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A machine learning approach to model solute grain boundary
segregation
Liam Huber1, Raheleh Hadian1, Blazej Grabowski1 and Jörg Neugebauer1

Even minute amounts of one solute atom per one million bulk atoms may give rise to qualitative changes in the mechanical
response and fracture resistance of modern structural materials. These changes are commonly related to enrichment by several
orders of magnitude of the solutes at structural defects in the host lattice. The underlying concept—segregation—is thus
fundamental in materials science. To include it in modern strategies of materials design, accurate and realistic computational
modelling tools are necessary. However, the enormous number of defect configurations as well as sites solutes can occupy requires
models which rely on severe approximations. In the present study we combine a high-throughput study containing more than 1
million data points with machine learning to derive a computationally highly efficient framework which opens the opportunity to
model this important mechanism on a routine basis.
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INTODUCTION
A metallic alloy’s strength is typically inversely correlated with the
size of its crystalline grains.1 Designing strong materials by
ensuring a nanograined structure is therefore highly desirable.
However, the excess energy stored in the grain boundaries (GBs)
drives the system towards larger and fewer grains. Solute atoms
can stabilize finely grained structures in two principal ways:
kinetically, by providing a dragging force as the boundary
migrates during grain growth; and thermodynamically, by low-
ering the interfacial energy.2 The latter effect has received
significant attention recently for its important role in producing
nanograined materials by ball milling.3–6

Early efforts to model changes in GB interfacial energy due to
solute segregation had to rely on severe approximations since
neither the atomic structure at GBs nor the segregation energies
of solutes to possible GB sites were known. One such approxima-
tion was to ignore GB details altogether and describe the
interaction by a single per-solute value.7–9 Under this single
interaction value assumption, the solute enrichment at the
boundary can be analytically described by the Langmuir–McLean
(LM) segregation isotherm.8 This model predicts a sigmoidal

variation with temperature as the boundary transitions from
undecorated to saturated with solute.
Since then, advances in experiment and modelling have clearly

shown that the concept of describing all solute-GB interaction
with a single effective energy is not justified.10 For instance,
transmission electron microscopy reveals a preferential segrega-
tion of specific solutes to particular sites, e.g., in ref. 11 The need to
go beyond a single interaction parameter was also realized early
on in theory: White and Coghlan (WC)12 introduced a model in
1977 that treats segregation to each site individually. Unlike LM,
this model allows the description of solute-GB interaction by a
distribution of segregation energies rather than by a single value
and does not require an explicit saturation limit.

A practical limitation in going beyond the LM model is that
calculating segregation energy distributions is challenging. Even
today only very few studies explicitly consider these distribu-
tions,13–17 all of which use empirical potentials. Quantum
mechanical calculations of GB segregation, being computationally
much more expensive, are even more restricted and only allow
the computation of high-symmetry GBs with few unique sites.
Typically, these QM studies focus their analysis only on the most
attractive site per boundary. Consequently, comparatively few per-
solute-per-site investigations have been reported.16,18–24

To overcome these limitations we derive a computational
framework that describes the full distribution of solute energies at
GBs with modest computational effort. The framework is based on
a two-step approach: First we perform a high-throughput study of
six solute species segregating to thousands of sites at 38 low and
high-symmetry boundaries. Using this large data set of more than
a million segregation energies we show that the LM model is not
even qualitatively able to reproduce the adsorption isotherm
obtained by using the full distribution of energies. Secondly, we
identify a set of machine learning descriptors which depend only
on local properties of the solute-free GB. These descriptors allow
an accurate prediction of the segregation energy distribution, and
thus the segregation isotherm, using information available solely
from the solute-free GB. This provides the opportunity to
investigate solute segregation at arbitrary GBs on a routine basis.

