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Atom table convolutional neural networks for an accurate
prediction of compounds properties

Shuming Zeng'?, Yinchang Zhao® Geng Li'?, Ruirui Wang'"?, Xinming Wang"? and Jun Ni'?

Machine learning techniques are widely used in materials science. However, most of the machine learning models require a lot of
prior knowledge to manually construct feature vectors. Here, we develop an atom table convolutional neural networks that only
requires the component information to directly learn the experimental properties from the features constructed by itself. For band
gap and formation energy prediction, the accuracy of our model exceeds the standard DFT calculations. Besides, through data-
enhanced technology, our model not only accurately predicts superconducting transition temperatures, but also distinguishes
superconductors and non-superconductors. Utilizing the trained model, we have screened 20 compounds that are potential
superconductors with high superconducting transition temperature from the existing database. In addition, from the learned
features, we extract the properties of the elements and reproduce the chemical trends. This framework is valuable for high
throughput screening and helpful to understand the underlying physics.
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INTRODUCTION

Machine learning (ML) techniques are gaining popularity in
estimating the properties of materials,'® inspired by the high-
throughput first-principles calculations based on density func-
tional theory (DFT).°"'" This new tool enables researchers to
explore compounds in the vast chemical space in a reasonable
amount of time. The key problem for ML methods applied in
materials science is to construct descriptors, which map the
structure and composition to a fixed length vector. To ensure that
the feature vector of arbitrary crystal systems have the same size,
early researches usually consider the overall properties of the
compounds,'? while recent advances have treated materials as
crystal graph with atomic properties encoded.*>” Despite the
differences in approaches, they all show good performances in
predicting crystals or/and molecules properties, such as formation
energy and elastic moduli.

However, for properties like band gap (Eg), there is a systematic
underestimation in standard DFT calculations compared with
experiments.'® To bridge the gap between theoretical calculations
and the experimental values, ML models based on eXtreme
Gradient Boosting (XGBoost), random forest (RF), and support
vector machine (SVM) have been applied to directly estimate the
experimental Eg14 and superconducting critical temperature
(T),">® recently. Nevertheless, in order to obtain the best
predictive performance, well-constructed features are required.
However, the choice of the manually constructed descriptors is
quite arbitrary, and it is hard to explain why those features are
chosen rather than others. Here, we treat compounds as atomic
table (AT) and propose a generic framework called atom table
convolutional neural networks (ATCNN) to predict the compounds
properties obtained experimentally. In this framework, the
descriptors are learned by itself, and no additional prior knowl-
edge, such as atomic properties and the underlying physics are

utilized except for the component information. Although the
detailed structure parameters are ignored, for a specific composi-
tion, the experimental structure is often determined and unique.
In other words, the composition is entangled to the crystal
structure. Therefore, our approach also has the advantage of
overcoming the difficulty of obtaining accurate atomic position
information through experiments.

Under the ATCNN framework, we have constructed ML models
to predict the experimental T, formation energy (Eg), and Eg. The
performance of these models has been greatly improved
compared to the previous models. For the T, prediction, to avoid
system bias, we propose a data-enhancement method that
enables the model to distinguish superconductors and non-
superconductors. Utilizing the well-trained model, we have
screened out dozens of compounds that are potential high T,
materials from the existing materials database. For the prediction
of Eg the accuracy of our model exceeds hybrid functional
calculations that is considered to be accurate in calculating E,,"”
which means the ATCNN model has great application prospects in
the semiconductor industry.

