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Empirical modeling of dopability in diamond-like

semiconductors
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Carrier concentration optimization has been an enduring challenge when developing newly discovered semiconductors for
applications (e.g., thermoelectrics, transparent conductors, photovoltaics). This barrier has been particularly pernicious in the realm
of high-throughput property prediction, where the carrier concentration is often assumed to be a free parameter and the limits are
not predicted due to the high computational cost. In this work, we explore the application of machine learning for high-throughput
carrier concentration range prediction. Bounding the model within diamond-like semiconductors, the learning set was developed
from experimental carrier concentration data on 127 compounds ranging from unary to quaternary. The data were analyzed using
various statistical and machine learning methods. Accurate predictions of carrier concentration ranges in diamond-like
semiconductors are made within approximately one order of magnitude on average across both p- and n-type dopability. The
model fit to empirical data is analyzed to understand what drives trends in carrier concentration and compared with previous
computational efforts. Finally, dopability predictions from this model are combined with high-throughput quality factor predictions

to identify promising thermoelectric materials.
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INTRODUCTION

Control of charge-carrier concentration of semiconducting materi-
als is vitally important in a variety of applications, including
photovoltaics,'? optoelectronics,®* transistors,>® and thermoelec-
trics (TE).”® To maximize efficiency, many of these applications
require tuning both the type (p- or n-type) as well as the
concentration of carriers. For many well-studied systems, the
methods of controlling the carrier concentration are well-
established, both in choice of dopant species and synthetic
technique.”'® However, the control of carrier concentration is not
well-understood in novel material systems. Traditionally, experi-
mentalists have relied on basic metrics to guide the choice of
doping species, namely ionic charge counting and radius ratio
“rules of thumb.”'" These rules may not directly translate to more
complex chemistries and structures. Theorists have recently been
able to better guide efforts using defect calculations as computa-
tional capabilities have improved.'>”'® Despite these improve-
ments, issues remain in the widespread use of these calculations
due to their computational costs and inaccuracy. Therefore,
methods to address dopability are critical for advances in complex
semiconductors.

One such example is the high-throughput prediction of material
properties, which has become increasingly common in the TE
community." 2 Various groups have developed their own
models which can predict the optimal potential thermoelectric
performance for a material based on its structure and simple
density functional theory (DFT) calculations. One of these metrics,
quality factor (B), is a descriptor for the potential of a material to
exhibit high thermoelectric performance, and has been previously
shown to track well with experimental TE performance.?’ Despite
the reasonable accuracy of these models in predicting the

potential of a compound’s performance, they rely on a key
assumption. In order to predict this quality factor, it must be
assumed that the chemical potential (i.e., Fermi level) can be
sufficiently tuned to the type and concentration of charge carrier
that optimizes performance. In the absence of dopability
guidance, experimental investigation of high 8 compounds is
inefficient due to the large number of false positive compounds
that cannot be doped.

In the discussion of dopability, we find it helpful to identify the
distinct sources that limit dopability. The discussion here is in
relation to p-type dopability, but the schematic and discussion for
n-type would be a mirror image. In the first case, Fig. 1a, the red
native donor defect represents a hole “killer” defect, one that
prevents the Fermi level (Ef) from being driven beyond some
energy range, as it spontaneously produces an electron which
increases Er. This donor defect pins the minimum thermodyna-
mically achievable limit of the Fermi level (Eg ) at the location of
the red tick, with the possible doping range shown by the red
horizantal gradient bar. As the native donor energy (Epq)
increases, Eg i, moves toward the valence band, allowing a larger
possible doping range shown by the green bar. Eventually, the
donor energy is great enough such that the native donor
dopability window (W, 4) becomes positive, allowing greater p-
type carrier concentration. Beyond killer defects, a system may
exhibit limited dopability due to the lack of chemical flexibility in
the native structure or extrinsic dopants. The Fermi level of the
material will be set near the intersection of the lowest energy
acceptor and donor defects, regardless of whether they are native
or extrinsic (Fig. 1b). In some cases, the lowest energy extrinsic
acceptor dopant is too high to substantially lower the Fermi level,
meaning there is no extrinsic dopant which increases the
dopability window,?? represented with the red extrinsic acceptor.
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a Defect diagram schematic showing native defects, including an acceptor defect (black line) and two possible variations of a native