RESULTS AND DISCUSSION
To study GB segregation we select aluminum as the host material.
Empirical potentials are available for aluminum which allow for a
variety of possible segregating elements. We construct a
representative set of symmetry-inequivalent 53.1°[001] Σ5 GBs
(i.e., with a disorientation25 of 36.9°) following the concept of
“fundamental zones” as introduced by Patala and Schuh26,27 and
Homer et al.28 While a subset of these boundaries with higher
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symmetry has been studied by Olmsted et al.,25 we uniformly
sample the space of boundary-plane normal vectors, (lmn), by
using an approach proposed by Lee and Choi.29 This approach
represents the GB by a large vacuum cluster rather than by
periodic boundary conditions, which would enforce geometric
constraints.
The position of these GBs in the boundary-plane fundamental

zone is shown in Fig. 1 where they are labelled from a to z. We
also calculate another twelve boundaries with integer (lmn) values,
which are labelled by their indices. The shapes of the symbols
group boundaries with similar (lmn) values. Colour indicates
interfacial energy, γGB. For all these GBs structural optimization has
been performed using empirical potentials30–34 together with the
lammps simulation package.35 Further computational details are
given in the Methods section.
The computed grain boundary energies for Al follow a similar

trend to those reported for Ni:25,28 low interfacial energies for
boundaries which are mostly twist (near (001)), and higher
energies as we move towards pure tilt boundaries (the (lm0) line).
The highly symmetric (120) and (310) boundaries have exception-
ally low energy compared to other nearby boundaries. The atomic
geometries of these two high-symmetry boundaries are shown to
the right of the polar plot in Fig. 1.
To investigate the interaction of the GBs with various solutes we

compute the segregation energy of six solutes (Mg, Fe, Ti, Co, Ni,
and Pb) to every substitutional site at each of these 38 GBs in the
dilute limit. While the exact number of GB sites where
substitutional solutes can be placed varies depending on the
microscopic GB structure, most have roughly six thousand sites.
Examples of the resulting segregation energy distributions are

shown in Fig. 1 for Mg using two of the groups in the boundary-
plane fundamental zone.
While each boundary has thousands of GB sites, these sites are

not always all unique. For example, the high-symmetry (310)
boundary has only four symmetry-inequivalent sites (see Fig. 1).
The sites on the GB plane (I and II) are singly degenerate, while
sites III and IV exist both to the left and right of the plane and are
thus two-fold degenerate. The degeneracy and energy of these
sites are directly reflected in the energy distribution: The lowest
(most attractive) peak corresponds to site II. The less but still
attractive peak corresponds to site IV and is a factor of two higher
due to the two-fold degeneracy of this site. Sites I and III are very
close in energy (within 0.04 eV) and thus appear as a single peak
with a height three times larger than the peak for site II.
The three peaks observed for the (310) boundary, are still clearly

evident as we rotate the normal plane about the shared axis
towards the asymmetric (210) tilt boundary or introduce a twist
component towards r (see Fig. 1 bottom). The observed peak
broadening is a direct result of introducing disorder into the local
structures when moving away from a high symmetry GB.
Broadening can become large even in the proximity of a
symmetric GB: Comparing boundary s to (310) the main peaks
are still evident but broadening leads to an approximately
continuous distribution of segregation energies. A full set of grain
boundary energies and site counts as well as solute-GB segrega-
tion energy distributions can be found in the Supplementary
Material Table 1 and Fig. 1 through 11. They show very similar
trends as discussed here for Mg.
With these segregation energy distributions, we can use WC

model for non-interacting solutes to predict the GB solute

Fig. 1 Grain boundaries, their energies, and segregation energy distributions. The polar plot in the middle shows the GB interfacial energies
for 38 different boundaries in the boundary-plane fundamental zone for pure Al 53.1°[001] boundaries with different normal vectors (see text).
The energy distributions when substituting a Mg atom at the various GB sites are shown for selected boundaries below and above the polar
plot. The blue bars are the data from a binning analysis. The blue curve shows the smoothed distribution. The black vertical dashed line in
these plots marks the energy where a Mg atom has the identical energy as a Mg atom substituted in bulk. Thus, all energies left of this line
represent sites attractive (exothermic) for segregation while the ones to the right represent sites which are not attractive. To the right of the
polar plot, the atomic structure for two high-symmetry tilt boundaries projected on the [001] plane is shown. GB sites as identified by
Common Neighbour Analysis (CNA) are shown in orange. For the (310) boundary the four inequivalent sites are labelled from I to IV

