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Precision and efficiency in solid-state pseudopotential
calculations
Gianluca Prandini1, Antimo Marrazzo 1, Ivano E. Castelli 1,2, Nicolas Mounet1 and Nicola Marzari 1

Despite the enormous success and popularity of density-functional theory, systematic verification and validation studies are still
limited in number and scope. Here, we propose a protocol to test publicly available pseudopotential libraries, based on several
independent criteria including verification against all-electron equations of state and plane-wave convergence tests for phonon
frequencies, band structure, cohesive energy and pressure. Adopting these criteria we obtain curated pseudopotential libraries
(named SSSP or standard solid-state pseudopotential libraries), that we target for high-throughput materials screening (“SSSP
efficiency”) and high-precision materials modelling (“SSSP precision”). This latter scores highest among open-source
pseudopotential libraries available in the Δ-factor test of equations of states of elemental solids.
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INTRODUCTION
In the last three decades, atomistic electronic-structure methods
have radically changed the way we think at materials theory and
simulations. The 1998 Nobel prize in Chemistry given for density-
functional theory (DFT) acknowledges this shift of paradigm. The
ability to reduce the complexity of the many-body quantum-
mechanical problem involving interacting electrons and nuclei
into more tractable forms and algorithms allowed to leverage
inexpensive and exponentially growing computational power, in
order to provide sufficiently precise predictions for a great number
of materials. What followed has been a flourishing of methods to
compute more and more complex materials properties, and most
notably spectroscopies (such as Raman, IR, ARPES, EELS, NMR and
more). Nowadays, the (over)confidence in first-principles methods
is such that they are routinely used to help interpreting
experiments and guide the discovery and understanding of novel
materials. In particular, systematic DFT-based computational
materials screening is a fast-growing field of research, as reflected
by the creation, in the last few years, of several research centres
worldwide on computational materials discovery. Up to now, the
most visible output has been the creation of large databases of
materials properties obtained from first principles, to be compared
with or to augment experimental databases such as the Pauling
file (http://paulingfile.com/), COD (http://www.crystallography.net/
cod/) or ICSD (http://www2.fiz-karlsruhe.de/icsd_home.html/).
Even from a purely financial perspective, the personnel cost for
plane-wave studies is of the order of 1 billion US$ per year, in
purchasing power parity (PPP) terms, matched by substantial
hardware usage (see Supplementary Note 1). It is ever so more
remarkable that in spite all of this, the efforts of verification of the
precision of the underlying pseudopotentials (PSPs) or projector
augmented-wave (PAW) approximations have been minimal. Only
in 2016 a multi-group effort was able to establish a baseline in the
calculations of the equations of state of elemental crystals.1 In

addition to the issue of precision, or of verification (i.e. insuring
that the removal of the core electrons from the calculations
performs with the required tolerance), the issue of performance
looms large—a softer, smoother PSP will allow straightforwardly
faster calculations, both because the basis set is decreased as the
computational cost scales with the square of the basis size, and
because the minimisation or iterative approaches can become
more efficient or better pre-conditioned with a smaller basis.
Here, we introduce a PSP testing protocol based on extensive

DFT and density-functional perturbation theory (DFPT) calcula-
tions of elemental solids, and select the optimal PSP for 85
elements of the periodic table. Our protocol, named standard
solid-state pseudopotential (SSSP) testing protocol, is made of a
verification part, based on the Δ-factor (i.e. the difference between
all-electron and PSP equations of state),1,2 and an extensive
performance-oriented part based on plane-wave convergence
tests for phonon frequencies, band structures, cohesive energies
and stress tensors. We underline here that the SSSP testing
protocol is a protocol based on verification and not on validation
(following the nomenclature of ref. 1). Indeed our primary goal is
to test the precision (verification) of the PSPs and thus to furnish,
through our testing protocol, PSP libraries that give results as close
as possible to the “exact” theoretical results for the PBE functional,
as they would be obtained through a perfectly converged all-
electron calculation. We do not perform any comparison with
respect to experimental results, i.e. we do not test the accuracy
(validation) of the PSPs.
We consider up to eight (depending on the element) publicly

available PSP libraries for the PBE functional3 and test them with
the PWscf and Phonon codes of the Quantum ESPRESSO (QE)
distribution4 in an automated fashion within the framework of the
AiiDA5 infrastructure for reproducible computational science.
AiiDA also allows straightforward dissemination of results through
the Materials Cloud web platform (https://www.materialscloud.
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org/), a cloud service designed to enable data sharing in
computational materials science.
In this paper, first we describe the test set of physically relevant

quantities defined for our SSSP testing protocol and what are the
corresponding selection criteria used in order to select the best
PSPs. Then, we discuss the need for testing several properties,
showing how different PSPs may yield similar results and
convergence behaviours for one property but different ones for
another property. Finally, we propose two optimal PSP libraries
chosen according to the SSSP testing protocol and criteria.

RESULTS
SSSP testing protocol
In this work, we investigate the precision and performance of
several PSPs libraries available for the QE distribution.4 QE is an
integrated suite of open-source codes for electronic-structure
calculations based on DFT which uses plane-waves as basis set
and PSPs to represent the electrostatic electron–ion interactions.
Nowadays QE is one of the most popular DFT codes adopted by
researchers for the first-principles study of materials properties,
with more than 2000 citations last year, according to Google
Scholar™.
All the tested PSP libraries are based on the generalised

gradient approximation (GGA) for the exchange-correlation
functional of Perdew, Burke and Ernzerhof (PBE)3 and they include
the three main pseudization approaches: norm-conserving (NC),6

ultrasoft (US)7 and projector-augmented wave (PAW)8 (in the
following, we refer both to PSP and PAW approaches as PSP
methods). In particular, we investigate three PAW PSP libraries
(pslibrary.0.3.1,9 pslibrary.1.0.0 high accuracy10 and the library
proposed by Topsakal and Wentzcovitch for the rare-earth
elements11), five US libraries (GBRV (versions 1.2, 1.4 and 1.5),12

pslibrary.0.3.1,9 and pslibrary.1.0.0 high accuracy10) and two NC
libraries (SG15, versions 1.0 and 1.113). For a few selected
elements, i.e. N, O, F and Hf, in which all the PSP libraries above
perform less well in the Δ-factor test we also consider the recent
NC Pseudo Dojo library14 and, only for N, our own set (called
THEOS) of US PSPs. Besides, for the elements from H to Ne in the
periodic table, we test the NC library proposed by Willand et al.15

which is tailored for systems made of light elements (see Table 1
for a list of all the PSP libraries tested).

