, which results in a slightly worse performance
of PAL. That is, the PAL described in this section performs even somewhat
better than in the performance plot. This is done to allow for a fair
comparison between PAL and pySMAC, as pySMAC does not support
discrete variable that take value in a finite set of pairs of reals.

Mixed halides. For the more challenging mixed halide case study, we
extended the perovskite composition vector x to be x 2 Y, where
Y ¼ f0; 1g12 ´R ´R. x1:9 are binary values that together indicate the
presence of a particular halide in the solution. We require that

P3
i¼1 xi =P6

i¼4 xi =
P9

i¼7 xi = 1, and the non-zero xi indicates that the correspond-
ing halide is present in the solution. For example, (0, 1, 0, 0, 1, 0, 1, 0, 0)
indicates a perovskite salt of ABBr2I. x10:12 are also binary values that
together indicate the presence of a particular cation. Similarly, we requireP12

i¼10 xi ¼ 1 and the non-zero xi indicates that the corresponding cation is
present in the solution. x13 and x14 are real-valued solvent descriptors with
x13 being the relative dielectric (εr) and x14 the density (ρ). Since the lead
ion is present in every composition, it is again omitted from x. Once again,
we neglect x14 when benchmarking PAL with the state-of-the-art methods
.

Bayesian optimization
Bayesian optimization has emerged as a powerful technique to find an
optimizer of expensive-to-evaluate functions.28,29 It consists of two
components: a surrogate model for the objective function and an
acquisition function for selecting the next sample point. The Bayesian
optimization algorithm proceeds as follows:

1. Using an inital data set, estimate the hyperparameters of the prior
for the components of the Linear Belief model. When benchmarking,
start with only a single point.

2. Compute the posterior probability distribution, given the prior and
the initial data.

3. Until the budget for samples is exhausted, do in iteration t:

(a) Select the next combination x(t) to sample via the acquisition
function.

(b) Evaluate the objective value of x(t).
(c) Update the posterior with the new observation.
(d) On a regular schedule, estimate the hyperparameters again,

using all gathered observations.

4. Return the best found combination.

The decision to recommend the combination with the best objective
value among the sampled candidates is conservative from a decision-
theoretic perspective and natural for noise-free observations.
In what follows, we propose a statistical model tailored for perovskite

compositions. For the acquisition function, we selected the expected
improvement approach that is known to perform well when objective
values can be observed without noise, as here.30,31

Linear Belief model. We assume that the four components (Pb, A-site
cation, halide, and solvent) contribute to the binding energy of a
perovskite-solvent mixture in an additive manner. The actual effect of
each component is unknown and will be inferred from observations (i.e.,
from DFT calculations of the binding energy). This is akin to the
generalized Free-Wilson approach that was successfully used to predict
biological activity; however, we further expand on this approach by also
drawing from a Gaussian Process (GP).32

We apply Bayesian linear regression and suppose that the binding
energy of the composition corresponding to x is given by V(x), as outlined
in Eq. (1):

VðxÞ ¼
Xn
i¼1

αixi þ βðxÞ þ ζ þ f xε; xρ
� �

: (1)

Here n indicates the number of binary descriptors for the ABX3 salt: 6 in
pure halides and 12 in mixed halides. αi is the contribution to the binding
energy of xi made by the presence of halides and cations, and is assumed
to be the same for all halides and cations. β(x) captures the deviation of V
(x) from the linear model. ζ represents the contribution of the common
lead cluster. f(xε, xρ) captures the contribution of the solvent S0 to the
binding energy (in pure halides xε= x7 and xρ= x8, in mixed halides xε=
x13 and xρ= x14). The contribution of the solvent as a function of the
dielectric and the density is represented by xε and xρ, respectively.

Prior distribution. In accordance with the Bayesian paradigm, we place a
prior distribution on the components of the regression model. We suppose
that each αi � N μα; σ

2
α

� �
, i.e., the coefficients are independent and

identically distributed, conditioned on μα and σ2α . Moreover, we suppose

that the non-linear correction for every x has prior βðxÞ � N 0; σ2β
� �

and

that ζ � N μζ ; σ
2
ζ

� �
.