L. Huber et al.

2

npj Computational Materials (2018)    64 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;



concentration:

cGB ¼ 1
N

X
i

1

1þ 1�cbulk
cbulk

exp EX@i
seg =kBT

� � ; (1)

where EX@i
seg is the segregation energy of the solute, X, to the ith of

N sites at the GB, T is the temperature, and cbulk is the
concentration of solute in the bulk. The above equation has the
same form as the traditional LM segregation isotherm except that
it uses an energy distribution rather than a single energy, as
indicated by the sum over sites, and it does not need an explicit
saturation limit. Indeed, the LM model can be considered as a
special case of the WC model where the true segregation energy
distribution has been replaced by a single, “effective” value.
Except for the (1−cbulk)/cbulk factor, this is also the same
expression given by Fermi-Dirac statistics. This similarity is not
surprising since both occupation curves are derived assuming an
exclusion principle—in this case once a GB site is occupied it
cannot be occupied by a second solute.
To study how temperature affects GB occupation we fix the bulk

concentration at 0.2 at% and consider the segregation energy
density of states (DOS) that is an equally weighted superposition
of results from all 38 individual GBs. Figure 2a shows the resulting
DOS and WC occupancy curves for Mg. At zero Kelvin all of the
attractive sites are occupied. Unlike an electronic DOS, which
contains all possible states, the GB DOS shown does not include
the DOS from the bulk state. At elevated temperatures, the high
configurational entropy available for the solute in the bulk makes
this state increasingly appealing. This has the effect of shifting the
solute chemical potential (Fermi level) down to more attractive
energies, and is the source of the (1−cbulk)/cbulk deviation of Eq. (1)
from Fermi-Dirac statistics. The individual DOS for the high-
symmetry (310) and low-symmetry s boundaries are shown for all
solutes in Figs. 2b, c, respectively.
By integrating over all occupied states we can directly compute

the total amount of GB segregation predicted by the WC model.
The resulting GB concentration as function of temperature is
shown for Co in Fig. 3 (solid blue line) with the corresponding DOS
shown in the inset. The GB concentrations are rescaled by the
number of sites per unit area to have physical units.
Using the analogy of the segregation DOS to an electronic DOS

allows us to exploit ideas originally developed by the electronic

structure community. One powerful concept to analyze and
approximate the electronic DOS is moment expansion, with the
nth order moment defined as:

Mn ¼
Z

fDOSðEÞEndE: (2)

The first order moment, n= 1, replaces the full DOS by a single
Dirac delta-function at the energy average over the entire DOS.
Expanding up to this moment is equivalent to the LM model. As
shown in Fig. 3, using this model gives qualitatively incorrect
temperature dependence: this is true whether the mean or
maximum segregation energy from our calculations is used (dark
and light red lines, respectively) along with the true saturation
limit, i.e., the fraction of attractive sites. Even using the LM model’s

Fig. 2 Segregation DOS. a Segregation energy density of states shown for Mg (across all 38 boundaries with equal weight). Bars show a
histogram of calculated data, while solid and dashed lines show smoothed distributions of calculated segregation energies and those
predicted by machine learning, respectively. Using the same energy axis, red lines show the White-Coghlan site occupation value for three
temperatures. Dashed black lines show the corresponding half-occupancy “Fermi level” at these temperatures with a bulk solute
concentration of 0.2%at. b, c show the density of states for all solutes at the symmetric (310) and disordered s boundaries, respectively

