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Deep-learning-based inverse design model for intelligent
discovery of organic molecules
Kyungdoc Kim1, Seokho Kang2, Jiho Yoo1, Youngchun Kwon1, Youngmin Nam1, Dongseon Lee1, Inkoo Kim1, Youn-Suk Choi1,
Yongsik Jung1, Sangmo Kim1, Won-Joon Son1, Jhunmo Son1, Hyo Sug Lee1, Sunghan Kim1, Jaikwang Shin1 and Sungwoo Hwang1

The discovery of high-performance functional materials is crucial for overcoming technical issues in modern industries. Extensive
efforts have been devoted toward accelerating and facilitating this process, not only experimentally but also from the viewpoint of
materials design. Recently, machine learning has attracted considerable attention, as it can provide rational guidelines for efficient
material exploration without time-consuming iterations or prior human knowledge. In this regard, here we develop an inverse
design model based on a deep encoder-decoder architecture for targeted molecular design. Inspired by neural machine language
translation, the deep neural network encoder extracts hidden features between molecular structures and their material properties,
while the recurrent neural network decoder reconstructs the extracted features into new molecular structures having the target
properties. In material design tasks, the proposed fully data-driven methodology successfully learned design rules from the given
databases and generated promising light-absorbing molecules and host materials for a phosphorescent organic light-emitting
diode by creating new ligands and combinatorial rules.
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INTRODUCTION
Historically, the discovery of new functional materials has led to
major technological advancements, and it remains an important
objective to meet the ever-growing demand for various applica-
tions, such as semiconductors, displays, and batteries. To develop
new materials, the stepwise procedure of molecule design,
property prediction, chemical synthesis, and experimental evalua-
tion is usually repeated until satisfactory performance is achieved.
As this trial-and-error approach is time-consuming and expensive,
more efficient in silico techniques, such as high-throughput
computational screening (HTCS),1–5 have emerged during the past
two decades. In HTCS, the construction of a virtual chemical library
by combinatorial enumeration6–8 is followed by large-scale
property prediction using first-principle simulation9 or machine
learning,10,11 which allows efficient sorting of potential candidates
for subsequent chemical synthesis. However, the success of HTCS
depends on the quality of the chemical library built on the basis of
researcher experience and intuition. If the virtual material pool has
no solution from the beginning, the target materials cannot be
found. Moreover, another chemical library should be built by
modifying previous enumeration rules or adopting new frag-
ments. Therefore, it generally suffers from a low hit rate. In
addition, there is no certainty as to whether the correct chemical
space is being explored.
The only way to overcome the above-mentioned issues is to

devise a methodology for directly designing the target materials.
In this regard, new approaches were proposed to extract latent
knowledge from molecular databases, such as PubChem12 and
ZINC,13 and generate the target molecules.14–19 However, they
required additional incorporation of chemical knowledge in terms

of design rules and predefined molecular fragments in order to
construct molecular structures, and the deduced candidates were
not free from heuristic instructions. Thus, we cannot be confident
that the latent information in the training dataset is fully used and
reflected in the outputs. In this regard, we propose an inverse
design method that operates in a fully data-driven manner for
targeted molecular design as illustrated in Fig. 1a. This method
aims to design organic molecules that are expected to meet the
given target properties in a direct manner, whereas the
conventional approach designs materials first and predicts their
properties subsequently. The inverse design approach extracts the
molecular design knowledge hidden in the molecular database
and generates new molecules on the basis of its own knowledge,
thereby allowing systematic materials exploration without the
need for researcher experience or intuition.
The inverse design model was implemented with a deep

encoder-decoder architecture inspired by neural machine lan-
guage translation.20–24 As it is extremely difficult to directly
reconstruct molecular structures from molecular descriptors used
for property prediction, we had to translate the molecular
descriptors into molecular structure identifiers for designing new
molecules. In the proposed model, a deep neural network (DNN)
and a recurrent neural network (RNN) were adopted as the
encoder and the decoder, respectively.23–26 The DNN identifies the
relationship between molecular structures and their material
properties, and it encodes the molecular descriptors that are
expected to meet the target properties. Then, the RNN
reconstructs the encoded molecular descriptors into molecular
structure identifiers that we can recognize as real molecular
structures.27 The performance of the proposed model was
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evaluated by performing two design tasks for light-absorbing
organic molecules and host materials for a blue phosphorescent
organic light-emitting diode (OLED), followed by experimental
verification. The results showed that the proposed model is
effective in suggesting prominent molecular structures.