We employ GP regression to capture the contribution of the solvent
blend. We suppose that f(·) is drawn from a GP with prior mean function
μ0(·) and covariance Σ0(·, ·). Since ζ captures the invariant contribution from
the central ion, it is reasonable for us to assume μ0(·)= 0. Finally, we
assume different solvents will behave similarly if their descriptors are
similar. This is formalized in the use of the 5/2 Matérn Kernel. Let Si= (xε,i,

xρ,i) and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd

i¼1 li S1;i � S2;i
� �2q

denote the “similarity” between solvents
S1 and S2, with dimensions weighted by li. Note that in our model d= 2.
The covariance of two solvent blends S1 and S2 is then given as:

Σ0 S1; S2ð Þ ¼ σ2m 1þ
ffiffiffi
5

p
r þ 1

3
5r2

� �
e�

ffiffi
5

p
r : (2)
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Thus, the proposed generative model has the hyperparameters:

Θ ¼ μα; σα; σβ; μζ ; σζ ; σm; l0; l1; :::; ld
	 


: (3)

Our prior distribution on V1, V2, …, Vn is multivariate normal with mean μ0

and covariance function Σ0:

V1
V2

..

.

VN

0
BBBB@

1
CCCCA � N μ0; Σ0

� �
: (4)

Note that μ0 at x equals:

μ0x ¼ E
Pn
1
μαxi þ μζ þ μ0ð�Þ

� �

¼ n
3 μα þ μζ þ 0;

and the covariance Σ0x;x0 of x and x′ under the prior is given by:

Σ0x;x0 ¼ Cov Vx ; Vx0ð Þ

¼ Pn
i¼1

σ2α � 1 xi ¼ x0i ¼ 1
� �

þσ2β � 1 x ¼ x0ð Þ þ σ2ζ

þΣ0 xε; xρ
� �

; x0ε; x
0
ρ

� �� �
¼ σ2α x1:nj i x01:n


 ��þ σ2βIm þ σ2ζ Jm
þΣ0 Sx ; Sx0ð Þ

; (5)

where Im is the m ×m identity matrix, and Jm is the m ×m matrix of ones.
Here we introduce the bra-ket notation for a column vector, |x〉, or a row
vector, 〈x|. As such, 〈x|x〉 would be a scalar, and |x〉 〈x| an m ×m matrix,
wherem is the length of the |x〉 vector. Finally, subscripts are inclusive; that
is, 〈x1:3|= (x1, x2, x3).

Hyperparameter fitting and posterior. The hyperparameters of our model,
as summarized in Eq. (3), are estimated from data. For the experimental
evaluation, we used a maximum likelihood estimate, using an initial
dataset sampled according to a Latin Hypercube design and subsequently
optimized via an L-BFGS-B approach. The optimized sampled hyperpara-
meters that behave the best are then chosen. We suppose that the
objective value of any x can be observed without noise. Then the posterior
distribution of f(·), the contribution of the solvent blend, is multivariate
normal and so is the posterior distribution of the coefficients of the
regression model.33

Validation of the model. We validate the Linear Belief model described
above by the leave-one-out cross-validation (LOO-CV) method (see Fig. 4).
Moreover, leave-p-out cross-validation (LpO-CV) was also performed in

which p= 100 data points are removed from the training set for validation
purposes (see Fig. 4). These validations demonstrate that the proposed
regression model well represents the intermolecular binding energies from
DFT.

The PAL
The PAL, illustrated in Fig. 5, is a Python-based framework that we have
designed for the task of maximizing a chosen computational objective as a
function of a material’s composition. Bayesian optimization lends itself to
consideration of expensive objective functions and, as such, provides
several possibilities for DFT calculations.28,29

Thus, PAL combines the functionality of Bayesian optimization, using
the generative model proposed in the section “Bayesian optimization”,
with a refined method to calculate the enthalpy of solvation or other
metric of success. In order to ensure the robustness of PAL, the code was
written to accommodate calculations of other options, including (1)
solvation, (2) intermolecular attractions, (3) steric hinderance, and (4)
molecular properties. As such, the following choices are considered for the
objective function:

1. The Unsaturated Mayer Bond Order (UMBO) within a solvent
molecule (from the most polar atom to its nearest intra-molecular
neighboring atom).

2. The intermolecular binding energies.
3. The volume and eccentricity of a solvent or solute, defined by a

Minimum Volume-Enclosing Ellipse (MVEE).34

4. The dipole moment of a solvent.

Unsaturated Mayer bond order. In order to capture the UMBO between
solvent and solute, where the solute is some HOIP species ABX3 (with A
being a cation, B being either Pb or Sn, and X a halide), we must first isolate
a stable geometric configuration of these molecules. This is accomplished
by equilibrating a large box of solvents using MD, of which a smaller sub-
system is further equilibrated (within MD), and finally the specific motif
(within the sub-system) is geometry-optimized in DFT. The initial two MD
steps are performed in order to automate the generation of an adequate
starting configuration for the subsequent DFT optimization. To make the
large solvent box, we used the packmol software to pack together a
single lead salt solute in a 25 × 25 × 25 Å3 box of solvent.35 From this
starting point, the MD calculations were done in LAMMPS, a popular MD
software, with the OPLS-AA Force Field.36,37 Since we plan to perform an
accurate DFT geometry optimization of a proposed configuration, we allow
for the following assumptions within our MD simulations:

1. We can run an equilibration using the microcanonical, NVE,
ensemble with a limited step size as a way to circumvent the risk
of an unexpectedly poor starting state.