Equation of state. In order to assess the precision of PSPs, we
compute the Δ-factor, i.e. the integral of the difference between
the equations of state calculated with PSP simulations and with
reference all-electron results. For this purpose we use the protocol
introduced in 2014 by Lejaeghere et al.2 This protocol was recently
exploited to compare 15 different DFT codes, including both all-
electron and PSP codes, in order to verify the reproducibility of the
PBE equations of state of elemental crystals across different
methods and implementations.1

The protocol consists in calculating the energy-versus-volume
at seven equidistant points centred around the reference
equilibrium volume and then performing a Birch–Murnaghan fit.
From the parameters of the fit some important physical quantities
related to the structural and elastic properties of the system are
extracted: the equilibrium volume V0, the bulk modulus B0 and the
first derivative of the bulk modulus B1. The Δ-factor, that is
reported in units of meV/atom, gives an overall estimate of the
discrepancy between PSPs and all-electron results in terms of
these structural properties.
However, as originally noticed by Jollet et al.,16 the Δ-factor is a

stiffness-dependent quantity, being proportional to B0. Indeed,
very soft materials, as for example, the noble-gas solids, are
generally associated with small values of the Δ-factor, even for
significant volume differences. On the other hand for very hard
materials the opposite situation occurs, i.e. small volume
differences give rise to large values of the Δ-factor. To solve this
problem the alternative Δ′-factor was introduced, which corre-
sponds to a Δ-factor “renormalized” to reference values of V0 and
B0 as described in ref. 16. In Fig. 1 it is shown how the Δ′-factor is
indeed very strongly correlated with the differences in equilibrium
volume, δV0, obtained from the equations of state (note that the
data for Δ-factor, Δ′-factor and δV0 reported in the scatter plots of
Fig. 1 are taken between pairs of PSPs for the elemental crystals
tested in this work and not between PSPs and all-electron results).
Instead the Δ-factor is scattered along a wide range of slopes that
correspond to different values of the bulk modulus B0: small
(large) bulk moduli correspond to small (large) slopes. In our
protocol we adopt the Δ-factor (and not the Δ′-factor), as much
more Δ-factor reference data has been produced in the literature1

for several PSP libraries and codes. However, for completeness, we
compute also the renormalized Δ′-factor and report this value as
well. Broadly speaking two compared equations of state can be
considered undistinguishable if the Δ-factor is smaller than 1meV/
atom (valid for most of the elemental solids but with the notable
exception of very soft materials) or if the Δ′-factor is smaller than
3meV/atom, where the latter corresponds to a variation in the
equilibrium volume of <0.5% for all elemental solids (see Fig. 1).
The reference all-electron results of the equation of states

chosen in this work are the ones of the WIEN2k code17 reported in
ref. 1 with the exception of the rare-earth nitrides for which we use
the WIEN2k results reported in ref. 11. All PSP calculations needed
for the Δ-factor estimation are performed at the reference
wavefunction cutoff of 200 Ry using a dense Monkhorst–Pack18

k-grid of 20 × 20 × 20 and a Marzari–Vanderbilt smearing19 of
2 mRy. Magnetism is included for the equations of state of oxygen
and chromium (antiferromagnetism), manganese (antiferrimag-
netism) and iron, cobalt, nickel and the rare-earth nitrides
(ferromagnetism).
Within the SSSP testing protocol we study the convergence of

four different quantities as a function of the wavefunction cutoff
Ec, i.e. of the number of plane-waves used in the expansion of the
Kohn–Sham states. The tested quantities are phonons frequencies
at the zone-border, cohesive energies, pressure and band
structures.
All the calculations are performed on the ground-state

structures of elemental crystals at 0 K, as provided in http://
molmod.ugent.be/deltacodesdft/ with the exception of fluorine
for which the SiF4 structure is used because of convergence issues

Table 1. Pseudopotential libraries tested with the SSSP protocol

Full name Short name Method Reference

pslibrary.0.3.1 US 031US US 9

pslibrary.0.3.1 PAW 031PAW PAW 9

pslibrary.1.0.0 US (high acc.) 100US US 10

pslibrary.1.0.0 PAW (high acc.) 100PAW PAW 10

GBRV-1.2 (US) GBRV-1.2 US 12

GBRV-1.4 (US) GBRV-1.4 US 12

GBRV-1.5 (US) GBRV-1.5 US 12

SG15 (NC) SG15 NC 13

SG15-1.1 (NC) SG15-1.1 NC 13

RE Wentzcovitch (PAW) Wentzcovitch PAW 11

Goedecker (NC) Goedecker NC 15

PseudoDojo (NC) Dojo NC 14

THEOS (US) THEOS US

The short names correspond to the name used in the convergence pattern
plots (see Fig. 2) to identify the pseudopotential libraries
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of the elemental fluorine structure and of lanthanides that are not
included in the test set of http://molmod.ugent.be/deltacodesdft/
and for which the nitride structures of ref. 11 are used. In total we
test 85 different elements of the periodic table.
In all PSP frameworks, a plane-wave representation of the

charge density requires a cutoff, Eρ, higher than the wavefunction
cutoff, Ec. It should be noted that here charge densities and
wavefunctions actually stand for their pseudopotential counter-
parts, often called pseudo-charge densities and pseudo-
wavefunctions. The true “all-electron” quantities can in some
cases be reconstructed, as for instance in the PAW formalism.
Typically, convergence tests are performed by varying Ec and
keeping the dual, i.e. the ratio Eρ/Ec, fixed. For instance, in the NC
scheme the charge density is simply the modulus squared of the
single-particle wavefunctions, summed over all the electrons, and
in reciprocal space it reads:

ρ Gð Þ ¼
X
n;k

X
G0

ψn;k G� G0ð Þψ�
n;k G0ð Þ (1)

where sums run over the occupied bands with index n, Bloch
vectors k and reciprocal lattice vectors G′. Hence, the largest G-
vector appearing in the charge density has modulus twice as large
as the largest G-vector appearing in the wavefunction and, as
plane-wave energies scale quadratically, the dual should be equal
to 4 to guarantee that all Fourier components are represented. So
for NC PSPs we always adopt a dual of 4, although it is known that
in some cases calculations could be efficiently converged with a
lower dual. In the PAW and US formalisms, wavefunctions are
designed to be slowly varying in real space (i.e. to be soft)
requiring substantially fewer plane-waves to be represented with
respect to NC pseudo-wavefunctions. The price for working with a
reduced basis set is the additional complexity in deriving
expressions for observables, including the charge density which
cannot be simply computed using Eq. (1). However the charge
density ρ is the fundamental quantity in DFT. The physics of the
problem and the energy functional determine the spatial variation
of ρ and thus the cutoff Eρ, independently of the PSP scheme that
is adopted. Fundamentally, that is why PAW and US PSPs require
relatively high duals, where according to common knowledge a
choice of a dual of eight is usually reasonable to efficiently achieve
good precision. However, the convergence patterns at duals equal
to 12 and 16 are also checked for selected elements that show a
particularly high wavefunction cutoff, namely manganese, iron,

cobalt, hafnium and oxygen, as also suggested by a convergence
study on iron.20

The convergence patterns are obtained at fixed duals as
specified above and Erefc ¼ 200 Ry as the reference wavefunction
cutoff. All the quantities are considered as differences with respect
to the corresponding reference value calculated at Erefc . An
example of the calculated convergence pattern plot is shown in
Fig. 2 for the case of palladium. We choose 200 Ry as the reference
wavefunction cutoff because, for each element, all the quantities
tested in the SSSP testing protocol typically converge well before
that value for at least one PSP (with radon being the only
exception, as discussed in the Supplementary Figure 1). Therefore,
even if for some hard PSPs the convergence plots could be
marginally different by using a larger value for Erefc , those
modifications would not be relevant for the conclusions of our
work and, in particular, the selection of the SSSP libraries would
not be affected.
We perform all the tests on the elemental crystals using a

relatively coarse 6 × 6 × 6 Monkhorst–Pack k-grid (except for
oxygen and all the lanthanides where a 10 × 10 × 10 k-grid is
used instead) because in our protocol for convergence we are not
directly interested in the absolute values of the tested quantities
but rather on their difference with respect to the reference values
computed at Erefc . We also disregard spin-polarisation in all the
convergence tests but we have verified for the magnetic
structures that the convergence patterns are not substantially
altered by the inclusion of magnetism (see Supplementary Figures
2–7).

Phonon frequencies. The convergence of vibrational properties of
elemental crystals is performed by calculating, within the frame-
work of DFPT, the phonon frequencies at the zone-border of the
Brillouin zone, i.e. at the point Q ¼ 1

2 ;
1
2 ;

1
2

� �
in relative coordinates

of the reciprocal lattice vectors. While the Δ-factor test is related to
the structural and elastic properties of the system, by considering
phonon frequencies at the border of the Brillouin zone we have
access to information related to both acoustic and optical modes.
The number of phonon frequencies depends on the number of

atoms in the unit cell, and so on the element under investigation.
In the convergence pattern plots of the SSSP testing protocol we
condense the information related to the several phonon
frequencies into a single number δω. It is defined as a relative
average deviation (in percentage) among all the phonon

Fig. 1 Correlation of the Δ-factor (left panel) and the Δ′-factor (right panel) with the difference in equilibrium volume, δV0, estimated from the
Birch–Murnaghan fit of the equations of state. The data points are obtained from the comparison between pairs of PSPs for the 85 elemental
crystals tested in this work and are the results of calculations performed at Erefc ¼ 200 Ry. While the Δ′-factor is strongly correlated with δV0, the
Δ-factor is instead scattered along a wide range of slopes that correspond to different values of the bulk modulus B0
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frequencies ωi calculated at Q for each wavefunction cutoff Ec:

δω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ωiðEcÞ � ωiðErefc Þ
ωiðErefc Þ

����
����
2

vuut (2)

where N is the total number of phonon frequencies. The
maximum relative deviation is similarly defined as

δωerror ¼ max
i

ωiðEcÞ � ωiðErefc Þ
ωiðErefc Þ

����
���� (3)

and it is represented as an half error bar in the convergence
pattern plots.
If the highest phonon frequency ωmax of an elemental crystal at

Q is smaller than 100 cm−1 at Erefc , the absolute average deviation
and the corresponding maximum deviation are computed instead
of the relative ones, since a precision of a few cm−1 is often the
reasonable target for a DFPT calculation.

Cohesive energies. We investigate the convergence of the energy
difference between the crystalline solid and the corresponding
individually isolated atoms, i.e. the cohesive energy of the
elemental crystals. Since periodic boundary conditions are used
in the calculations, the isolated atom is placed in a cell of lattice
parameter equal to 12 Å to avoid spurious interactions with the
periodic images. The quantity δEcoh considered in the SSSP testing
protocol is defined as the absolute difference between the
cohesive energy at a given cutoff Ec and the one at the reference
wavefunction cutoff Erefc , i.e. 200 Ry (in units of meV per atom).