donor defect (red and green lines). The intersection at the valence band maximum (VBM) of the native donor defect gives the p-type
dopability window (W, 4). The achievable thermodynamic limit of the Fermi level (Eg;,) is set by the charge (which determines slope) of the
native donor defect and the conduction band minimum (CBM) defect energy (native donor energy or E, 4). b Defect diagram schematic
showing the effect of extrinsic dopants (dashed colored lines), given native acceptor and donor defects (solid black lines). The Fermi level will
be near the intersection of the lowest energy donor and acceptor defects. The red extrinsic acceptor is a poor dopant as it does not
significantly lower E¢. A good p-type dopant is one where the extrinsic acceptor energy (E,) is less than or equal to W, 4 (W, 4 — Ec220),

allowing high p-type carrier concentration

This arises when there is significant phase competition for the
dopant element and dopant solubility limits are reached. In more
well-behaved systems, high dopant solubility is achieved due to a
lack of phase competition and the minimal energetic penalty for
dopant incorporation. This scenario yields a dopant where the
energy of the extrinsic acceptor (E.z) is lower than the window of
the native donor (W,, 4), drastically altering the Fermi level toward
or into the valence band, leading to an associated high p-type
carrier concentration (green extrinsic defect).

To date, there have been few efforts to model charge-carrier
concentrations, and no comprehensive, analytical/physical model
exists to estimate the dopability of materials. Conventional
wisdom posits that large band gap materials are harder to dope,
elemental properties such as size and electronegativity should be
considered when choosing a substituting species, and that the
structure and lattice energy have some effect.'' Yet little is known
about the relationship (sign, magnitude, functional form) between
the physical properties and carrier concentration. DFT can predict
intrinsic defects and external dopants, guiding experimentalists to
regions of phase space and the necessary dopants needed to
achieve the desired carrier concentration.”® In the field of
dopability, diamond-like semiconductors (DLS) have received the
most computational attention. This includes an amphoteric-defect
model,'>?* phenomenological models for doping limits based on
universal band alignment,'>">?>2> and detailed analysis of defects
in individual DLS systems.”?® Despite this success, defect
calculations can't be used for high-throughput screening due to
their computational cost.

One possible solution is the development of semi-empirical
models, as they have proven successful in combining experi-
mental data with physics-based models.'®?" In the absence of an
analytic model or high-throughput defect calculations, statistical
learning from experimental or computational data can serve as an
alternative to create empirical models and rules of thumb to make
predictions of dopability in new compounds. Machine learning
has proven successful in understanding and predicting energy
and entropy,®® potentials and forces,*®~3? structure, physical, and
elastic properties,®>® bandgap,>**°*® and defects,*’ as well as
enabling high-throughput screening and discovery,**™*® and
guiding experimental synthesis.*’*®
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In order to properly model and interpret dopability, the
construction of an empirical dataset for cross-validation is of vital
importance. While other physical properties have been tabulated
in databases, there are few resources where carrier concentration
in semiconductors has been collected. Minimization of the
number of uncontrolled variables and maximization of the size
of the dataset is helpful in improving accuracy, statistical
significance, and applicability to the largest possible group of
materials.*>*° Again, DLS stands out from this perspective as there
are a large number of compounds and they are technologically
relevant,”®>* including recent discovery of high 8 quaternary
compounds.>* DLS compounds have the same tetrahedral local
bonding environment and span an impressive fraction of the
periodic table.>>>%

The goal of the following is to establish a broader under-
standing of the drivers underpinning dopability and develop a
method that predicts the possible carrier concentration range in
DLS compounds. By performing a careful and extensive literature
search with DLS as the model system, the experimentally realized
carrier concentration range of 127 compounds have been
obtained. Input features for modeling have been generated using
structural information, periodic table properties of constituent
elements, and widely-available, inexpensive DFT calculation
results. We show, using cross-validation, that accurate predictions
are possible for this dataset across the entire family, with the
model capturing experimental trends in subsets of compounds as
well. The features determined to be important in the linear
regression are explained and matched with intuition and previous
computational results. Finally, the dopability prediction engine is
applied to additional DLS compounds which have not been
experimentally studied to assess their ultimate potential as TE
materials.