RESULTS AND DISCUSSION
Inverse design model
Figure 1b shows the conceptual framework of the inverse design
model. The model predicts the molecular structure identifier y and
the corresponding property t= (t1, t2,∙∙∙, tl) from an arbitrary
molecular descriptor x. A DNN is used as the encoder to obtain the
encoding function e(∙) and the property prediction function f(∙) by
encoding the relationship between x and t; consequently, it
selects the encoded vectors of the molecular descriptors z that are
expected to satisfy the target properties. The encoding function is
an abstraction of x regarding t with the functional relationship f(e
(x))= f(z)= t. An RNN is employed as the decoder to obtain the
decoding function d(∙) in order to derive y conditioned on z as d
(z)= y; consequently, it translates the encoded vectors of the
molecular descriptors z into real chemicals that can be recognized
by humans.
The molecular descriptor vector x is the collection of structural

features of a given molecule for predicting the molecular
properties t, and the molecular structure identifier vector y
describes the molecular structure in an arbitrarily chosen notation.
In this study, extended-connectivity fingerprint (ECFP)28 was used
as the molecular descriptor to express the structural feature of a
molecule as an m-dimensional bit vector, which indicates the
presence or absence of particular substructures. As ECFP is widely
used for molecular characterization and can be expressed in fixed-
length bit string form, it is suitable for our purpose of molecular
property prediction and random search (refer to the next section).
As for the molecular structure identifier, we employed the
simplified molecular-input line-entry system (SMILES),29 which
represents chemical species as a sequence in a single-line notation
form using ASCII strings. Such a notation can be generated by

simple vocabulary and grammar rules, and its uniqueness in
representing a certain molecule is guaranteed by the
canonicalization.30

The interrelations among the above-mentioned molecular
feature vectors are modeled by the functions e(∙), f(∙), and d(∙).
The encoder function extracts a vector of hidden factors by
identifying the relationship between x and t, followed by the
estimation of molecular properties from these hidden factors by f
(∙). Finally, d(∙) is used to derive y from the hidden factors. Hence,
with a specific dataset consisting of x, t, and y for each molecule, e
(∙), f(∙), and d(∙) are trained to capture the inherent relations. To
obtain f(∙), a DNN with three hidden layer functions, namely h1, h2,
and h3, and an output layer function, namely o(∙), is constructed,
i.e., f(e(x))= f(z)= o(h3(h2(h1(x))). Further, the function e(∙) is
defined as the output of the third hidden layer function h3 to
capture the encoded representation of fingerprints. In our
preliminary test for the model architecture, extracting the
encoded representations from the higher DNN layer provided
better decoding performance and the percentage of valid SMILES
was close to 90% for the third hidden layer when the SMILES
strings were inspected by RDKit library (RDKit: Open-source
cheminformatics. https://www.rdkit.org). In general, it is known
that more abstract representation of the structural features and
higher predictive accuracy can be achieved by adding more
hidden layers.31,32 Specifically, for a given molecular descriptor x, e
(x) is determined by sigmoid(W(3)h(2)+ b(3)), where W(3) is the
weight for the third hidden layer, h(2) is the output of the previous
hidden layer, b(3) is the bias for the third hidden layer, and sigmoid
(∙) is a nonlinear activation function. To determine the decoding
function d(∙), an RNN with two hidden layers of long short-term
memory (LSTM) units33 is used. The RNN is capable of dealing with
variable-length sequences as input and output by passing the
information across time steps using recurrent connections.
Furthermore, the LSTM units provide better learning performance
for the long-term dependency in the sequences. The decoding
function is defined to predict the identifier vector y= (y1, y2,∙∙∙, yT)
from z as a single-step moving window sequence of three-
character substrings, where the sequence length T can vary and
the last two characters of yt - 1 are equivalent to the first two
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Fig. 1 Data-driven inverse design. a Concept of inverse design: hidden knowledge for molecular design is extracted from a given molecular
database in a fully data-driven manner using deep-learning, and new molecules with the target properties are generated subsequently. b
Deep encoder-decoder architecture of inverse design model: the encoding and property prediction functions are obtained by a DNN using
the molecular descriptor as an input, and the decoding function is obtained by an RNN using the encoding function as an input to generate
the molecular identifier
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characters of yt. To learn the SMILES generation rule, the RNN is
constructed in the form of a language model.34 The first substring
y1 is predicted given a start token and z, and the output yt at each
time step t becomes the next input to predict the next output yt+
1 until an end token is predicted with the constraint of ensuring
the continuity of the sequence, where the last two characteristics
of yt are equivalent to the first two characteristics of yt+ 1. The
substring yt in the sequence for each time step t is predicted
according to the probability distribution p(yt|z, y1, y2,∙∙∙, yt - 1)
conditioned on the previous substrings and z.

