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The (eg ⊗ eu) ⊗ Eg product Jahn–Teller effect in the neutral
group-IV vacancy quantum bits in diamond
Gergő Thiering 1,2 and Adam Gali 1,2

The product Jahn–Teller effect may occur for such coupled electron–phonon systems in solids where single electrons occupy
double degenerate orbitals. We propose that the excited state of the neutral XV split-vacancy complex in diamond, where X and V
labels a group-IV impurity atom of X= Si, Ge, Sn, Pb and the vacancy, respectively, is such a system with eg and eu double
degenerate orbitals and Eg quasi-localized phonons. We develop and apply ab initio theory to quantify the strength of
electron–phonon coupling for neutral XV complexes in diamond, and find a significant impact on the corresponding optical
properties of these centers. Our results show good agreement with recent experimental data on the prospective SiV(0) quantum
bit, and reveals the complex nature of the excited states of neutral XV color centers in diamond.
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INTRODUCTION
Fluorescent, paramagnetic point defects in diamond may realize
quantum bits for quantum technology. Split-vacancy complexes of
group-IV impurity atom (X= Si, Ge, Sn, Pb) and vacancy, that is, XV
defects with D3d symmetry are in the focus of intense research.
The negatively charged XV, that is, XV(−) defects have S= 1/2 spin
state and fluoresce mostly in the visible.1–11 The inversion
symmetry of the centers assumes virtually no Stark shift in the
optical signals, which is a prerequisite for realization of
indistinguishable single photon sources. Among these color
centers, SiV(−) is the most studied,2,4,5,12–22 and stands out with
a large Debye–Waller (DW) factor of 0.7, and the demonstration of
quantum communication and sensor applications.12,13 On the
other hand, the SiV(−) exhibits short spin coherence times due to
phonon dephasing caused by the dynamic Jahn–Teller effect on
the orbital doublet,18 thus cooling to the millikelvin regime is
required for quantum bit operations.23,24 It is predicted that PbV
(−) might have much longer spin coherence times because of the
enlarged gap of the orbital doublet caused by spin–orbit
interaction, but with the expense of smaller Debye–Waller factor
than that of SiV(−).25

Alternatively, by removing an electron from XV(−) centers, an
orbital singlet with S= 1 ground state appears2,26–29 that should
have intrinsically long coherence times. Recently, it has been
demonstrated that SiV(0) exhibits spin coherence time almost up
to a second and relaxation time nearly a minute30 at 20 K together
with a near-infrared fluorescence signal, and has been proposed
for quantum communication applications.30 This observation
naturally shifts the focus towards XV(0) color centers in diamond.
However, the nature of the excited and shelving states and levels
are far from being understood for SiV(0).31 In particular, the 946-
nm zero-phonon-line (ZPL) optical transition of SiV(0) (see
refs. 30,32–36) was originally assigned to an 3A2g↔

3A1u electronic
excitation from the ground state to the excited state;5,34 however,

it has been very recently revealed that the excited state should be
a 3Eu state deduced from stress measurements.36 Furthermore, a
dark 3A2u state below the 3Eu by 6.7 meV was activated in the
luminescence spectrum by exerting uniaxial stress on the
diamond sample.36 The optical signals of other XV(0) centers
have not yet been identified at all. First principles methods are
major tools to explore the complex physics of point defects that
can strongly contribute to understanding SiV(0) color center and
identifying the other XV(0) color centers.
In this article, we present first principles results on the optical

properties of XV(0) color centers in diamond. We show that the
electrons and phonons are strongly coupled in the electronic
excited states, and they constitute of a (eg ⊗ eu) ⊗ Eg product
Jahn–Teller (pJT) system, where eg and eu refers to the
corresponding electronic orbitals that are simultaneously coupled
to quasi-localized Eg symmetry breaking local vibrational mode.
This pJT effect is responsible for the anomalous optical spectrum
of SiV(0). We briefly discuss our results in the context of quantum
technology applications. We provide the theoretical optical
signatures of the other XV(0) color centers too.
XV(0) defect has six carbon dangling bonds and the impurity

atoms sits in the inversion center of diamond (see Fig. 2c) and
exhibits D3d symmetry. These six dangling bonds introduce a1g ⊕
a2u ⊕ eu ⊕ eg orbitals.2,5,14,29,34 The a1g and a2u levels fall in the
valence band (VB) of the diamond.8 The eu level is fully occupied
by four electrons and it either resonant with the VB or pops up in
the gap by increasing the X atomic number.25 The eg level is
occupied by two electrons in the band gap of diamond in the
ground state. By promoting an electron from the eu orbital to the
eg orbital (or forming a single hole on both orbitals), the lowest
energy optically active and inactive excited states are formed. The
16 electronic configurations from these orbitals are