RESULTS

Experimental and prediction comparison

The dopability dataset scraped from literature reports of carrier
concentration is presented in Fig. 2. The width of each bar
represents the dopability range for each of the 127 compounds
found in the comprehensive literature search. While the theore-
tical limits on dopability are determined by defects and chemistry
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Fig. 2 Experimental dopability range for diamond-like semiconduc-
tors collected from literature data. Left end of bar represents highest
n-type carrier concentration while right side shows highest p-type
achieved. Top to bottom order chosen to minimize both the
difference in dopability range and the left/right displacement of the
bar. Compounds with more experimental measurements are darker
blue
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(see Fig. 1), there are also practical limits due to historical research
which we call “persistence”. The more times a compound has
been reported, the more likely it is that someone has pushed the
dopability limit. This is highlighted by the color shading in Fig. 2.
The persistence is quite varied, from one report of carrier
concentration in a compound to dozens, with the average or
median value being approximately five per compound. For
compounds which have not been measured with high persis-
tence, for only a single application, or that have not been made
with the explicit goal of exploring the the full dopability range, it is
likely that only a single distribution (n-type, intrinsic, or p-type) has
been investigated. Whether intentionally or not, compounds
which have been studied extensively are more likely to have been
sampled in each distribution, thus pushing the dopability limits
(Fig. S6). While one may intuit that the low-persistence
compounds could be ignored, we provide two virtual experiments
(Fig. S7) which demonstrate that we should not ignore these
compounds in modeling the dataset and instead use this
persistence value in weighing the data for fitting.

Using this set of dopability data, linear regression, random
forest, and neural network models were compared based on
cross-validated prediction accuracy, with the results shown in Fig.
S3. It was found that a linear regression provided similar or better
prediction accuracy and superior interpretability, thus it was
chosen for further refinement. Feature downselection for the
linear model was performed using LASSO (least absolute
shrinkage and selection operator), shown in Fig. S4. Due to the
effect of persistence in this dataset, sample weighting was also
applied to increase prediction accuracy, followed by further
feature downselection. Linear regression and other models predict
the mean value, while we are interested in the extreme limits of
dopability, therefore confidence and prediction intervals were
calculated to determine reasonable estimates of these limits.

The resulting predictions using leave-one-out cross-validation
(LOOCV) are shown in Fig. 3. This figure contains only the subset
of DLS compounds for which both experimental dopability data
could be found as well as properties from DFT databases (OQMD
and MP) had been calculated, and defect structures were
removed. The experimental range is shown with a blue bar
representing the maximum extent of dopability in both directions
observed in a given compound. A seperate model is used to
predict the maximum dopability on each side, with the predicted
dopability range being all values between these maxima and
given by the red bar. Since this model predicts the mean value for
dopability, where we are interested in the maximum extent, a 50%
prediction interval is given by the grey error bars. The prediction
interval is calculated individually for each type (n/p) and
compound, but in this dataset the bars are largely of the same
length, indicating the compounds are fairly evenly distributed
across the feature space. As the left and right sides of this
dopability range are predicted separately, there is a difference
between the accuracy of these individual models. The MAE of the
CB is 1.16, while for the VB it is 1.22, giving an average MAE of 1.19
(about one order of magnitude in carrier concentration on
average), demonstrating the model is roughly equally predictive
of both n- and p-type carrier concentration. The predictive quality
of this model has thus been established using LOOCV demon-
strating the ability to predict dopability using this data collection
and statistical fitting method.

Careful observation of the experimental dopability dataset
reveals some trends, and these trends are captured by the model.
A few of these trends are highlighted here and are discussed in
more detail in Fig. S5. The first trend that is captured is in the
Group IV compounds, where Si, Ge, and Sn all have quite large
carrier concentration ranges across n- and p-type, whereas C can
only be made p-type and SiC only n-type. Second, in binary
materials, there is a clear trend in [I-VI compounds where
dopability shifts from left to right (n- towards p-type) as you
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Fig. 3 For each compound, the experimental range is shown in blue
and the prediction in red (shade of blue denotes experimental
persistence). Grey error bar style lines represent a 50% prediction
interval for both the n- and p-type models. Top to bottom order is
the same as in Fig. 1
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Fig. 4 Linear regression intercepts and coefficients that were most
important in determining carrier concentration ranges. Separate
models were fit for n-type (CB) shown in green and p-type (VB) in
purple. Error bars represent a 50% confidence interval for the
coefficients. Features are in descending order based on the sum of
the absolute value of the coefficients

move down the anion group which is not observed in
experimental llI-V data. Third, compounds of the II-IV-V, family
show a similar trend in the experimental data for those with Zn
but not those with Cd. Finally, in I-lll-Vl, compounds, Cu-
containing compounds are much more p-type whereas Ag ones
are intrinsic or n-type. The predictions for all of these sub-families
of DLS match qualitatively with the observation of experimental
trends and are discussed in more detail in the Supplemental
Information.

