Table 2 Promising TCMs from HT calculations

From: Transparent conducting materials discovery using high-throughput computing

Peng et al.35

\({\boldsymbol{E}}_{\boldsymbol{g}}^{{\boldsymbol{GW}}}\) (eV)

\({\boldsymbol{M}}_{{\mathbf{DOS}}}^ \ast\)

Cr2MnO4

3.3

9.8

Hautier et al.24

\({\boldsymbol{E}}_{\boldsymbol{g}}^{{\boldsymbol{GW}}}\) (eV)

\({\boldsymbol{M}}_{\boldsymbol{\sigma }}^ \ast\)

K2Sn2O3

2.3

0.27

Rb2Sn2O3

2.3

0.37

K2Pb2O3

2.6

0.39

K2Sn2O3

2.4

0.42

Sb4Cl2O5

3.8

0.49

PbTiO3

3.2

0.48

B6O

3.0

0.71

Ca4As2O

2.1

0.76

PbHfO3

3.5

1.08

PbTiO3

3.7

1.09

PbZrO3

3.6

1.09

Tl4O3

1.6

1.16

Ca4P2O

2.3

1.19

ZrSO

4.3

1.25

HfSO

4.5

1.30

NaNbO2

2.1

1.36

Sr4P2O

2.4

1.36

Hg2SO4

3.8

1.37

Tl4V2O7

4.5

1.44

Sr4As2O

2.2

1.46

Hautier et al. 28

Eg (eV)

\(M^{e^\ast} _\sigma\)

Cd2Ge7O16

4.9 (exp.)

0.16

CdGeO3

2.4 (GW)

0.18

In6TeO12

1.7 (GW)

0.18

Cd2Sb2O7

2.8 (exp.)

0.19

HgAs2O6

1 (GW)

0.19

HgAsO3

2.4 (GW)

0.20

Cd3Cl2O2

1.7 (GW)

0.21

ZnSb2O6

3 (exp.)

0.21

In2TeO6

2.0 (GW)

0.21

GeO2

>4 (exp.)

0.22

Cd2GeO4

3.2 (exp.)

0.22

Ga2TeO6

2.2 (GW)

0.22

Bhatia et al. 103

\(E_g^{GW}\) (eV)

\(M_\sigma ^ \ast\)

Ba2BiTaO6

3.8

0.45

Sarmadian et al. 30

\(E_g^{{\mathrm{HSE}}}\) (eV)

\(M_{{\mathrm{line}}}^ \ast\)

Pr2SeO2

3.26

0.69

Gd2SeO2

3.07

0.76

Nd2SeO2

2.76

0.79

La2SeO2

3.49

0.92

Cerqueira et al. 106

\(E_g^{{\mathrm{DFT}}}\) (eV)

\(M_\sigma ^ \ast\)

AuFeO2

0.6

0.59

AuScO2

1.8

0.63

AuAlO2

0.6

0.71

AgFeO2

1.1

0.90

AuCoO2

0.5

1.03

AgGaO2

0.6

1.09

AgSrO2

0.6

1.27

AuBaO2

1.2

1.44

AgAlO2

1.4

1.49

AuBiO2

1.3

1.54

AgBO2

1.4

1.61

AuCrO2

1.2

1.65

AuHO2

0.7

1.68

AuCdO2

0.9

1.76

AgAuO2

0.6

1.80

AuSrO2

1.3

1.80

AgLiO2

0.5

1.85

CuFeO2

0.9

2.02

AgRhO2

0.5

2.14

CuHO2

0.5

2.23

CuGaO2

0.8

2.23

CuBiO2

1.0

2.29

AgBiO2

1.4

2.38

AgCrO2

1.7

2.48

AuYO2

2.7

2.49

AgNO2

1.4

2.57

AgScO2

2.1

2.58

CuRhO2

0.7

2.75

Shi et al. 107

\(E_g^{{\mathrm{HSE}}}\) (eV)

\(M_\sigma ^ \ast\)

AgYS2

3.16

0.71

KYS2

3.37

1.23

CsLaO2

4.11

2.16

BrLaO2

3.92

2.23

Yim et al. 37

\(E_g^{\mathrm{HSE}}\) (eV)

\(M_{{\mathrm{line}}}^ \ast\)

Rb2Sn2O3

0.28

1.66

La4O4Se3

0.29

1.68

K2Sn2O3

0.32

1.89

Cu3VO4

2.55

2.01

CsCuO

1.21

2.45

Cu3PO4

3.50

2.55

BaCu2O2

2.34

2.75

Cu2LiO2

2.06

2.79

CuRbO

6.02

2.80

Cu2NaO2

2.19

2.83

CuNaO

9.01

2.96

CuKO

5.73

2.99

Sn4O2F4

1.68

3.05

CuLiO

2.76

3.10

La2O2Te

0.65

3.12

Cu2SO4

3.78

3.19

Y2OS2

1.41

3.67

SnSO4

1.12

5.40

Yan et al. 105

\(E_g^{{\mathrm{HSE}} + {\mathrm{GW}}}\) (eV)

\(M_{{\mathrm{fitted}}}^ \ast\)

TaIrGe

2.64

0.39–0.96

Varley et al. 108

\(E_g^{{\mathrm{DFT}}}\) (eV)

\(m_\sigma ^ \ast\)

BP

1.24

0.34

AlP

1.63

0.56

Raghupathy et al. 29

\(E_g^{{\mathrm{HSE}}}\) (eV)

\(M_{{\mathrm{fitted}}}^ \ast\)

MgTe

4.2

0.18

Al2Se3

3.1

0.56

ZnS

3.5

0.70

MgS

5.5

0.96

Raghupathy et al. 110

\(E_g^{{\mathrm{HSE}}}\) (eV)

\(M_\sigma ^ \ast\)

IrSbS

3.08

0.39

Ba2GeSe4

3.01

0.60

Ba2SiSe4

3.96

0.75

Ba(BSe3)2

3.53

0.78

NbCu3Se4

3.13

0.82

VCu3S4

3.68

0.93

CuBS2

3.41

1.00

Ha et al. 109

\(E_g^{GW} (eV)\)

\(M^\ast_\sigma\)

Li3Sb

3.06

0.24

CaTe

3.50

0.60

  1. First the TCOs are given, then the TCMs. Candidates are classified by publication. These candidates have simply been retrieved from the related publications. For details, please refer to the cited reference. For the work of Cerqueira et al.,106 candidates with a GGA band gap larger than 0.5 eV and a hole effective mass lower than 3m0 are reported here, following the thresholds of Woods-Robinson et al.58