Pressure. We evaluate the convergence of the stress by comput-
ing the hydrostatic pressure, which is defined as P= 1/3Tr(σ),
where σ is the stress tensor. Rather than checking convergence
directly on the pressure itself (the magnitude of which depends
strongly on the stiffness of the material) we evaluate it through its
conversion into an equivalent volume. This allows the definition of
a stiffness-agnostic and hence material’s independent conver-
gence criterion. Starting from the Birch–Murnaghan equation of

state for the pressure fitted on the reference all-electron
calculations

PBMðVÞ ¼ 3B0
2

V0
V

� �7
3� V0

V

� �5
3

h i
´ 1þ 3

4 B00 � 4
� �

V0
V

� �2
3�1

h in o
;

(4)

we define the deviation volume V′ as the one closest to the
equilibrium volume V0 such that PBM(V′)= δP where δP ¼ PðEcÞ �
PðErefc Þ is the residual pressure of a calculation performed at the
cutoff Ec. With this definition, fully converged values of pressure
give δP= 0 and therefore V′= V0. Once V′ is known we can
eventually find the relative volume deviation (in percentage) due
to the residual pressure: δVpress= (V′− V0)/V0, which is the
quantity considered in the SSSP testing protocol.

Band structure. The tests discussed so far deal with ground-state
quantities only, computed either using DFT or DFPT. However, PSP
calculations are often employed to study optical, transport and
other properties that involve charged or neutral excitations. The
majority of excited-states calculations are based on many-body
perturbation theory (MBPT), e.g. G0W0 and self-consistent GW,21–23

the Bethe–Salpeter equation (BSE),24 or dynamical mean field
theory (DMFT),25 and are performed on-top of a DFT calculation,
which provides the starting point for both self-consistent and one-
shot approaches. Hence, we include band structures in our testing
protocol, taking into account both the occupied bands and some
of the lower lying unoccupied bands. Here, we outline a protocol
for performing both convergence tests and verification of band
structures by defining a bands distance (a similar idea has been
proposed independently in ref. 26). The aim is to quantify how
much two band structures “differ” by introducing a simple and
computationally inexpensive metric in the band structures space.
We call our bands distance η and consider two cases that are
distinguished solely by the number of bands taken into account.
The ηv (or “eta valence”) considers the occupied bands only, while
in the η10 (or “eta conduction 10”) all the bands up to 10 eV above
the Fermi level are considered. We always use a robust (0.3 eV)

Fig. 2 SSSP testing protocol applied to palladium. For each pseudopotential the convergence w.r.t. the wavefunction cutoff of the zone-
boundary phonons δωð Þ, cohesive energy (δEcoh), pressure (δVpress) and bands structure (η10 and max η10) is monitored. The horizontal dashed
lines correspond to the thresholds of the SSSP selection criteria (efficiency or precision); here precision is shown. On the right-hand side we
report the number of valence electrons of the pseudopotential (Z), the Δ-factor and the Δ′-factor with respect to the reference all-electron
results and the converged value of the highest phonon frequency (ωmax). The circle marks the pseudopotential and wavefunction cutoff
chosen for the SSSP library (version 1.1). All convergence pattern plots of the 85 elements tested are available on the Materials Cloud platform
(https://www.materialscloud.org/)
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Fermi–Dirac smearing to deal with partially occupied bands, while
to compute ηv for insulators we use no smearing. We choose a 6 ×
6 × 6 uniform k-grid, in the full Brillouin zone and with no
symmetry reduction. Choosing a high-symmetry path could result
in an unsatisfactory arbitrary choice, as different recipes for the
standardisation of paths have been introduced in the recent
literature27,28 and interesting features of the band structure may
occur far from the high-symmetry lines (such as Weyl points).29,30

A uniform mesh is also more appropriate from the point of view of
electron’s nearsightedness:31 if the energy eigenvalues are known
on a sufficiently fine uniform k-points mesh, it is possible to get an
exact real-space representation of the Hamiltonian in a Wannier
function basis32 and then interpolate to an arbitrary fine mesh.
Let us suppose we have two sets of bands εAnk and εBnk ; we

define the distance between the two sets of (valence) bands as

ηvðA; BÞ ¼ min
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
nk
~fnkðεAnk � εBnk þ ωÞ2P

nk
~fnk

s
; (5)

where

~fnk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fnkðεAF ; σÞfnkðεBF; σÞ

q
; (6)

fnk(ε, σ) being the Fermi–Dirac distribution and σ the smearing
width. The Fermi energies, εðA;BÞF , for the two band structures A and
B are obtained from the relation NðA;BÞ

el ¼ P
nk f

ðA;BÞ
nk ðεðA;BÞF ; σÞ,

where Nel is the number of electrons. In order to properly align
the two sets of bands, ηv is defined as the minimum with respect
to a rigid energy shift ω.
We now consider also the low lying conduction bands by

introducing η10, defined as in Eq. (5) but with a Fermi level up shift
of 10 eV. In this way, η10 measures the bands distance of the
valence bands plus the conduction bands up to 10 eV above the
Fermi energy.
Finally, we also take into account the possibility that significant

differences between band structures may occur only in subregions
of the Brillouin zone or in small energy ranges. After computing
the η, we check the slowest converging band by computing max
η, defined as

max η ¼ max
nk

jεAnk � εBnk þ ωj; (7)

and request that is has to be converged with a slightly higher
threshold than η itself.
In the SSSP testing protocol we use η10 and max η10 (in units of

meV) as criteria to quantitatively study the convergence of band
structures.

DISCUSSION
SSSP selection criteria
We discuss now the selection criteria used to build our optimal
PSP libraries, namely the SSSP efficiency and SSSP precision
libraries (version 1.1). As mentioned in the Introduction, our
primary goal is to define tested PSP libraries with a focus on
efficiency and precision for high-throughput calculations and to
suggest converged wavefunction cutoffs. The main idea behind
the SSSP precision library is to provide the PSPs that are the
closest to all-electron calculations in terms of Δ-factor computed
at the reference wavefunction cutoff Erefc , without much con-
sideration on the computational cost and the wavefunction
cutoffs actually needed to converge all relevant quantities. On the
other hand, the SSSP efficiency library is designed for practical
applications that should remain affordable, and therefore PSPs are
chosen such that wavefunction cutoffs are as low as possible while
keeping the precision reasonable.
The selection criteria are listed in Table 2. For SSSP efficiency,

when possible we select PSPs with a rather small Δ-factor (below
1meV/atom). The phonons δω should be converged within 2% (or