Automated workflow of inverse design
The flowchart of the molecular design process using the inverse
design model is shown in Fig. 2. To generate new molecules, an
arbitrary fingerprint vector is first generated by random enumera-
tion of an m-dimensional bit vector x, and it is provided as an

input to the model. The fingerprint is then selected if its estimated
property vector f(z) satisfies the target condition. The search for x
vectors that satisfy the target conditions can be performed by
combinatorial optimization among 2m possible combinations. In
this regard, meta-heuristic optimization algorithms, such as the
genetic algorithm and particle swarm optimization, are useful
options.35 Nonetheless, random search was sufficiently effective in
our case, as the required time was relatively short in the overall
workflow. Next, the selected fingerprint x is fed into the encoding
function to obtain the hidden factor vector z. The decoding
function subsequently predicts the identifier vector y= (y1, y2,∙∙∙,
yT) that maximizes the likelihood p yjzð Þ¼ ΠT

t¼1pðytjz; y1 � � � yt�1Þ to
constitute a SMILES string. The validity of the decoded SMILES
strings is inspected in terms of grammatical correctness with RDKit
library (RDKit: Open-source cheminformatics. http://www.rdkit.
org.), such as extra opening/closing parentheses, unclosed rings,
and Kekulization feasibility. Finally, the properties of the generated

Random generation  of 
ECFP vector x.

Material synthesis and 
experimental evaluation.

Do the simulated 
properties satisfy the 

target?

Generate the 
corresponding molecular 
structure in SMILES form 

by d(e(x)).

Predict the properties
with DFT simulation.

Does the molecule have 
a chemically valid 

structure? 

No Yes

Yes

No

a

b

c

g

Do the estimated 
properties f(e(x)) of the 

ECFP satisfy the target?

d

f

e

No

Yes

Fig. 2 Flowchart for designing new molecules using the inverse design model. The automated workflow creates new SMILES strings that are
expected to satisfy the target condition using the inverse design model based on randomly generated fingerprint vectors
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Fig. 3 Results of inverse design for generating light-absorbing molecules. Distribution of the simulated maximum light-absorbing wavelength
values of the inverse-designed molecules. Target for inverse design: a λmax= 200–300 nm. b λmax= 300–400 nm. c λmax= 400–500 nm. 82.6%,
64.8%, and 45.6% of the designed molecules were within the target ranges for the cases of a, b, and c, respectively. Note that the hit rates
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molecules are predicted by density functional theory (DFT)
simulation to reconfirm the fulfillment of the target.