2Eu � 2Eg ¼ 3A2u � 3A1u � 3Eu � 1A2u � 1A1u � 1Eu; (1)
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where we focus on the 12-dimensional triplet subspace.
The excited triplet two-hole wavefunctions and the |3A2g〉

ground state can be expressed by the following equations in the
hole representation,

3A1uj i ¼ A 1ffiffi
2

p jeuxegyi � jeuyegxi
� �

3Euy
�� � ¼ A 1ffiffi

2
p jeuxegyi þ jeuyegxi

� �
3Euxj i ¼ A 1ffiffi

2
p jeuxegxi � jeuyegyi

� �
3A2uj i ¼ A 1ffiffi

2
p jeuxegxi þ jeuyegyi

� �
3A2g

�� �¼ Ajegxegyi

9>>>>>>>>=
>>>>>>>>;

�
j ""i
Sj "#i
j ##i

8><
>: ; (2)

where we introduce the anti-symmetrization operator
Ajabi ¼ ðjabi � jbaiÞ= ffiffiffi

2
p

and symmetrization operator
Sjabi ¼ ðjabi þ jbaiÞ= ffiffiffi

2
p

, and spin-up (spin-down) holes are
labeled by ↑ (↓). It is worth to note that two singlet levels
(|1A1g〉, |

1Eg〉) for the e2g electronic configuration appear above the
|3A2g〉 ground state and below the (egeu) excited triplet levels of Eq.
1. Additionally, the (egeu) excited singlet levels are expected to lie
above the (egeu) excited triplets due to the Coulomb repulsion.31,36

We show the single determinant states of the triplets in Eq. 2 in

Fig. 1 in their respective Sz=+1 spin substate (see also
Supplementary Note 1). We calculate these five Ajeuxegyi � j ""i
wavefunctions by means of Kohn–Sham density functional theory
(DFT) (see Methods).

RESULTS
Formulation of the pJT Hamiltonian
Our DFT calculations indicate a strong Jahn–Teller distortion in the
lowest energy triplet excited state of XV(0), going from the high
D3d symmetry to the low C2h symmetry. This can be understood by
considering the fact that eg and eu orbitals are occupied by a
single hole in the excited state, thus they are both Jahn–Teller
unstable. By applying the E ⊗ e Jahn–Teller theory on both
orbitals in the strongly coupled limit and constructing an

antisymmetric product Ajeφuxeφgxi
� �

of the two particles with

adding the spin degrees of freedom, one will arrive to the
following (see Eqs. S23–S30),

3~A2u

�� �¼ Ajeφuxeφgxi � fj ""i;Sj "#i; j ##ig
¼ 1ffiffi

2
p 3A2uj i � cos φð Þffiffi

2
p 3Euxj i � sin φð Þffiffi

2
p 3Euy

�� �
;

(3)

which corresponds to walking on the yellow circle of the adiabatic
potential energy surface (APES) in Fig. 2a. An accurate solution can
be found by solving the following Hamiltonian,

Ĥ ¼ Ĥosc þ ĤpJT þ Ŵ; (4)

where Ĥosc is the two-dimensional harmonic oscillator spectrum of
the Eg phonon mode, ĤpJT is the the pJT Hamiltonian, and Ŵ is the
electron correlation Hamiltonian between the triplet states in Eq.
2. We define Ĥosc by means of ladder operators (aX;Y ; a

y
X;Y ) as

Ĥosc ¼ �hωE
PX;Y

α ayαaα þ 1
2

� �
, where ℏωE is the effective phonon

energy.

Fig. 1 a Kohn–Sham orbitals and levels of the SiV(0) defect in its
|3A2g〉 ground state and its four excited state single determinants, as
obtained from ab initio density functional theory (DFT) calculations.
The geometry of the system is constrained to D3d symmetry, thus
these electronic configurations correspond to the undistorted X= 0
configurational coordinate in Fig. 3. The Kohn–Sham orbitals in the
spin-up (spin-down) channel are represented by triangles pointing
upwards (downwards). The filled (empty) triangles depict occupied
(empty) orbitals. The eux, euy orbitals in the spin-down channel fall
into the valence band (VB) and are smeared, so their position is very
schematic. However, the eux, euy orbitals in the spin-up channel form
resonant and localized states above the VB edge far from the
conduction band (CB). We show the optical excitation path of the
|3A2g〉 ground state by an inclined arrow pointing upwards. b
Visualization of single-particle Kohn–Sham wavefunctions. The gray
ball depicts the impurity atom, while the black balls depict the six
first neighbor carbon atoms