within 2 cm−1 if the highest phonon frequency is smaller than
100 cm−1), the cohesive energy δEcoh within 2 meV/atom, the
pressure within 1% for δVpress (i.e. 0.33% on the lattice parameter
of a cubic crystal) and the band structure within 10meV for η10
and within 20 meV for max η10. For the SSSP precision, the criteria
are slightly stricter (see Table 2) and we systematically opt for the
PSP with the smallest Δ-factor. Therefore the wavefunction cutoffs
of the SSSP precision are typically higher than the ones proposed
for the SSSP efficiency.
We underline here that in a few difficult cases the SSSP libraries

are built following these criteria as general guidelines and not
using these as strict rules. In practice, this means that the PSPs are
chosen one-by-one through human inspection and not with an
automatic procedure. This flexible approach is necessary because
the convergence of some of the tested quantities is sometimes
slow and/or irregular. For example, it can happen that the
selection criteria are not all together satisfied at a reasonable
wavefunction cutoff for any of the PSPs of a given element or that
the convergence patterns show outlier data points or oscillations.
A clear example of this situation is given by the extremely soft
noble-gas elemental solids for which the convergence of the
tested quantities, in particular of the stress tensor and of the
phonon frequencies, can be very noisy due to numerical
instabilities. In these cases it is therefore necessary to make
compromise choices that can sacrifice or increase some of the
thresholds imposed by the SSSP selection criteria, if no other
possibilities are available or in order to keep the computational
cost reasonable.

Ghost states
We use the bands distance η10 defined above not only for the
convergence tests but also to compare the band structures of the
tested PSPs for all the elemental crystals considered. However,
different PSPs are often generated with different combinations of
semi-core states in the valence band. Hence, we compare only the
bands they have in common, by taking the minimum number of
electrons of all the set and cutting the exceeding low-energy
bands accordingly. By means of this additional criterion it is
possible to automatically detect ghost states33 in a PSP in the
valence and in the conduction up to the chosen threshold (here
10 eV above the Fermi energy), as they are signalled by extremely
large values (of the order of eV or more) of the bands distances
when computed with respect to other ghost-free PSPs (see Fig. 3
for an example). A list of the tested PSPs having ghost states in the
empty conduction bands is reported in Table 3. However, it is
worth noting that standard DFT calculations for ground-state
properties are unaffected by ghost states above the Fermi level.
Nonetheless they could be a possible source of problems for
applications related to excited-state properties (e.g. in MBPT
calculations such as GW or BSE). As expected, none of the PSPs
considered has ghost states in the valence as they would give
unphysical results also for ground-state properties and they would
be easily spotted.
We stress here that the bands distance could in principle also be

used for verification studies because it would allow for a
quantitative comparison of PSPs band structures with reference
all-electron band structures.

Correlations among tested quantities
Before giving the list of PSPs chosen by following the SSSP testing
protocol, we show with an analysis of our results that an accurate
selection of PSPs for generic applications in computational
material science needs several independent criteria to be satisfied,
based on the estimation of different physical properties. This is
done also with the purpose of furnishing an a posteriori
justification of the protocol we established for PSP testing. In
particular we show that PSPs that give very similar results for a
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certain tested quantity can give, in a non-negligible number of
cases, significant discrepancies in the estimation of some other
quantity.
We compare the PSP results for the physical properties

considered in the SSSP testing protocol by calculating the
discrepancies between all the available PSPs for a given element,
using the data obtained at the reference wavefunction cutoff of
200 Ry. An example is shown in Fig. 4 where the differences
between the equations of state (through the use of the Δ-factor)

and between band structures (through the use of η10) are
compared for the case of sodium. We notice that, even if all the
sodium PSPs we considered produce very similar equations of
states—with Δ-factors always smaller than 0.3 meV—the band
structure of a particular PSP shows instead substantial differences
up to η10= 65meV.
More generally, we can study correlation between pairs of

quantities by looking at scatter plots, where the differences
between all possible couples of PSPs for all the 85 elements are

Table 2. Selection criteria for the SSSP efficiency and SSSP precision libraries

SSSP efficiency SSSP precision notes

Phonon frequencies δωð Þ <2% < 1% <1 cm−1 if ωmax < 100 cm−1

Cohesive energy (δEcoh) <2meV/atom <2meV/atom

Pressure (δVpress) <1% <0.5% in terms of volume differences

Band structure (η10) <10meV <10meV

Band structure (max η10) <20meV < 20meV

Equation of state (Δ-factor) <1meV/atom (if possible) Smallest

Fig. 3 Band structure of FCC Pb along a high-symmetry path, for several pseudopotential libraries (top panel). The valence bands are almost
identical to each other, while some differences appear in the conduction bands: the SG15 bands deviate from the other bands around 7–10 eV
over the Fermi level and a flat ghost state in the GBRV bands is clearly visible at around 8 eV. These differences between band structures can
be compressed into the bands distances ηv and η10, reported in units of meV (bottom panel). In addition, ghost states in the band interval
considered can be automatically detected as peaks in the η function, hence simplifying greatly the verification of spectral properties
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considered. In Fig. 5 we show as an example the correlation plot
between the equation of state (obtained through both the Δ-
factor and the Δ′-factor) and pressure (δVpress), cohesive energy
(δEcoh), highest phonon frequency (δωmax) and valence band
structure (ηv). Figure 5 shows how for all such properties
correlation is very weak, suggesting that the precision of a PSP
is property dependent. However, we also notice (see Fig. 5) that
the correlation between the Δ′-factor and δVpress is higher than for
the Δ-factor. This observation can be rationalised in terms of the Δ

′-factor renormalisation, that provides an estimate of the
difference between two equations of state that is more material-
independent and straightforwardly related to volume differences
(see Fig. 1 and discussion therein). From our results we conclude
that there is no strong correlation between pairs of tested
quantities entering our selection criteria, hence the similarity
between PSPs is strongly property dependent.
Up to now, the Δ-factor is the only verification test present in

the literature to assess the precision of DFT calculations of solids.