Inverse design of light-absorbing organic molecules
The effectiveness of the inverse design model was verified by
deriving molecules having specific maximum light-absorbing
wavelengths (λmax). The model was trained with a chemical library
that was constructed by randomly sampling 50,000 molecules
from the PubChem database,12 whose molecular weights were
between 200 and 600 g/mol. First, to assess the performance of
the DNN in property prediction, each molecule was labeled with
molecular orbital energies (HOMO, LUMO) and excitation energies
(lowest singlet (S1) and triplet (T1) excited states at the optimized
singlet ground state) by the DFT calculation. The trained DNN
accurately predicted the calculated values of the DFT simulation
with correlation coefficients (R) of 0.938−0.965 in tenfold cross-
validation (Fig. S1.1 in the Supplementary Information).
Then, we conducted inverse design for three target λmax ranges:

200−300 nm (S1= 4.13−6.20 eV), 300−400 nm (S1= 3.10
−4.13 eV), and 400−500 nm (S1= 2.48−3.10 eV). Figure 3 shows
the distribution of the simulated wavelengths for the designed
molecules (500 molecules per target) and indicates that the
property goals were well satisfied with a considerable hit rate.
Remarkably, approximately 10% of the designed molecules were
found in the PubChem database, even though they were not
included in the randomly selected training library. This implies
that the inverse design model can efficiently propose molecules
similar to those that chemists have developed over a long period
of time on the basis of their extensive experience and knowledge,
and it is capable of suggesting practically meaningful molecules in
terms of properties, chemical validity, and synthetic feasibility.
In the visible spectrum range, several molecules were found to

have moieties that are often observed in well-known dyes, some
of which can be classified as derivatives of anthraquinone,
azobenzene, and isoindoline (Fig. 4a−c, respectively). This implies
that the inverse design model can generate new molecules
through a combination of existing moieties in the training library
with suitable modifications. Some design cases were beyond
simple modification, as shown in Fig. 4d, where the squaraine dye
moiety, which is widely used for organic photovoltaic materials,
was inverse-designed even though no squaraine dyes were
included in the training library. Thus, our model possesses the
ability to expand the accessible chemical space beyond the span
of the training set via deep-learning and can hence produce new
molecules.

Inverse design of host materials for blue phosphorescent OLED
As a second verification, the inverse design model was applied to
a more practical design problem of blue OLED host to investigate
the efficacy in addressing one of long-standing challenges
associated with efficiency and lifetime of OLED devices. An OLED
undergoes electroluminescence with low driving voltages, yield-
ing highly efficient illuminants in full-color display applications.36

The device is usually fabricated with several organic layers, each
with a specific function, such as charge injection, transport, and
recombination, followed by the emission of light of a specific
color. In the emitting layer (EML), a guest-host system is widely
adopted, where emissive dopants are dispersed in suitable host
materials. To fully harvest the electro-generated excitons in the
EML for light emission, organometallic complexes containing
heavy metal ions, such as iridium or platinum, in which the
internal heavy atom effect leads to complete conversion into
triplet excitons for light emission as phosphorescence, are
employed.37 In this case, the energy differences in the triplet
energies of the host and guest materials are crucial for the
confinement of the triplet excitons in the dopant by preventing
back energy transfer from the dopant to the host. For deep-blue
OLEDs, host materials with high triplet energy (> 2.8 eV) are
required; however, it is not straightforward to find a suitable host
for high-energy triplet emitters. Thus, the inverse design model
carried out the design of host materials having sufficient triplet
energy.
An in-house materials library was built for model training by

combinatorial enumeration and property labeling with DFT
calculations. In particular, 9 linker fragments (L) and 57 terminal
fragments (R), such as carbazole, indolocarbazole, and fluorine,
which are frequently employed in OLED hosts, and their
derivatives, were chosen as ingredients for the enumeration. For
each linker fragment, two substitution sites were assigned to
symmetric positions and two identical terminal fragments were
assembled with R-L-R type enumeration. Further, two identical
terminal fragments were linked in R-R type without linkers.
Consequently, around 6000 symmetric molecules were included in