Model interpretation

Rather than serving only as a prediction engine, the hope is that
some physical insight can be gained through interpretation of the
resulting model. As this is a linear regression, it has an intercept
(baseline n/p-type dopability) and a number of features that
modify the intercept based on the coefficient value associated
with each of them. Therefore, Fig. 4 can be interpreted by looking
at the sign and magnitude of the coefficient value of each feature
in relation to that of the intercept. Features whose coefficients are
opposite in sign to their intercept contribute to lowering the
carrier concentration range for either the n/p-type side. The eight
features of Fig. 4 constitute the set which provide the best fit
(lowest MAE) before overfitting begins by the addition of more
features. Each of the features and their associated coefficient
values will be discussed individually but viewed together, there
are three drivers of dopability in this model: substitutional defects,
other chemistry related features (including lattice and electronic
energy), and practical limits due to historical persistence.

The first set of coefficients to discuss are those that are partly
related to the persistence limitation and more broadly the
historical bias of prior experimental work: the intercept, Feature
1, and Feature 4. The sign of the intercept is as we should expect,
negative for n-type and positive for p-type. A large number of p-
type Cu-containing compounds form the learning set (over 45%),
thereby making the intercept for the p-type prediction quite large.
Conversely, the low individual persistence of these Cu-containing
compounds yields a narrow dopability window and thus a smaller
n-type intercept.

Feature 1 represents the number of unique elements in a
compound; both coefficients are positive and the n-type value is
significantly larger than the p-type value. In other words, the range
shrinks and becomes more p-type with increasing number of
unique elements. Unary and binary compounds have been well-
studied and thus their experimental dopability range is quite
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large, while ternary and quaternary compounds have less reports
in the literature and smaller experimental dopability ranges. The
impact of a number of unique elements is not a priori obvious, as
the number of sites increases, there are more possible sites to
dope but also more possible substitutional defects that could pin
the Fermi level. Again, the Cu-containing compounds induce this
shift due to their native p-type behavior and limited persistence.

Feature 4 is whether silver is present in the compound, driving
the dopability more n-type with a smaller range. Since many of
the Ag-containing compounds have low p-type carrier concentra-
tion (more intrinsic) or are n-type, the presence of silver as one of
the elements in the composition drives both the CB and VB more
negative (Feature 4). As the model is heavily biased by Cu-
containing compounds, the presence of Ag thus requires a
correction to overcome this difference. Once again, persistence is
relevant as the Ag-compounds likewise have limited persistence
and a small range.

The next set of features all relate to the cations and their
similarity to the anion: Feature 3 is the maximum cation average
ionic radius, Feature 7 is the maximum electronegativity of the
cations, and Feature 8 is the minimum absolute pairwise
difference in atomic number between the anion and each cation.
The effect of Features 7 and 8 are quite similar; when there is
cation that is more like the anion in electronegativity or atomic
number, the carrier concentration is pushed toward intrinsic and
the compound has a lower dopability range. This can be seen as
the mean VB coefficient for both of these features is negative and
the mean CB coefficient is positive, both opposite of the VB/CB
intercept. Since the VB coefficient for Feature 3 is negative
(opposite VB intercept) and more negative than the CB coefficient,
the dopability range decreases and shifts toward n-type when
there is a cation with a similar ionic radius as the anion. Our
interpretation of these trends is that these three features, each
relating to having at least one cation that is similar to an anion,
whether in size, electronegativity, or atomic radius, reduce the
dopability range. Such reduced range may be due to the
emergence of low energy “killer" compensating defects.