Table 3. List of the only pseudopotentials having ghost states in the
conduction bands up to 10 eV above the Fermi level, for all libraries
tested

Element Pseudopotential

Ar SG15

Cs SG15

In SG15

Hg 031PAW

Hg 031US

S SG15

Se SG15

Sn SG15

Te SG15

Pb GBRV-1.2

Po 031PAW

Po 031US

Sb SG15

Xe 031PAW

Xe 031US

Obviously, none of these is included in the SSSP libraries. The latest release
of the SG15 library (SG15-1.1) has no ghost states

Fig. 4 Comparison of the discrepancies among PSPs of sodium for
the equations of state (Δ-factor) and band structures (η10) at the
reference wavefunction cutoff of 200 Ry. Although all equations of
state are very similar among each other, the 031US band structure
shows some discrepancies with respect to other PSPs

Fig. 5 Scatter plots showing the discrepancies among PSPs for all the 85 elements tested. Each point in the plot corresponds to the
discrepancies between pairs of PSPs (of a given element) for the two quantities tested calculated at Erefc ¼ 200 Ry. In particular we show the
comparisons between the equations of state (Δ-factor in the upper panel, Δ′-factor in the lower panel) and, respectively, the pressure (δVpress),
cohesive energy (δEcoh), highest phonon frequency (δωmax) and valence band structure (ηv). No strong correlations among the quantities
tested are observed but we note that the Δ′-factor is more correlated to δVpress than the Δ-factor
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Given the small correlations among the SSSP criteria, we stress
here the importance for the electronic structure community to
head for the creation of an heterogeneous set of validated all-
electron reference data, which would ideally include other
physical properties beyond the equation of state, such as phonons
or band structures (such effort is currently coordinated by S.
Cottenier). This would allow the extension of the available PSP
verification tests beyond the Δ-factor for elemental crystals,
potentially improving the assessment of PSPs precision.
Similarly, we show that the convergence with respect to the

wavefunction cutoff of a given physical property usually has a
different and uncorrelated behaviour if compared to other tested
quantities (see Fig. 6 for a comparison of the wavefunction cutoffs
at which two tested quantities in the SSSP testing protocol reach
the required precision for each PSP). Indeed, differences in the

mathematical expression adopted and/or in the code-specific
implementations that are needed to compute the tested
quantities can result in different and independent convergence
patterns, so that each quantity reaches the required precision at
different wavefunction cutoffs. For example, the derivatives
involved in the calculation of the stress tensor or the phonon
frequencies either through direct, finite differences methods or
linear response theory, can introduce different numerical noise
and display a slower convergence if compared to other properties,
such as equations of state or band structures, that do not require
calculations of derivatives.
In general, it is therefore necessary to study the convergence of

each relevant quantity separately, in order to correctly estimate
the optimal number of plane waves that gives results converged
within the required precision for all the properties of interest.

Exchange-correlation functionals
Our study on the precision and efficiency of PSPs is restricted to
the PBE functional as it is among the most popular ones in the
electronic structure community and the only functional for which
a verified set of reference all-electron results for solids exists.1 So
the Δ-factor test for verification can be performed, at the moment,
only with the PBE functional.
Still, it is worth to comment on the transferability of the

convergence tests performed in the SSSP testing protocol among
different functionals. For this purpose, we consider the revised PBE
GGA for solids, namely the PBEsol34 functional, and one of the
most widely used functionals for the local density approximation
(LDA), i.e. the PZ35 functional. By testing some elemental crystals
for the GBRV library (see Fig. 7 for the case of Ga and the
Supplementary Figures 8 and 9 for a few more systems), we find
that the convergence patterns turn out to be very similar if the
PSPs are generated with the same atomic parameters (such as
electronic configuration, cutoff radii, etc.), thus showing a good
transferability of the convergence tests among different local and
semi-local functionals. However, performing consistent tests for
the transferability of more complex and nonlocal functionals, such
as SCAN36 (meta-GGA) or HSE37 (exact-exchange), is less
straightforward because, as of today, no PSP libraries for these
kind of functionals exist. Indeed, in these cases, the common
approach followed in all PSP DFT codes is to use PSPs generated

Fig. 6 Comparison of the PSP wavefunction cutoffs (circles) selected
strictly following the SSSP efficiency selection criteria (see Table 2)
for the phonon frequencies δωð Þ and the cohesive energies (δEcoh).
The colormap for the circles corresponds to the number of PSPs that
have that pair of wavefunction cutoffs for the two quantities tested.
We find that, in general, the convergence of one quantity does not
imply convergence of the other

Fig. 7 Comparison of the convergence pattern plots for three functionals, i.e. PBE, PBEsol and PZ, applied to the GBRV-1.4 PSP of Ga. PBEsol
and PZ PSPs are generated with the same atomic parameters of the original PBE pseudopotential from the GBRV-1.4 PSP library
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with local or semi-local functionals, e.g. PBE, and to then “switch”
to the complex functional, e.g. HSE, when performing the PSP DFT
calculation including the valence electrons only. Tests performed
following this approach, although useful, would not ensure the
transferability of the functional under investigation and more
extensive and consistent studies on the subject are therefore left
to future work, in particular when HSE or SCAN PSP libraries, to
only cite a few possible examples, will be available.

SSSP libraries
Table 4 and Table 5 show the two SSSP libraries, efficiency and
precision (version 1.1), selected according to the SSSP selection
criteria specified above. The suggested wavefunction cutoffs (in

Ry) and the duals are also indicated for each PSP chosen. The SSSP
periodic table with all PSPs, wavefunction cutoffs and duals is also
accesible interactively online on the Materials Cloud platform
(https://www.materialscloud.org/) (see Fig. 8). The average sug-
gested wavefunction cutoffs of the SSSP efficiency and SSSP
precision over all the 85 elements tested are 44 and 56 Ry,
respectively. A dual of 8 has been used for all PSPs except norm-
conserving ones where a dual of 4 is used, and iron and
manganese for which a dual of 12 is suggested.
The SSSP efficiency and SSSP precision have small average Δ-

factors of 0.44 and 0.33 meV, respectively (where the average is
performed over all elements tested excluding the 15 rare-earth
nitrides, following the recipe of ref. 1).