a b

c d

Fig. 4 Examples of inverse-designed light-absorbing molecules that
share moieties with well-known dye materials. a Anthraquinone
derivative (λmax= 433.4 nm). b Azobenzene derivative (λmax=
527.5 nm). c Isoindoline derivative (λmax= 434.4 nm). d Squaraine
derivative (λmax= 503.5 nm)
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the library (the details of the fragments are summarized in Table
S2.1 of the Supplementary Information).
Considering the efficient blue emission and the available energy

levels of the guest materials reported in the literature, we
employed a target condition of T1 ≥ 3.00 eV. The inverse design
model successfully decoded 36,581 valid SMILES strings (91.5%)
from 40,000 random trials. After removing duplicated and existing
SMILES in the training data, 3205 unique molecules were obtained
and their properties were calculated with DFT simulation. The
correlation coefficient between the T1 values estimated by the
DNN and the simulated T1 values was 0.881 in tenfold cross-
validation (Fig. S2.1 in the Supplementary Information). Figure 5
shows the distribution of the simulated T1 energy levels for the
host materials. Assessment based on the simulation results
showed that the fraction of the inverse-designed hosts that
satisfied the target (T1 ≥ 3.00 eV) was 58.7% (Fig. 5b), while only
36.2% of the molecules in the training library had T1 values greater
than 3.00 eV (Fig. 5a). Thus, the inverse design model worked
properly as expected. For reference, we generated 3497 molecules
without a specific target, and the corresponding fraction was
26.9%, which was significantly lower than that in the training
library (Fig. 5c).
The inverse-designed molecules were also analyzed in terms of

modifications in the fragments or linking positions. Among the
3205 molecules, 2091 molecules (65.2%) possessed the same
fragments as the training library but their connection rules were
different from the symmetric R-L-R or R-R type enumeration.
Further, the remaining 1114 molecules (34.8%) contained at least
one new fragment that was not present in the training library.
Some typical examples, classified into three groups, are shown in
Fig. 6 with their T1 values. The first group (Fig. 6a) consists of the
given fragments in the training library, connected in asymmetric
fashion. The molecules in the second group (Fig. 6b) have new
fragments that are connected in symmetric positions. The last
group (Fig. 6c) has asymmetric molecules with at least one new
fragment. Thus, we could confirm again that the inverse design
model can propose new fragments and combinatorial rules to
create new materials to meet the target properties (see Fig. S2.3 in

the Supplementary Information for more detailed classification of
the inverse-designed molecules).
Among the above-mentioned inverse-designed host materials,

three molecules, namely a1, b1, and c1, were selected for
subsequent experimental evaluation based on their structural
novelty, synthetic feasibility, and expected stability. The proce-
dures for synthesis and characterization are detailed in Section 3
of the Supplementary Information, and the measured HOMO,
LUMO, S1, and T1 energy levels are summarized in Table S3.1. As
can be seen from Fig. S3.4−6, the a1 and c1 molecules showed T1
energies of 3.01 and 2.91 eV, respectively, which were in good
agreement with the values predicted by the DNN and those
obtained by the DFT simulation, whereas the predicted T1 energy
for the b1 molecule was overestimated by roughly 0.4 eV. The
latter result can be ascribed to the vibrational broadening of the
phosphorescence spectrum, leading to a red-shifted peak max-
imum assigned as the T1 energy. In this case, the assignment of
the T1 energies as the onset of the spectrum is more appropriate,
showing better agreement with the predicted values; the onset
values of 3.06, 2.93, and 2.97 eV were obtained for the a1, b1, and
c1 molecules, respectively. Thus, we successfully designed and
discovered new high-T1 host molecules by using the inverse
design method.
In this paper, a fully data-driven inverse design method was