Fig. 3 GB solute concentration by several models. The WC
prediction (Eq. (1)) for the Co concentration (solid blue) for the
aggregated DOS (see text) using a bulk concentration of 0.2 at%.
The LM prediction (DOS replaced by δ-function) using the calculated
mean (solid dark red) or most attractive (solid light red) segregation
energy. The dotted red line shows the LM model with the effective
interaction energy and saturation limit used as fitting parameters.
The dotted blue line shows a fit of the WC model based on a
Gaussian DOS (see text). The inset shows the corresponding
segregation energy DOS and uses the same colour and line scheme
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constant segregation energy and saturation limit as free fitting
parameters (dotted red line) results in unsatisfactory agreement.
This indicates that the failure of the LM model is due to its
unrealistic functional form and cannot be “cured” by choosing
optimally fitted parameters. Thus, for an accurate description of
the segregation isotherm it is crucial to go beyond the LM model.
Between the two extrema of the 1st-order LM expansion and

the full WC model, there is a series of models using increasingly
sophisticated DOS expansions. Including the second order
moment, M2, represents the DOS by a Gaussian. Despite the fact
that the aggregated DOS is not strictly Gaussian, as can be seen in
Figs. 2a, 3 (inset), and 4 (joint axes), this level of approximation
works surprisingly well. Using the Gaussian normalization factor,
mean, and standard deviation as fitting parameters to optimize
the GB solute concentration, the resulting fit-Gaussian WC-model
prediction (dotted dark blue line) in Fig. 3 agrees almost perfectly,

and the fit mean and variance match the first and second
moments of the calculated DOS (c.f. Supplementary Material Table
4 for numeric values).
This fit-Gaussian procedure suggests a promising way to

directly connect experimental segregation measurements to
atomistic calculations. When concentration values are known for
a variety of temperatures or bulk concentration (or both), an
implicit minimization scheme can be applied to find the Gaussian
approximation to the DOS which minimizes the WC model
prediction error. When performed consistently for the same
boundary, or over a broad enough sampling of boundaries to get
a representative DOS—similar to the aggregate DOS in Fig. 2a—a
corresponding atomistic calculation can be performed. Therefore,
to connect atomistic simulations with experimental segregation
isotherms it will be sufficient in most cases to go one order

a

b

Fig. 4 Model performance. Predicted segregation energies using a a linear fit and b gradient-boosted decision trees plotted against
calculated values for all six solutes. Results are taken from all 38 boundaries and data distribution plots are shown joint to their corresponding
axes. Darkness of colour indicates data frequency, and results are smoothed. The black dashed line indicates perfect agreement and is a guide
for the eye
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beyond the LM model, i.e., to increase the number of fitting
parameters from two to three.
Figure 3 clearly shows that a realistic description of the

segregation isotherm can only be achieved if the distribution of
the segregation energies is known. A practical challenge is that
with presently available tools such calculations are difficult to
perform on a routine basis. In the following we therefore explore
alternative descriptions of the DOS which do not require
calculations for each solute on every possible site in the GB.
Specifically, we will analyze whether information that can be
obtained from the chemically pure GB is sufficient. This would
reduce the number of atomistic calculations from O(number of GB
sites) to Oð1Þ per GB. To achieve this goal, we have to identify
suitable descriptors from the GB that capture pertinent informa-
tion for each possible segregation site and a relation that connects
this data with the segregation energy. Our large set of more than a
million segregation energies will allow us to address both aspects.
We start by applying a simple linear model16 that connects two

quantities which can be easily obtained for each site i on the grain
boundary—excess volume,22 ΔVi, and the change in coordination
number,36 ΔNi—with the segregation energy of a solute X:

EX@i
seg ¼ PXΔVi þ EbondX ΔNi: (3)