RESULTS

Before the emergence of deep learning, researchers spent a lot of
time constructing appropriate feature vectors to obtain ML model
with superior performance. Deep learning algorithms try to learn
high-level features from raw data, and directly output the target
properties. This end-to-end approach has achieved great success
in image recognition,'®'® speech recognition’>?" and machine
translation.”> However, in the field of materials science, feature
engineering is still one of the most important aspects of building
ML models.*'? The method of manually constructing features and
then predicting the properties according to the features is called
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Schematic diagram of the ATCNN model for T, prediction. A typical ATCNN model contains one input layer (atom table), one output

layer (compound property, CP), several convolutional layers (Conv), one pooling layer (Pool)", and several fully connected layers (FC). The size
of blue, teal, and cyan colored kernels of Conv are 5 x5, 3 x 3, and 2 x 2, respectively. For pool layer, the max-pooling method is used and the

size is 2 X 2. The detailed hyperparameters are presented in Table S1

non-end-to-end learning, which is not only inefficient, but usually
does not achieve optimal performance?' due to the improperly
constructed features. Here, we develop an end-to-end framework
ATCNN to directly predict the target properties. In this approach,
no other prior knowledge is used except for the components. The
detailed construction of the ATCNN model is presented in the
“Methods” section and a typical ATCNN model is shown in Fig. 1.

The experimental data for T, E,, and E; are extracted from the
SuperCon database,®* previous literature,” and the Open
Quantum Materials Database (OQMD),** respectively. The atomic
number of the elements involved is within 86, covering the first six
period elements. For the Eq and E¢ data, a total of 3896 and 5886
compounds are included, respectively. These data are used
without further screening, and each data set is randomly divided
into training set (80%) and test set (20%) (see Table S4 in the
Supplementary Information). However, in the SuperCon database,
materials of the same composition often have different T, values,
which are obtained from different experiments. For example, at
ambient pressure, H,S is not a superconductor, but under high
pressure, it has a very high T..%° Because of this, there are two very
different T, values of H,S in the database, namely 185 and 60K,
respectively. To avoid causing confusion, for a compound with
multiple T, values, if the maximum exceeds the minimum twice,
this material is removed, otherwise the average is taken as the T,
value of this material and the duplicate data is thrown away. In
addition, we have also removed unreasonable data, including the
unconfirmed 2D high-T, superconductor HWO;,%” and those with
the coefficient of an element in the chemical formula >50 like
“Hg1234010+2z", or with uncertain oxygen content such as
“Yb16Ba1Cu20z".

In the cleaned dataset of T, Hg, MgB,, FeSe, and YBa,Cus0; are
retained to test the generalization ability of the ATCNN model,
which are typical representatives of elemental superconductors,
conventional BCS superconductors, iron-based superconductors,
and copper-based superconductors. Before splitting training set
and test set, the related compounds including Hg, Mg,B,, Fe,Se,,
and YBa,Cu,O, are removed from the cleaned dataset, where x
and y denote the content of corresponding elements. Therefore,
compounds like MgB,, Mgo31Boso, and MgogB, are all removed.
The cleaned data set contains 13,598 superconductors, which is
divided into a training set (80%) and a test set (20%). When
determining model hyperparameters, 20% of the training data is
used to validate the model, and each hyperparameter is
determined by multiple tests. In the validation set, the model
with five Conv layers performs best, as shown in Fig. S2. Besides,
the number of the kernels in each Conv layer, the size of kernel,
the number of the FC layers and the number of neurons in each
FC layer are also tested. After hyperparametric optimization, the
structure of the ATCNN-I model is determined, as shown in Fig. 1.
In ATCNN-I, each Conv layer contains 64 kernels, and the size of
hidden layers are 200 and 100 (see Table S1 in the Supplementary
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Table 1. Statistical summary of the prediction performance of ATCNN-

| and ATCNN-II on superconductors

Model Compounds  Data size  Test result

Test set MAE (K} RMSE (K}

ATCNN-I Total 2720 4.27 8.14 0.97
| 1122 6.98 10.89 0.94
I 287 4.90 7.64 0.83
11l 69 9.77 13.98 0.85
v 1242 1.69 3.66 0.87

ATCNN-II Total 2720 4.12 8.19 0.97
| 1122 7.25 11.02 0.94
I 287 4.62 7.57 0.83
11l 69 9.49 12.91 0.88
v 1242 1.71 3.84 0.86

Information), respectively. To avoid overfitting, the dropout
method?® is used and the dropout rate of the FC layers is set to
0.2. The training process is terminated after 500 epoches, because
the error of the model on the validation set decreases before 500
epoches, and then the error almost remains unchanged, or even
tends to increase, as shown in Fig. S1. The test results are
summarized in Table 1 and shown in Fig. 2c.