Fig. 2 a Adiabatic potential energy surface of SiV(0) that shows
product Jahn–Teller (pJT) effect in the excited state. We show the
vertical absorption and luminescence with blue and red arrows,
respectively, while the black arrow denotes the zero-phonon-line
(ZPL) transition. We label the polaronic solutions by tilde in the
excited state with energy gap of 6.7 meV. b Triplet states of SiV(0). c
Geometry of the undistorted SiV(0) defect with D3d symmetry. We
also depict the X and Y distortion paths of the Eg phonon mode that
are quasi-localized on the six carbon atoms
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The usual e ⊗ E linear Jahn–Teller Hamiltonian37–40 is modified
to

ĤpJT ¼ FuðX̂σ̂z � σ̂0 þ Ŷσ̂x � σ̂0Þ
þFgðX̂σ̂0 � σ̂z þ Ŷσ̂0 � σ̂zÞ;

(5)

where u/g labels the eu/eg orbital, and σz and σx are the standard
Pauli matrices in Eq. 5. σ̂0 is the two-dimensional unit matrix that is
introduced for the individual electron–phonon coupling strength
Fu and Fg.

41 ðX̂; ŶÞ ¼ ðayðX;YÞ þ aðX;YÞÞ=
ffiffiffi
2

p
defines the two-

dimensional configuration space spanned by the Eg vibration
mode through the harmonic oscillator ladder operators. See
Supplementary Note 3 for details about the derivation of Eq. 5.
Finally, we define the position of electronic levels by Λ and Ξ
caused by static electronic correlation with the following
expression (see Supplementary Note 2):

Ŵ ¼ Λðj 3A1uih 3A1uj � j 3A2uih 3A2ujÞ
�Ξðj 3Euxih 3Eux j þ j 3Euyih 3Euy jÞ:

(6)

The overall Hamiltonian of the system in a 4 × 4 matrix notation
is the following by combining Eqs. 2–6:

Ĥ¼ Ĥosc þ

X̂ Fu þ Fg
� �

ŶFu ŶFg

ŶFu �X̂ Fu � Fg
� �
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� �
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;

(7)

where we label the individual single determinant electronic
wavefunctions at ĤpJT for clarity (see also Supplementary Note 3).
The diagonal part of the pJT matrix is self-explanatory. If the
geometry is distorted towards +X, the |euxegx〉 wavefunction
would lower its energy, by a joint Fu+ Fg coupling strength. In
the central part of diagonal Hamiltonian, the two Jahn–Teller
effects are destructive, and the joint product Jahn–Teller strength
is Fu− Fg.
Next, the parameters in Eq. 7 are determined by first principles

DFT calculations, and the coupled electron–phonon Hamiltonian is
solved (see Supplementary Note 3 for details).

Parameters from ab initio calculations
We show the ab initio parametrization of the full Hamiltonian for
SiV(0), and discuss the results in detail. The key results are also
summarized for the other XV(0) color centers in Table 1 as
obtained by the same procedure. Our DFT ΔSCF method yields the
total energy of the four, Ajeuyegyi, Ajeuxegyi, Ajeuyegxi, and
Ajeuxegxi, electronic configurations (see also Supplementary Note
3 and Fig. S2). The APES of these states is depicted in Fig. 3a. This
is our starting point to determine the parameters in Eq. 7.
In D3d symmetry, Etot½Ajeuxegyi� ¼ Etot½Ajeuyegxi� and

Etot½Ajeuxegxi� ¼ Etot½Ajeuyegyi�, where Etot is the DFT total energy
(see Supplementary Note 2). Finally, the calculated energy
separation is Λ= 78.3 meV for SiV(0).
We determine the position of |3Eu〉 by a jeu± i ¼

ðjeuxi± ijeuyiÞ=
ffiffiffi
2

p
transformation on the defect orbitals, thus

two-hole wavefunction will be a single determinant in this basis as
j 3Eui ¼ Ajeu± eu± i, which can be directly approximated by means
of DFT (see Supplementary Note 2). Finally, Ξ= 44.9 meV is
obtained by this procedure for SiV(0).