The solute-specific parameters PX and EbondX both have simple
physical interpretations as the solute pressure and the energy-per-
bond, respectively. Here we use these as fitting parameters, and
their signs indicate whether the solute prefers compressive/
expansive sites, and whether it prefers to be under/over-bonded,
respectively.
Conventional models for GB segregation, such as McLean’s

model based on the total relief of strain energy upon segregation,
or Seah’s model based on changes in bonding state, typically omit
details of the GB altogether and function only on a per-solute
basis (as in the models just mentioned) or provide analysis on a
per-solute-per-GB, as in a handful of more recent works.37–40 In
contrast, we present here a fully atomistic model that has
predictive capability since it relies on GB properties solely derived
from the undecorated GB.
In order to estimate the predictive error of such a fit model, i.e.,

how well the model will perform when applied to a GB for which it
was not fit, we employ cross validation. The data is structured into
nine groups (indicated by different symbols in Fig. 1, see the
“cross validation” section of the Supplementary Material for
details) and for nine iterations one group is held out from the
fitting procedure and predicted on. This grouping is an effort to
best represent generalization to an arbitrary new boundary, since
boundaries nearby in this space are likely to share more
microscopic atomic configurations. Nevertheless, the resulting
nine sets of PX and EbondX are highly similar even though they were
fitted to different data. The results are robust to using fewer but
larger groups. Fit values of PX and EbondX are in the Supplementary
Material Table 3.
For each solute, an aggregation of these predictions across all

38 boundaries is plotted in Fig. 4a against the calculated
segregation energies. The energy distributions for both the model
and calculations are shown joint to their respective axes. For all six
solutes, the simple linear model captures qualitative trends in
segregation. The plot also shows root mean square errors (RMSE)
which range from 0.06 (Ti) to 0.17 eV (Pb). To set this error in
perspective we refer to a previous study.16 There, QM/MM
multiscale calculations show that the potentials for Mg and Pb
reproduce quantum mechanical values for GB segregation
energies with RMSE values of 0.09 and 0.16 eV, respectively.
Pb, for which the model performs worst, also has the largest size

mismatch with Al among the solutes studied. The poor
performance of the linear model may have been expected, since
we are attempting to predict the Pb segregation energy only from

site properties of the initial, undecorated GB. In reality, a solute
with such a large atomic radius shows non-linear elastic
interactions, and also induces significant relaxations of the local
environment.16

An advantage of the linear model is that its parameters can be
interpreted physically. However, its functional simplicity limits
predictive power. To improve accuracy, we test a second more
sophisticated approach based on machine learning using gradient
boosted decision trees.41 In addition to per-site values of ΔV and
ΔN, we also include as descriptors their second and third powers,
which effectively permit the construction of a truncated Taylor
series with respect to these variables. Going beyond a linear
relation allows the model to infer that a solute may have preferred
values of ΔV and ΔN, with energetic penalties to either side of the
preferred value. Further, we include various properties of the
Voronoi analysis42 such as total surface area, the ratio of surface
area to volume, total edge length, the number of faces, and the
number of edges. We also use the Steinhardt bond-orientational
order parameters43 Q1 through Q8 with a cut-off half way between
first and second-nearest neighbour distances. These descriptors all
have in common that they are available from the undecorated GB
structure.
Segregation energies predicted by this machine-learned model

show a clear improvement over the linear model (see Fig. 4b). For
each solute the error is decreased, although only slightly for Mg
and Fe which were already well described. The largest improve-
ment is for Pb whose error drops from 0.17 to 0.10 eV.
While decision trees do not allow the same level of direct

interpretation that a linear model does, they still allow identifica-
tion of the most relevant descriptors. For Pb, which has the largest
atomic radius mismatch to Al, it is not surprising to see that
powers of the excess volume, ΔV and ΔV3, are the two most
significant descriptors with the square also playing an important
role. For all other investigated solutes the most important
descriptor is the ratio between the undecorated site’s surface
area and volume. Not only does this descriptor encode informa-
tion about the excess volume at a specific site, but, in conjunction
with ΔV and/or the area, it also encodes information about the
site’s structural anisotropy. This piece of physics which was
completely neglected in the simple linear model. Despite their
usefulness in describing Re segregation to W boundaries,23 here
the Steinhardt parameters are always secondary to at least one
other descriptor. More detailed information on the relative
importance of the various features can be found in the
Supplementary Material Fig. 12.
Figure 2a shows the smoothed aggregate DOS predictions