The other important features are related to chemistry, but not
closely linked to the concept of substitutional defects. Feature 2 is
the atomic number of the anion; therefore the trend is that as the
anionic species is found further to the right and bottom of the
periodic table, the compound is more p-type and has a smaller
dopability range. Feature 5 is the minimum Bader for the
compound, and in this case, the minimum Bader charge is always
that of the anion. The Bader charge is an approximation of the
total electronic charge of an atom and depends on both the
chemistry and structure of the compound. The coefficients for the
linear model imply that as the anionic element becomes more
positive (i.e., less negatively charged), the anion less strongly holds
the electrons and the compound becomes more p-type and the
dopability range increases. This matches our intuition that
compounds that are more covalent and less ionic are more
dopable. Similarly, Feature 6 is the band gap from OQMD, with
larger band gaps leading to a slightly more p-type material but
one with a much smaller dopability range, again matching our
intuition.

Phase competition has been found to affect dopability in
materials.’” The number of elements plays a role in phase
competition as there are likely to be more possible compounds in
the phase diagram as the number of elements increases; as such,
this prior work can be related to Feature 1. Another factor that
enters into dopability is the energy of the lattice,'*'* captured in
this model by the Bader charge in Feature 5. It has long been
assumed that compounds with larger band gaps are harder to
dope, however more recent work has found that the band offset
and the position of the band extrema relative to the Fermi
stabilization or pinning energy is what controls doping lim-
its.!>152258 These computational efforts find universal band
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Fig. 5 Predicted quality factor (8) vs. dopability for compounds in
the diamond-like structure. Filled circles are experimental dopability,
open circles are predicted. Horizontal colored lines connect
experimental and predicted values of dopability, with color and
thickness of line showing persistence. Dashed gray lines represent
approximate benchmarks for good TE performance (carrier con-
centration > |3 x 10"/ cm™ and B > 10), meaning promising materi-
als are in the regions labeled n-type and p-type

alignment relate dopability in DLS compounds to the relative
position of the VBM and CBM, creating “Pauling-esque” rules.
However, these are not linked directly to the elements that are
present and the trends in associated properties of those elements
and compounds. Therefore, the remaining features are not directly
comparable with previous computational work.

High-throughput dopability predictions

Combining dopability predictions with quality factor predictions
allows the identification of potential new TE materials in the DLS
family. While the optimized version of the dopability model
includes features and weighting that do not lend well to high-
throughput predictions, a simplified version can be used. A model
for dopability was constructed utilizing only a feature set created
using the formula and chemistry-based inputs, and LOOCV has a
prediction accuracy reasonably similar to the optimized model
(MAE/MSE of 1.34/3.05 compared with 1.19/2.23). This model was
then used in tandem with 8%° to generate predictions for DLS
compounds, with results shown in Fig. 5. Out of a total of 188 DLS
compounds considered in this study, the dopabiilty learning set
was based on 127 compounds. This yields 61 compounds that had
no experimental dopability information; both 8 and dopability
could then be predicted for these compounds. An additional 67
compounds were part of the dopability learning set and had 8
predictions but had a persistence of less than five papers. In this
latter case, the dopability prediction may highlight opportunities
for extending the known dopant range in promising S
compounds.

The first notable observation is that both the model predictions
and experimental values (where they exist) indicate there are far
more DLS compounds that are dopable to an appropriate p-type
carrier concentration range to be useful for thermoelectric
applications. Furthermore, there are far more DLS compounds
with B predicted to be 10 or greater as n-type than p-type. The
average hole mobility is approximately two orders of magnitude
lower than the electron mobility, and the valence band mass is
about one order of magnitude higher than the conduction band
on average. This leads to many materials with high-potential n-
type performance and fewer with high p-type B. Unfortunately, it
appears that far fewer compounds can be realized n-type to a
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reasonably high-carrier concentrations. Many of these are
quaternary Cu-containing compounds which have been made p-
type only, and while the quality factor indicates they have the
potential to be very good thermoelectric materials, the dopability
predictions show it is very unlikely they can be made n-type to
realize that potential. However, the high quantity of low-
persistence quaternary Cu compounds may bias this conclusion;
further studies of extrinsic doping in these materials is needed to
establish the attainable carrier concentration bounds.