The effective vibration energy ℏωE can be found by fitting to
the parabola of the lowest APES curvature in Fig. 3a that results in
75.9 meV for SiV(0).
The electron–phonon coupling Fg and Fu parameters can be

derived by reading out the characteristic Jahn–Teller energies Eð1ÞJT
and Eð2ÞJT in the APES (see Fig. 3a) as follows:

Eð1ÞJT ¼ ðFg þ FuÞ2
2�hωE

; Eð2ÞJT ¼ ðFg � FuÞ2
2�hωE

: (8)

In SiV(0), Eð1ÞJT ¼ 258meV, that is very significant and seriously
affect the calculated ZPL energy. On the other hand,

Eð1ÞJT ¼ 0:47meV, which is small, and results nearly identical to Fg
and Fu. We note here that we neglect the quadratic Jahn–Teller
terms in Eq. 5, that is, the APES in Fig. 3 is axially symmetric.
However, the Ajeuyegyi has a bit smaller Jahn–Teller energy than
that of Ajeuxegxi by 43, 46, 46, and 48meV for SiV, GeV, SnV, and
PbV, respectively, that would cause a quadratic Jahn–Teller effect.
However, these energies are an order of magnitude smaller than

that of Eð1ÞJT , and would only lead to minor correction to the results
from linear Jahn–Teller approximation. We explicitly proved this for
XV(−) color centers in our previous study.25 Therefore, we still apply
the linear Jahn–Teller approximation for the sake of simplicity.
Finally, all the parameters could be derived or read out from the

calculated APES (see Table 1), thus one can setup the full
Hamiltonian in Eq. 7. It is intriguing to use X as a continuous
variable at Y= 0 in Eq. 7, and plot the solution in Fig. 3b. The
contribution of the dark 3A2u state is shown by black balls, while
the contribution of the optically active 3A1u state (z polarization)
and 3Eu state [(x,y) polarization] is depicted as red and teal balls,
respectively. The lowest energy solution will apparently involve
the dark 3A2u state. For the full quantum mechanical solution
(where X and Y are operators), we use the following wavefunction
ansatz:25,42,43

j~Ψi ¼ P
n;m

cn;mA euyegy
�� �þ dn;mA euxegy

�� �


þen;mA euyegx
�� �þ fn;mA euxegx

�� �� � n;mj i;
(9)

where |n, m〉 is the representation of Eg vibration that we consider
up to 15-quanta limit (n+m ≤ 15) for the low energy spectrum
and up to 50-quanta limit for high energies in Fig. 3c as explained
in Supplementary Note 3. The vibronic spectrum shows up two
deep levels that are separated by δ= 6.8 meV, where the deepest

Table 1. Calculated parameters of Eq. 7 and optical levels of XV(0)
defects. The δ is the energy difference between the j 3~A2ui and j 3~Eui
states

SiV GeV SnV PbV

�hω (meV) 75.9 78.2 81.3 81.4

Λ (meV) 78.3 88.6 99.5 119

Ξ (meV) 45 40 42 36

Eð1ÞJT (meV) 258 242 217 194

Eð2ÞJT (meV) 0.47 5.18 17.2 33.4

Fg (meV) 95 83 67 52

Fu (meV) 103 112 120 125

ZPLð 3EuÞ (eV) 1.34 (1.31a) 1.80 1.82 2.21

δ ð 3Eu $ 3A2uÞ (meV) 6.7 (6.8b) 7.6 9.3 10.8

We note that the zero phonon line (ZPL) of SnV and PbV may be lowered
induced by the spin–orbit coupling that we neglect here. The values inside
the parenthesis are experimental data
The δ is the energy difference between the j 3~A2ui and j 3~Eui states
aExperimental data from ref. 34
bExperimental data from ref. 36
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level belongs to the vibronic j 3~A2ui and the second level is
associated with the vibronic j 3~Eui in SiV(0).
We also show the derived parameters and results for GeV, SnV,

and PbV systems in Table 1. There is a clear trend that the ZPL
energies increase with heavier impurity atom.
On the other hand, the spin–orbit coupling (SOC) will be

significant for heavy impurity atoms, and rapidly increase with the
atomic number of the impurity atom. Based on our previous
calculations for XV(−) defects,25 the SOC on |eu〉 orbitals, λu is 7, 33,
100, and 250 meV for SiV, GeV, SnV, and PbV, respectively. This can
be neglected for SiV(0) but can be significant for the other XV(0)
defects, that might alter the ZPL energies SnV(0) and PbV(0). The
simultaneous solution for pJT and SOC is out of the scope of this
paper but might be required for the ultimately accurate
description of the excited states of SnV(0) and PbV(0).