(dashed darker lines) for Mg, while Figs. 2b, c show the DOS for
the specific boundaries (310) and s, respectively. Overall, the DOS
for these machine-learned segregation energy predictions agree
reasonably well with the calculated DOS. This shows that these
machine learned models capture the overall trends in segregation
and also demonstrates the degree to which they reproduce the
detailed behaviour of each boundary for each solute individually.
While the DOS is important, the experimentally measurable

quantity is the GB solute concentration, cGB. To evaluate the
importance of the (small) differences between the calculated DOS
and the DOS generated from our decision tree segregation energy
predictions, Fig. 5 shows GB concentration curves for all six
solutes. Across a wide temperature range, the predicted energies
give GB concentrations that are very close to the reference with
the explicitly computed segregation energies (dashed and solid
lines, respectively). We also show fits of the LM (light dotted lines)
and Gaussian-WC-model (dark dotted lines) concentrations. The
first moment LM model shows systematic failure—except for the
“null case” of Ti where no segregation is predicted—while the
machine learned energies and Gaussian fits both perform well.
For some of these solutes the predicted GB concentration at

room temperature is significant and the assumption of non-
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interaction may break down. For example, ignoring displacement
from the GB plane, a planar concentration of 15 atoms/nm2

implies that the average inter-solute distance is approximately
2.8 Å—i.e., the solutes would be first-nearest-neighbours. Solute
interaction may also occur at much lower concentrations when
the attractive sites are not uniformly distributed across the GB,
e.g., our calculations on Mg segregation to the symmetric (310)
boundary indicate a preference for columnar segregation. Solute-
solute interaction will thus be a natural extension of this study and
another area where machine learning may prove useful.
In conclusion, based on an extensive set of over a million

segregation energies for six solute species and 38 GBs we show
that the standard model to describe grain boundary segregation
—the Langmuir-McLean model—qualitatively fails in describing
segregation isotherms. Using the mathematical similarity of the
segregation and the electronic DOS we adopt concepts originally
developed in electronic structure theory. Specifically, expanding
the DOS in moments we show that the LM model corresponds to
an expansion up to first order moments whereas for a qualitatively
correct description of the segregation isotherms an expansion of
at least second order is needed. Since the computational effort to
routinely compute the full segregation DOS is prohibitive, we used
a machine learning approach to identify a set of efficient
descriptors. These descriptors are solely based on information
that can be extracted from the solute-free grain boundary, i.e.,
rather than having to explicitly compute thousands of segregation
energies for each GB, a single calculation is sufficient. This reduces
the effort to compute segregation isotherms by up to four orders
of magnitude, presenting the opportunity to routinely determine
segregation isotherms for arbitrary GBs. Since the amount of
solute concentration can be well controlled in metallurgy, having
a tool to accurately determine the relation between bulk solute
concentration, GB segregation, and GB energy provides the
materials engineer a new set of design strategies. Since GBs are
a key element in structural materials, many interesting extensions
of this concept, e.g., to control and prevent GB related
embrittlement, can be envisioned.

METHODS
To construct a simulation cell containing a GB with the character θ[ijk](lmn)
—giving misorientation, the shared axis of misorientation, and one grain’s
normal plane, respectively—we follow the work of Lee and Choi.29 Our

execution of this approach can be briefly summarized as follows: first,
construct two spheres of radius r with the same crystal structure and
orientation; second, rotate each by θ/2 about [ijk] in opposite directions;
third, rotate both spheres in tandem until one of them has its internal [lmn]
direction pointing in the x-direction of our supercell coordinates; next, take
the left half of one sphere and the right half of the other, and combine
them to a single sphere surrounded by vacuum with a planar GB in the yz-
plane of the supercell. Finally, minimize the microscopic degrees of
freedom (DOF). The format θ[ijk](lmn) completely defines the GB character
once one grain has been chosen to assign (lmn) to, but it is not unique.
From here, our approach expands upon ref. 29. We introduce a second

geometric parameter, a smaller radius rinner, which defines a sub-sphere
with the same centre. Since empirical potentials provide per-atom
energies, we can easily calculate the energy of this sub-sphere separately
from the whole system.44 The GB interfacial energy is then