Table 4. SSSP efficiency and precision libraries version 1.1 (part I)

Element (1–38) SSSP efficiency SSSP precision

Pseudopotential Cutoff Dual Pseudopotential Cutoff Dual

H 100US 60.0 8.0 SG15 80.0 4.0

He SG15 50.0 4.0 SG15 55.0 4.0

Li GBRV-1.4 40.0 8.0 GBRV-1.4 40.0 8.0

Be GBRV-1.4 40.0 8.0 SG15 55.0 4.0

B GBRV-1.4 35.0 8.0 GBRV-1.2 55.0 8.0

C 100PAW 45.0 8.0 100PAW 45.0 8.0

N THEOS 60.0 8.0 Dojo 80.0 4.0

O 031PAW 50.0 8.0 031PAW 75.0 8.0

F GBRV-1.4 45.0 8.0 Dojo 90.0 4.0

Ne SG15 50.0 4.0 SG15 50.0 4.0

Na GBRV-1.5 40.0 8.0 SG15 100.0 4.0

Mg 031PAW 30.0 8.0 GBRV-1.4 45.0 8.0

Al 100PAW 30.0 8.0 100PAW 30.0 8.0

Si 100US 30.0 8.0 100US 30.0 8.0

P 100US 30.0 8.0 100US 30.0 8.0

S GBRV-1.4 35.0 8.0 GBRV-1.4 35.0 8.0

Cl GBRV-1.4 40.0 8.0 100US 100.0 8.0

Ar SG15-1.1 60.0 4.0 SG15-1.1 120.0 4.0

K 100PAW 60.0 8.0 100PAW 60.0 8.0

Ca GBRV-1.2 30.0 8.0 GBRV-1.2 30.0 8.0

Sc SG15 40.0 4.0 031PAW 90.0 8.0

Ti GBRV-1.4 35.0 8.0 GBRV-1.4 40.0 8.0

V GBRV-1.4 35.0 8.0 GBRV-1.4 40.0 8.0

Cr GBRV-1.5 40.0 8.0 GBRV-1.5 40.0 8.0

Mn GBRV-1.5 65.0 12.0 GBRV-1.5 90.0 12.0

Fe 031PAW 90.0 12.0 031PAW 90.0 12.0

Co GBRV-1.2 45.0 8.0 GBRV-1.2 90.0 12.0

Ni GBRV-1.4 45.0 8.0 GBRV-1.4 50.0 8.0

Cu GBRV-1.2 55.0 8.0 SG15 90.0 4.0

Zn GBRV-1.2 40.0 8.0 GBRV-1.2 90.0 8.0

Ga 100PAW 70.0 8.0 100PAW 90.0 8.0

Ge GBRV-1.4 40.0 8.0 GBRV-1.4 45.0 8.0

As 031US 35.0 8.0 031US 35.0 8.0

Se GBRV-1.2 30.0 8.0 GBRV-1.2 30.0 8.0

Br GBRV-1.4 30.0 8.0 GBRV-1.4 90.0 8.0

Kr SG15 45.0 4.0 SG15 50.0 4.0

Rb SG15 30.0 4.0 SG15 30.0 4.0

Sr GBRV-1.2 30.0 8.0 GBRV-1.2 40.0 8.0

The suggested wavefunction cutoffs (in Ry) and duals are also reported

G. Prandini et al.

9

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2018)    72 



Table 5. SSSP efficiency and precision libraries version 1.1 (part II)