DISCUSSION
Experimental data are only available for SiV(0), thus we can
directly compare our results only to them. A recent stress
measurement on the photoluminescence spectrum of SiV(0)
revealed a dark state where the corresponding level was below
the ZPL energy by 6.8 meV.36 Our calculations explain this feature
by the pJT effect of the three triplet excited states. The lowest
energy branch of the excited state triplets yield ≈50% |3A2u〉 and
≈50% |3Eu〉 electronic character that can be anticipated from Eq. 3.
The lowest energy vibronic state is the dark j 3~A2ui (951 nm), and
the next vibronic level above it by 6.7 meV belongs to the optically
allowed j 3~Eui (ZPL of 946 nm). We note that in ordinary e ⊗ E JT
systems, a degenerate E level is the lowest vibronic state quickly
followed by a nondegenrate A vibronic level by tunneling splitting
energy.37,38,44–46 In our present pJT case, the order of these states
are reversed, which is a clear signature of the manifestation of the
pJT effect.
There are numerous consequences of this finding: (i) The optical

polarization of the emitted photons at the ZPL (946 nm) is
perpendicular to the symmetry of the axis. (ii) The emission will be
strain dependent as the symmetry breaking strain can activate the
951-nm ZPL transition, again with photon polarization

perpendicular to the symmetry axis of the defect. (iii) The 946-
nm ZPL intensity will be temperature dependent, as it depends on
the thermal occupation of the j 3~Eui over the lowest energy j 3~A2ui.
These properties were indeed observed in previous
experiments.34,36

We developed a theory for the excited state of XV(0) quantum
bits in diamond, which revealed a pJT effect, that is, strong
coupling of a localized vibration mode to multiple triplet
electronic states. We showed that our theory can explain
numerous experimental features of SiV(0) color center. We
predicted the basic optical properties of the other XV(0) color
centers too. Our results provide tools to experimentally test pJT
systems in solid state. Our findings can be useful to guide
experiments on these color centers for quantum bit applications.

METHODS
Numerical solution of the Jahn–Teller Hamiltonian
We determined the energy levels of the product Jahn–Teller system (Eq. 7)
by a numerical code implemented in GNU octave that we describe in the
Supplementary Information.

DFT calculations
We characterized XV(0) color centers by plane wave supercell calculations
within spin-polarized DFT as implemented in the vasp 5.4.1 code.47 We
determined the electronic structure within the Born–Oppenheimer
approximation where the ions are treated as classical particles and where
the minimum energy is found by moving the atoms until the quantum
mechanical forces acting on the ions fall below 10−3 eV/Å. We embedded
the XV(0) defects in a 512-atom diamond supercell. The Brillouin zone is
sampled at the Γ-point. We applied an energy cutoff at 370 eV for
expressing the plane wave basis set within the applied projector
augmentation wave method.48,49 We calculated the excited states with
the constrained-occupation DFT method (ΔSCF method).50 We used the
HSE06 hybrid functional51,52 that reproduces the experimental band gap
and the charge transition levels in Group-IV semiconductors within 0.1 eV
accuracy.53 For the electron–phonon coupling calculations of XV(0) defects,
we applied the same machinery that could well reproduce the ZPL
energies of XV(−) exhibiting the dynamic Jahn–Teller effect;25 thus, we
expect similar performance for XV(0) too.

Fig. 3 a Ab initio adiabatic potential energy surface (APES) as obtained from Kohn–Sham DFT for SiV(0), where mc refers to reduced mass of
the vibration. The X= 0 point refers to the geometry relaxation in the constraint of D3d symmetry. The global minimum in APES is obtained
upon releasing all symmetry constraints that yields Eð1ÞJT JT energy. We mapped the APES with linear interpolation between these two

geometries. We mirrored the X > 0 results to X < 0 regions. We determined the Eð2ÞJT energy by fitting quadratic polynomials on the data points.
b Geometry dependence of eigenvalues of Eq. 7 by using X as continuous variable and Y= 0 where the configuration coordinate is in
dimensionless unit. We label the wavefunction character with colored balls. Red (teal) balls correspond to the pure |3A1u〉 (|3Eux〉 or |3Euy〉)
character that are optically active states. Black balls correspond to the pure |3A2u〉 character that is dark state. See Supplementary Note 3 for
the four layers in the APES. c The convergent polaronic eigenstates of Eq. 7 with color-coded electronic characters and expectation value of
the distortion (R) from the D3d symmetry in dimensionless unit. We show the lowest energy vibronic solutions and δ energy gap between
them by yellow balls
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