In the test set, the MAE, RMSE, and the coefficient of
determination (%) are 4.12, 8.14K and 0.97, respectively. The
overall performance of the ATCNN-I model is much better than the
previous fine tuned RF model (which has an r* of nearly 0.88)"°
and XGBoost model (which has an r* of 092 and a RMSE of
9.5 K).'® In addition, except for Hg, the predicted values of T in the
independent dataset (Hg, MgB,, FeSe, and YBa,Cuz0;) are nearly
the same compared with the experimental results (see Table 2),
showing that the ATCNN-I model has strong generalization ability.
For Hg, its superconducting property can be learned from
compounds that contain Hg element in the training set, such as
Hgsr2CU1QO4, Hgo_76T|0'7ﬁBaCUO4'5, and HgB32CUO4_19.

However, like the previous models, ATCNN-I has difficulty
distinguishing between superconductors and non-superconduc-
tors, because the training data only contains superconductors. To
fix this problem, we add 9399 energetic stable insulators with the
DFT band gap larger than 0.1 eV to the 13,598 superconductors
data set, and 80% of them are mixed up to the training set, while
20% of them are added to the test set. These insulators are
extracted from Materials Project repository® and they are treated
as non-superconductors. The full training and test data set are
listed in the Table S5. After retraining, we get the ATCNN-Il model.
As shown in Fig. 2, Tables 1 and 2, ATCNN-Il has similar
performance on superconductors with ATCNN-I, and the MAE,
RMSE, * are 4.12, 8.19K and 0.97, respectively. Both models have
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Fig. 2 Detailed results of ATCNN-I and ATCNN-II models on superconductors. The test set only contains superconductors. a Statistics of the
compounds in the test set. The blue, red, green, and gray bars indicate the number of compounds containing Cu, Fe, Cu-Fe, and others,
respectively. b The distributions of T, of the compounds in a. ¢ Comparison of the ATCNN-I model predicted T, against the experimental T, in
the test set. d Comparison of the ATCNN-II model predicted T. against the experimental T, in the test set

Table 2. Comparison of experimentally measured T. with the values
predicted by ATCNN-I and ATCNN-II models

Compound Experiment ATCNN-I ATCNN-II
unit (K) (K) (K)

Hg 4.12%° 1.4 26
MgB, 393 38.0 38.7
a-FeSe g’ 9.8 8.1
YBa,Cus0, 9132 91.5 90.6
YBa,Cu3O0e 6 60** 63.7 67.2

The related materials are removed from the data set before training and
testing these two models

capability of capturing the change of T. when the composition
changes slightly, such as YBa,Cu30; and YBa,CusOg 6. The biggest
difference between ATCNN-I and ATCNN-II is in predicting the
non-superconductors. In Figs. S3, S4 and Table S5, the predictive
performances on superconductors and non-superconductors of
these two models are presented. In the full test data set which
contains 2720 superconductors and 1880 non-superconductors,
the MAE and RMSE of the ATCNN-I model increase to 8.76 and
10.45 K, while that of the ATCNN-Il model decrease to 3.17 and
6.91 K. The reason is that ATCNN-I treats compounds as super-
conductors and predicts non-zero T, values, even if they are
insulators, but ATCNN-II gives absolute zero T, values for most
insulators and non-superconducting metal such as alkali metal. If
the predicted T, >0 and T, =0 are classified to superconductors
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and non-superconductors, respectively, 8.9% of the superconduc-
tors and 2.2% of the non-superconductors are misclassified by
ATCNN-II, while 2.9% of the superconductors and 99.6% of the
non-superconductors are misclassified by ATCNN-I in the full test
set, as shown in the confusion matrices in Fig. S3. The ability to
distinguish between superconductors and non-superconductors
can greatly increase the efficiency of searching for new super-
conductors. For example, from 20,574 energetic stable materials in
Materials Project database, we screen out 20 materials with large
predicted T. (see Table S6). These selected compounds are
potential high T. materials.

