Table 1 Pseudocode for the Bayesian optimization algorithm and outline for computing the acquisition function used in the above algorithm

From: Active learning for accelerated design of layered materials

Bayesian Optimization Algorithm

 1. Data set: D1:n = {xi,yi}i = 1 to n

 2. Build Gaussian process regression model: y = fn(x)~GP(m(x),k(x,x'))

 3. Bayesian optimization () {

   for t = 1 to tmax

   a. Find next xt by optimizing the acquisition function u over GP

   xt = argmaxxu(x|D1:n)

   b. Compute the value yt for this new xt

   c. Augment (xt,yt) into data set D1:n = {xi,yi}

   d. Update the Gaussian Process Regression model

 }

Acquisition function u

 1. Find x such that Expected Improvement (\({\Bbb E}\)) is maximum

\(X = {\it{argmax}}_{\it{x}}EI\left( x \right) = argmax_x{\Bbb E}\left( {\max \left\{ {0,f_n\left( x \right) - f^{max}} \right\}\left| {D_{1:n}} \right.} \right)\)

   where, fn(x) is a Gaussian process regression model made from D1:n and fmax is the maximum value of this function.

 2. Equations to compute Expected Improvement (𝔼)

\(EI\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\left( {\mu \left( x \right) - f^{max}} \right)\Phi \left( Z \right) + \sigma \left( x \right)\phi \left( z \right)} & {if\,\sigma \left( x \right) > 0} \\ 0 & {0\,if\,\sigma \left( x \right) = 0} \end{array}} \right.\)

\(Z = \frac{{\mu \left( x \right) - f^{max}}}{{\sigma (x)}}\)

   where μ(x) and σ(x) are predicted mean and standard deviation values for x by Gaussian process regression model fn(x).

   φ(Z) and Φ(Z)are probability density function (PDF) and cumulative density function (CDF) of standard normal distribution

 3. Return x