Element (39–85) SSSP efficiency SSSP precision

Pseudopotential Cutoff Dual Pseudopotential Cutoff Dual

Y GBRV-1.2 35.0 8.0 GBRV-1.2 35.0 8.0

Zr GBRV-1.2 30.0 8.0 GBRV-1.2 30.0 8.0

Nb 031PAW 40.0 8.0 031PAW 40.0 8.0

Mo SG15 35.0 4.0 SG15 35.0 4.0

Tc SG15 30.0 4.0 SG15 40.0 4.0

Ru SG15 35.0 4.0 SG15 35.0 4.0

Rh SG15 35.0 4.0 SG15 55.0 4.0

Pd SG15 45.0 4.0 SG15 50.0 4.0

Ag SG15 50.0 4.0 SG15 55.0 4.0

Cd 031US 60.0 8.0 031US 90.0 8.0

In 031US 50.0 8.0 031US 50.0 8.0

Sn GBRV-1.2 60.0 8.0 GBRV-1.2 70.0 8.0

Sb GBRV-1.4 40.0 8.0 GBRV-1.4 55.0 8.0

Te GBRV-1.2 30.0 8.0 GBRV-1.2 30.0 8.0

I 031PAW 35.0 8.0 031PAW 45.0 8.0

Xe SG15-1.1 60.0 4.0 SG15-1.1 80.0 4.0

Cs GBRV-1.2 30.0 8.0 GBRV-1.2 30.0 8.0

Ba 100PAW 30.0 8.0 100PAW 35.0 8.0

La Wentzcovitch 40.0 8.0 Wentzcovitch 40.0 8.0

Ce Wentzcovitch 40.0 8.0 Wentzcovitch 50.0 8.0

Pr Wentzcovitch 40.0 8.0 Wentzcovitch 40.0 8.0

Nd Wentzcovitch 40.0 8.0 Wentzcovitch 40.0 8.0

Pm Wentzcovitch 40.0 8.0 Wentzcovitch 40.0 8.0

Sm Wentzcovitch 40.0 8.0 Wentzcovitch 40.0 8.0

Eu Wentzcovitch 40.0 8.0 Wentzcovitch 40.0 8.0

Gd Wentzcovitch 40.0 8.0 Wentzcovitch 40.0 8.0

Tb Wentzcovitch 40.0 8.0 Wentzcovitch 40.0 8.0

Dy Wentzcovitch 40.0 8.0 Wentzcovitch 40.0 8.0

Ho Wentzcovitch 40.0 8.0 Wentzcovitch 40.0 8.0

Er Wentzcovitch 40.0 8.0 Wentzcovitch 40.0 8.0

Tm Wentzcovitch 40.0 8.0 Wentzcovitch 40.0 8.0

Yb Wentzcovitch 40.0 8.0 Wentzcovitch 40.0 8.0

Lu Wentzcovitch 45.0 8.0 Wentzcovitch 45.0 8.0

Hf Dojo 50.0 4.0 Dojo 55.0 4.0

Ta GBRV-1.2 45.0 8.0 GBRV-1.2 50.0 8.0

W GBRV-1.2 30.0 8.0 GBRV-1.2 50.0 8.0

Re GBRV-1.2 30.0 8.0 GBRV-1.2 30.0 8.0

Os GBRV-1.2 40.0 8.0 GBRV-1.2 40.0 8.0

Ir GBRV-1.2 55.0 8.0 GBRV-1.2 65.0 8.0

Pt GBRV-1.4 35.0 8.0 100US 100.0 8.0

Au SG15 45.0 4.0 SG15 50.0 4.0

Hg SG15 50.0 4.0 SG15 55.0 4.0

Tl GBRV-1.2 50.0 8.0 GBRV-1.2 70.0 8.0

Pb 031PAW 40.0 8.0 031PAW 45.0 8.0

Bi GBRV-1.2 45.0 8.0 GBRV-1.2 50.0 8.0

Po 100US 75.0 8.0 100US 80.0 8.0

Rn 100PAW 120.0 8.0 100PAW 200.0 8.0

The suggested wavefunction cutoffs (in Ry) and duals are also reported
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The SSSP libraries have already proven to be a reliable tool for a
number of computational studies: for instance the beta version
(called version 0.7) of the SSSP libraries have enabled the high-
throughput computational exfoliation of two-dimensional materi-
als38 and have supported the combined experimental and
theoretical study of catalysts for oxygen evolution reaction.39

On a more general level, apart from the SSSP testing protocol
and libraries, our work provides a database of verification data and
convergence tests that facilitates the optimal choice of PSPs and
wavefunction cutoffs for custom applications. For example, some
physical properties may be implemented only for some PSP types
(typically only NC) or some applications may require convergence
of just a subset of the quantities that we consider in the SSSP
testing protocol. By a look at our plots and data, see for instance
the condensed plot for palladium shown in Fig. 2, a user can
quickly select the optimal PSP and wavefunction cutoff tailored for
the specific application.
In summary, we propose an extensive testing protocol for PSPs

to investigate precision and performance of several NC, US and
PAW PSP libraries that are publicly available. We incorporate in the
SSSP protocol a verification part, based on the Δ-factor, and an
efficiency part, based on the plane-wave cutoff convergence tests
for phonon frequencies, cohesive energies, pressures, and band
structures. Leveraging the SSSP protocol, we identify two optimal
PSP libraries, named SSSP efficiency and SSSP precision (version
1.1), that provide thoroughly tested and precise PSPs for 85
elements of the periodic table, selected from publicly available
PSP libraries,9–15 for which the original authors should be
acknowledged. Our effort not only is particularly relevant for
high-throughput computational materials screening, where the
right compromise between precision and computational cost is
essential, but it substantially contributes to set high the bar of the

quality of PSP calculations of solid-state materials. Building on the
invaluable work behind all the PSP libraries we considered, we
provide a systematic survey of PSP quality across multiple physical
properties and multiple libraries and techniques (NC, US and
PAW). Our work shows how the assessment of both precision and
efficiency of pseudopotentials is strongly property-dependent and
requires a multi-dimensional quality gauge, pointing to the need
of a verification standard in the computational solid-state
community. Given the importance of PSP calculations in modern
materials science, nanotechnology, chemistry and physics, our
findings call for more verification efforts aimed at increasing
precision and efficiency of computed quantities that are routinely
used to discuss novel physics, to help interpreting experiments or
even to discover and design novel materials. In particular, we
hope that this work will stimulate further investigations in the all-
electron community, that ideally would provide more reference
data for an heterogeneous set of properties elaborating on our
discussion.

METHODS
All the calculations needed for this work (more than 50,000 DFT and DFPT
calculations) were performed with the goal to ensure reproducibility of all
the data obtained, compliant with the FAIR guiding principles for data
management.40 This is the reason why we used AiiDA,5 an open-source
Python infrastructure for computational science, that is specifically
designed to track the provenance of data and calculations and that allow
the user to implement workflows that can run complex sequences of
calculations. It is therefore particularly suited for high-throughput studies,
such as the deployment of the SSSP testing protocol, where a large
number of simulations are involved.
In practice AiiDA can prepare and submit calculations (usually to an HPC

cluster) and then retrieve and store the results inside a database, all

Fig. 8 SSSP periodic table (here efficiency is shown) from the Materials Cloud webpage (https://www.materialscloud.org/) (version 1.1). By
clicking on an element, the data and results of the SSSP testing protocol (convergence pattern plots as in Fig. 2, equations of state, band
structures and more) for the selected element are accessible
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automatically. The database can be subsequently queried by the user to
extract data or other useful informations.
The complete SSSP testing protocol is implemented as an AiiDA

workflow, called SsspWorkflow, that can run all the convergence tests and
the Δ-factor verification test. The SsspWorkflow is built on top of the
PwWorkflow, a very robust lower-level workflow in charge of handling all
the QE simulations and that can restart calculations in case of standard QE
errors or, for example, if the user-specified wall time is too small.
The SsspWorkflow allows a generic user to perform all the calculations

required by the SSSP protocol in a completely automatic way. With this
tool, other and new pseudopotential libraries could be easily tested in the
future in order to update the subsequent versions of the SSSP libraries with
more precise and efficient PSPs.

DATA AVAILABILITY
All the data produced in this work is freely available on the Materials Cloud online
platform, https://www.materialscloud.org/, where the user can interactively browse
the results and explore the data provenance. The full database with all the data can
also be downloaded.41
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