developed for accelerated and rational exploration of high-
performance organic molecules. The inverse design model was
embodied on the basis of an encoder-decoder structure consisting
of heterogeneous deep neural networks for extracting the latent
materials design rules and proposing the target molecular
structures. The DNN identified the relationship between the
structural features and their material properties, and the RNN
reconstructed the recognizable molecular structures from the
hidden relationship. By designing light-absorbing molecules using
the PubChem database, we verified the basic performance in
terms of the accuracy of the DNN in predicting the material
properties, the validity of the generated molecules, and the ratio
satisfying the given targets. Further, a more substantive design
task was effectively conducted, followed by experimental
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evaluation to search for blue phosphorescent OLED host materials
with a target of T1 ≥ 3.00 eV. Although the number of molecules
that satisfy the target was low in the training library, the inverse
design model successfully proposed new candidates in the target
range by not only modifying the assembly rules but also creating
new fragments. From these results, we concluded that the inverse
design model can provide prominent molecular candidates
without any external intervention. The quality and quantity of
the training libraries are obviously as important as in other deep-
learning applications. However, the proposed methodology learns
the molecular design rules inherent in the libraries by itself, and it
can reduce the effort required by researchers to analyze prior
knowledge and experience. In addition, successively iterating the
inverse design and updating the deep-learning model would
probably enhance the molecular properties in an evolutionary
manner. In summary, we expect our model to not only facilitate
the discovery of new materials, but also support chemists by
complementing the conventional heuristic design approach.

METHODS
Deep-learning
For the DNN, each hidden layer consisted of 256 nodes, and the number of
nodes in the output layer was equal to the number of properties of
interest. Further, the DNN had an 8192-dimensional bit input. All the
hidden layers used a logistic sigmoid activation function, while the output
layer used a linear function. As for the RNN, each hidden layer consisted of
256 LSTM memory cells. The output layer was a softmax activation function
for the probability distribution of the substrings, and the input layer used
256-dimensional embedding. Regarding the deep-learning model archi-
tecture, the number of hidden layers of the DNN and RNN has been
changed from two to four and from one to three respectively. Also, the
number of nodes in the DNN and LSTM memory cells in the RNN changed
to 128, 256, and 512. As the validation loss did not vary significantly
depending on each model, our model setting was within the sufficient
performance range.
Given a set of instances for n molecules, xi ; ti ; yið Þf gni¼1, the DNN was

trained on xi ; tið Þf gni¼1 to minimize the mean squared error between t and f
(z), and the RNN was subsequently trained using eðxiÞ; yið Þf gni¼1 to
minimize the cross entropy of predicting the output vector (y1, y2, ∙∙∙, yT,
<end>) from the input vector (<start>, y1, y2,∙∙∙, yT) conditioned on z. Note
that <start> and <end> are special tokens indicating the start and the end
of a sequence, respectively. All the neural networks were trained using the
Adam optimization algorithm38 with a mini-batch size of 128. The numbers
of training epochs for the DNN and RNN were 256 and 1024, respectively.
We also tested different learning parameters by varying the mini-batch size
to 64, 128, and 256 and the number of training epochs to 256, 512, and
1024. Although smaller mini-batch size and longer epochs generally
showed lower validation loss, there was no significant change in the model
accuracy. Therefore, we employed the learning parameters in considera-
tion of model accuracy and training time together. The neural networks
were implemented using the Keras library,39 which is based on GPU-
accelerated Theano40 written in Python.

Quantum chemistry
All the calculations were performed using Gaussian09, Revision E.01.41 The
molecular geometry of the ground singlet state (S0) was optimized by DFT
simulation using the hybrid version of the Becke three-parameter
exchange functional42 and the Lee-Yang-Parr correlation functional
(B3LYP).43 All-electron atom-centered Gaussian basis sets (6-31 G**) were
used for all the atoms. Time-dependent DFT calculation was performed for
this geometry to obtain the vertical excitation energies of the excited
singlets and triplets. No symmetry constraints were imposed in all the
calculations.
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