2. We need only run the NVE and isobaric-isothermal, NPT,

Fig. 4 Cross-validation using a LOO-CV method (left) and a LpO-CV method (right). The black line shows the values obtained from DFT
calculations. The blue line shows the predictive mean of the proposed regression model, whose hyperparameters were trained on either (1) all
data points excluding the one being predicted (LOO-CV) or (2) 140 data points, and then tested against the 100 remaining. The y-axis shows
the intermolecular binding energy
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equilibrations for 10,000 iterations (10 ps).
3. The large box (in MD) is equilibrated using the NVE ensemble with a

0.1 Å limited step size, and is followed up by equilibration using the
NPT ensemble at 300 K and 1 atm.

4. The smaller box (in MD) is equilibrated using the NVE ensemble with
a 0.001 Å limited step size, and is followed up by another NVE
ensemble equilibration with a 0.01 Å limited step size.

5. We approximate Pb as Ba in OPLS-AA, as they have the same
oxidation state (+2). This is because Pb is not parameterized in this
force field.

6. We hold ABX3 constant by removing forces throughout the MD
simulations.

7. A time step of 1.0 fs is reasonable, especially with the limited step
sizes of the NVE calculations.

The smaller MD simulation box is derived from the larger simulation box
(post-equilibration) by first determining the intermolecular distances from
the solute ion (in our case, Pb) to the most polar atom within the solvents
(typically oxygen). From this, either the closest N solvents can be chosen,
or all solvents within a given radius. In the case where we use the UMBO as
the basis for our objective function, we consider the closest solvent
molecule.
The final geometry is then optimized using the B97-D3 GGA basis set

with Grimme’s dispersion correction.38,39 The def2-TZVP basis set is used,
with an effective core potential for the Pb ion.40 Whenever a solvent is
simulated, both an explicit solvent and implicit solvent model (using the
COSMO package) are used.41 This is done because the implicit model is a
low-cost method to improve/incorporate the electronic polarization of the
solute.42 The system, as well as individual components (solute and solvent),
are optimized in the Orca DFT package, with the final UMBO being
returned as an output.43

Binding energy. In a similar fashion to the UMBO calculation, we begin
with an equilibration of a large solvent box. Here, however, instead of
considering only one solvent, we isolate the N nearest neighbor solvent
molecules to a given ABX3 solute. Finally, in order to accomplish a binding
energy calculation, we also need the energy of the individual systems of
interest. In the case of ABX3 or a single solvent, we simply optimize the
molecule independently in DFT. However, in the case of N mixed solvents,
we must use the same procedure as that used when isolating a stable
geometric configuration for the solvent-solute system: a large MD
equilibration of a solvent box, followed by a smaller MD equilibration of
N solvents, followed by a DFT geometry optimization of the final system.
As such, PAL is capable of calculating the following intermolecular

binding energies:

1. S0 vs. S0,
2. S0 vs. S1,

3. S0 vs. ABX3, and
4. S0,S1, …, Sn vs. ABX3.

Steric hinderance. Steric hinderance, shortened hereafter as “sterics”,
captures the effect of volume exclusion effects due to the presence of the
molecules. This can cause issues with molecular packing and induce strain
within large molecular systems. In the case of nucleation, sterics comes
into play as the physical restrictions involved when reactive species
approach one another. As such, defining order parameters to capture the
effects of sterics in relation to (a) solvation or (b) reactivity is relevant. One
such approach is to define a MVEE around molecules to abstract the
globularity of the molecule and ultimately simplify the problem.34 With an
ellipse describing the molecule, a variety of mathematical representations
are now available, including volume, eccentricity, and surface area. Alone,
these values may be of use, but it is likely that a combination with other
molecular properties would prove even more useful.

Molecular properties. Beyond calculations of molecular interactions (e.g.,
the UMBO, binding energy, or steric hinderance), molecules themselves
possess characteristic properties (such as polarization and density) that
contribute to their bulk behavior. Some of these properties remain
accessible at the DFT level, allowing us to use them within suitably
constructed objective functions (such as the Gutmann donor number,
which was recently shown to be a potential indicator of Pb solubility).9

Although it has been shown that not all commonly used molecular
properties directly correlate with bulk properties of interest, an objective
function coupling them to molecular interactions may prove useful.17
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