γGB ¼ ~EGB �
~NGB

~Nbulk

~Ebulk

� �
=~AGB; (4)

where ~E is the energy of these inner spheres. These spheres have ~N atoms
within rinner for clusters with a GB or bulk-like structure as indicated by the
subscript, and ~AGB ¼ πr2inner is the sub-sphere’s cross-sectional area.
When r−rinner is sufficiently large, the inner sphere is isolated from

surface effects. For this case the sub-sphere represents a spherical sample
out of an effectively infinite structure. For non-coincident site lattice (non-
CSL) boundaries or CSL boundaries with low symmetry the GB structure
repeat distance might be larger than 2rinner, but as long as this sub-sphere
is large enough, we are still sampling a representative area of the GB.
For segregation energies, we use this inner sphere again to restrict our

search for GB sites (of the substitutional variety, identified by their non-FCC
common neighbour analysis45,46 (CNA) signature) to ensure that they are
also well isolated from surface effects. The segregation energy of a solute X
to the ith site of a GB is

EX@i
seg ¼ EX@i

GB þ Ebulk
� �� EGB þ EXbulk

� �
; (5)

where we have returned to using the total energy of the clusters, E,
because of the good cancellation of surface energies in this formulation,
and superscripts indicate the presence of a solute at the ith site of the GB-
containing cluster, or in the centre of the bulk cluster. This formulation
represents the infinitely dilute limit. Note that we use a convention with
favourable segregation energies defined negative. The set-up is shown
schematically in Fig. 6a. A cross-section of a small cluster with a symmetric
(120)Σ5 boundary is shown in Fig. 6b visualized using the Ovito software.47

We found that r= 140 Å and rinner= 80 Å were sufficient to give a GB
energy converged to within 5mJ/m2 and worst-case Mg-GB segregation
energy converged to within 0.01 eV when cluster calculations were
compared to calculations using regular periodic boundary conditions for
a boundary of the (120) character shown in Fig. 6b. The resulting buffer
distance of 60 Å from the vacuum surface is considerably larger than the
cut-off distance of the empirical potentials. This is important because all of
the atoms in the cluster are completely free to relax, and elastic
information from the relaxation of the cluster surface can propagate

Fig. 5 GB enrichment. WC segregation isotherms using the
calculated aggregate DOS (solid lines) and the aggregate DOS
predicted by machine learning (dashed lines). Best fits of the LM
model (lighter dotted lines) and WC model assuming a Gaussian
DOS (darker dotted lines) are also shown. For all solutes the bulk
solute concentration is 0.2 at%

Fig. 6 Geometric setup. a A schematic representation of the cluster
setup with the inner domain used for calculating GB energies and
searching for GB sites shown in light blue, while the remainder of
the cluster which serves as a buffer from the surface are dark blue.
The portion of the GB which is eligible for segregation energy
calculations is bright orange. b A slice from a small toy cluster of the
53.13°[001](120) boundary showing atomistic resolution of this
scheme with the same colour scheme
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significantly farther than the cut-off distance, which is designed to capture
the limit of chemical interaction between two atoms.
While the macroscopic state of the GB is fully defined by the relative

orientation of the two grains and the cut of the GB plane, we still need to
optimize the microscopic DOF. To this end, we begin by minimizing the GB
energy with respect to translations of the two grains relative to each other
along with the distance at which two nearby atoms from opposite grains
are merged into a single atom. This minimization is performed using
simultaneous perturbation stochastic approximation (SPSA).48 We use an
initial step size of 0.0405 Å, i.e., 1% of the lattice parameter. All other
parameters, including the decay of the step size and learning rate follow
the suggested values in ref. 49 with one addition: we have included a
momentum term as found in other gradient-based optimizers which
ramps from 0 to 0.8 as the learning rate decays with the form 0:8 1� α