Figure 5 also demonstrates there are a number of binary and
ternary compounds which could be interesting thermelectric
materials where the dopability limits have not been fully explored
experimentally. For example, 8 calculations indicate GaP could be
a good thermoelectric, with both experimental and predicted
dopability in the approriate range. ZnSnSb; is predicted to have a
much larger carrier concentration window than that found to date
experimentally, and it could be a good thermoelectric if pushed
from p-type through intrinsic to n-type. This also indicates that
CulnSe,, which has had recent attention as a p-type thermo-
electric, should be looked at instead as an n-type TE. Likewise p-
type CuFeS, and AgFeS, could be promising TE materials. SnTe>®"
61 and SnS%*® have both received significant interest as TE
materials in their typical structures (rocksalt and orthorhombic,
respectively) and our predictions indicate they could exhibit high
performance if stabilized in the diamond-like structure.

DISCUSSION

In this work, we show that dopability ranges can be predicted to
approximately one order of magnitude against experimental
results through linear modeling. The accuracy of a simple linear
model is found to be similar to more complex machine learning
techniques and allows greater interpretability regarding the
features and properties that control dopability in diamond-like
semiconductors. A number of features indicate that substitutional
defects play a major role in driving carrier concentration ranges
toward intrinsic ranges. In addition, features such as band gap and
Bader charge match either “rules of thumb” or previous
computational findings. Compounds that possess both promising
thermoelectric quality factor (8) and complementary dopability
are identified. Our results serve as a caution against pursuing a
subset of high 8 compounds that have unfavorable dopability
ranges. For compounds or subgroups of DLS where persistence is
historically low, this work serves to inspire further experimental
interrogation of carrier concentration limits when the predicted
dopability range is far greater than the experimentally realized
limits. These results also indicate where detailed defect calculation
efforts are most impactful. We note that the predictive dopability
model is not inherently limited to DLS compounds; an expanded
learning set could incorporate structural descriptors so that the
model could be applied to a more diverse set of compounds,
including all thermoelectric materials.

METHODS

An extensive literature search was undertaken to compile a dataset that
could be used for statistical modeling. Although a few sources of tabulated
carrier concentration exist, these often do not note sample quality or
processing conditions, even though these are very important in
determining carrier concentration in semiconductors. For this reason,
careful consideration was given to experimental conditions from which
measurements could be relied upon and all measurements for this dataset
were scraped from original sources where possible. An attempt was made
to use bulk samples produced at or near equilibrium conditions, measured
using the Hall effect technique near room temperature and pressure.
Nanomaterials, thin films, and other non-equilibrium processing methods
were avoided where possible. The results of this literature search are given
in Table S1.
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With DLS as the model system, the scale for dopability must be defined
such that the data are distributed fairly normal so that it can be modeled.
The primary goal is to describe the full extent of the achievable dopability
range in a compound, from the maximum n-type carrier concentration to
the maximum p-type concentration. In some compounds, carrier
concentration can be experimentally varied across many orders of
magnitude for both hole and electron majority carriers, while for others
the range is narrow or limited to a single type. Although carrier
concentration spans many orders of magnitude for both positive and
negative values, we are primarily interested in the range from intrinsic to
degenerately doped. Thus, our scale ranges from —1 x 10%' (degenerate n-
type) to 1x10?" (degenerate p-type), with intrinsic considered any
concentration less than |1x 10'°| (all units given as cm ™). This allows us
to define a linear scale from —5 to 0 to 5, corresponding to —1 x 10?" to
+1x10'® to 1x10%" where every integer value represents an order of
magnitude in carrier concentration. Any concentration greater than 1 x
10?" is assigned a value of five and anything less than 1x10'® is
considered to be 0. Using this scale for the carrier concentration data
scraped from the literature results in a distribution that is relatively normal,
as seen if Fig. S1.

To model this dataset, a list of features was first compiled. This includes
chemistry-based features from periodic table properties of the consitu-
tuent elements. Added to this feature set were inexpensive calculations
from the Open Quantum Materials Database (OQMD)®*%® and Materials
Project (MP).°%8 Lastly, structure and other miscellaneous features were
added (Fig. S2). Modeling was performed using a number of Python
packages, most notably Scikit-learn and StatsModels. Linear regression and
leave-one-out cross-validation (LOOCV) were chosen due to a combination
of prediciton accuracy and interpretability after comparing the results with
other machine learning methods. A detailed discussion of data and feature
set preparation, model comparison and analysis, and refinement can be
found in the Supplemental Information. The primary metric for scoring
accuracy used here is the mean absolute error (MAE) which is the average
distance between the experimental and predicted value, though mean
squared error (MSE) is also evaluated, where smaller values indicate less
difference between experiments and predictions.
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