α0

� �
where α and α0 are the current and initial learning rates, respectively. SPSA
steps are repeated until the best GB energy is within 0.1 mJ/m2 of the last
best GB energy and these two best states are within 0.1 Å of each other in
the 4D space of translations and merge distance, or the step count reaches
200. Because this process is stochastic, we repeat it ten times with different
initial conditions and keep the lowest GB energy structure found.
This stochastic optimization is followed by an annealing period of up to

5 ps at 622 K, which is forked every picosecond to perform a 1 ps quench
with a friction constant of 0.01 eVps/Å2 and then a force-minimization of
atomic positions. As with the SPSA minimization, the annealed state with
the lowest GB energy is retained.50,51 This annealing time is not long
enough to facilitate faceting of the boundary, but gives the opportunity for
local metastable structures to relax into lower energy states.52 This two-
step minimization process is evaluated in the Supplementary Material (Fig.
14) by comparison to the data of Olmsted et al.25 and is found to perform
well. While we have restricted ourselves to 53.1°[001] boundaries in this
work, the methodology can be applied to any GB character. Although the
boundaries studied differ only in their normal vector, we nonetheless
sample a wide range of boundaries from highly ordered to very
disordered, including tilt, twist, and tilt-twist combination GBs. This gives
us confidence in the applicability of our results to boundaries beyond 53.1°
[001].
The workflow described above is coupled to the Large-scale Atomic/

Molecular Massively Parallel Simulator (LAMMPS) MD code35 [http://lammps.
sandia.gov] by a custom Python package [https://github.com/liamhuber/
clustergb] to facilitate high-throughput calculations of GB and segregation
energies with empirical potentials. We have demonstrated previously16

that the potentials of Mendelev et al.30 and Landa et al.34 reproduce QM
segregation energies with reasonable accuracy for Mg and Pb at Al GBs,
respectively. We have not performed this computationally expensive
comparison for the remaining solute species and their potentials (Fe by
Mendelev et al.,31 Ti by Zope and Mishin,32 and Ni and Co by Pun et al.33).
These potentials were rescaled (if necessary) so that they all had a bulk Al
lattice constant of 4.05 Å.
The LM and WC models for solute GB concentration differ in how they

treat the interaction energy (a single value and the full, physical
distribution of energies, respectively), but they otherwise rest on a shared
set of assumptions. Both models assume that the solutes are non-
interacting, which is indicated by the fact that the segregation energy is
not itself a function of the GB solute concentration. Similarly, the solute-GB
interaction is also assumed to be temperature independent, which
indicates both that the phonon contributions are ignored, and that the
GB structure is assumed to not change at higher temperatures. Making the
same assumptions, our segregation energy calculations are made in the
dilute limit with 0 K energy minimizations. Finally, both models treat the
bulk solute concentration as fixed, i.e., the grain interiors represent infinite
solute reservoirs with constant chemical potential of the solute and are
thus not suitable for nanograined materials. Developing models which
push beyond these assumptions is of great interest, but lies beyond the
scope of this particular work.
In the present study, we have chosen to focus only on substitutional

segregation sites. There is evidence that some solutes, e.g., Cu,53 can act as
either a substitutional or an interstitial solute in Al. While we do not expect
this to be the case for over-sized solutes like Pb and Mg, it is possible that
the smaller solutes studied here may exhibit similar behaviour. Further,
when searching for substitutional sites we consider only those with a non-
FCC CNA signature. In our high-angle Σ5 boundaries this accounts for
almost the entirety of sites near the GB plane, since having a locally FCC
structure by chance is exceedingly small. This technique also ignores all

potential sites more than a few angstroms from the GB plane. This is
justifiable as solute segregation energies have been found to go to zero
very quickly as a function of distance from the GB plane, 23,37
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