To further analyze the model, the 2720 superconductors in the
test set are divided into four groups: the first group () has 1122
materials, all of which contain Cu; the second group (Il) has 287
materials, all of which contain Fe; the third group (lll) has 69
materials, all of which contain both Cu and Fe elements; the rest
are classified as the fourth group (IV), with a total of 1242
materials. The first, second, and fourth categories roughly
represent copper-based superconductors, iron-based supercon-
ductors, and conventional BCS superconductors, respectively.
Their statistical distributions are shown in Fig. 2a, b. The predicted
results for each group are summarized in Table 1. It can be seen
from the statistical results that both the two ATCNN models
perform better in group | and group IV, but worse in group Il and
group lll. The possible reason is that the number of iron-based
superconductors in the data set is much smaller than that of
conventional BCS superconductors and copper-based supercon-
ductors. Therefore, it should be cautious when predicting the T, of
iron-based superconductors.
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Fig. 3 a Comparison of the ATCNN model predicted E4 against the experimental Eg. b Comparison of the ATCNN model predicted E¢ against
the experimental E;. ¢ ROC curve for the metal/insulator classification model with an AUC of 0.97. d Confusion matrix of the metal/insulator

classification model

In the prediction of crystal properties, electronic structures are
often used to test the performance of the ML model.*733*3* As a
general framework, the ATCNN model can also be applied to other
experimental data, such as Ey and E¢. Due to the small amount of
data, only one (two) Conv, one Pool, and two hidden layers are
used for the prediction of E¢ (Eg). The detailed network
hyperparameters are listed in Tables S2 and S3. Figure 3a, b show
the comparison of the experimental £y and E¢ with the prediction
of the ATCNN model. It is clear that the ATCNN model achieves
excellent agreement between the experimental data and pre-
dicted values in the test set. For E; prediction, the MAE and r* are
0.078 eV/atom and 0.99, while the MAE of the DFT calculation with
respect to the experimental measurement is 0.81-0.136 ev/
atom,"" which means that the accuracy of the ATCNN model
has exceeded the DFT calculations. In addition, from the data
point of view, for the same training data size (4708) of E; the
performance of the ATCNN model is much better than the
structure free ElemNet model (MAE of about 0.15 eV/atom).>* We
attribute the better performance of the ATCNN model to its
unique network structure, since different network structures lead
to different solutions. Due to the fully connected network
structure, the ElemNet model treats the relationship between
elements as equivalent, and it requires a lot of data to learn the
unique relationship between elements. But for the ATCNN model,
because of the convolution network structure, the relationship
between elements is naturally different. Besides, for the E;
prediction, the size of ATCNN model is much small than ElemNet
model and does not easily cause overfitting. Therefore, the ATCNN
model performs better than the ElemNet model when the dataset
is small.

For E4 prediction, the MAE of the ATCNN model is 0.307 eV,
while the MAE of the CGCNN model is 0.388 eV,” and the MAE
between standard DFT calculations and experimentally measured
values is 0.6 eV,>> demonstrating the superior performance of our
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model. Compared with E, the prediction of E; seems to be not so
accurate, and the r* is 0.94. Nevertheless, the performance of the
ATCNN model is better than the gradient-boosting decision tree
model based on the property-labeled materials fragment descrip-
tors, which has an r? of 0.90,% and the SVR model using the same
experimental data, which achieves an r? of 0.90."* To quantify the
capabilities of the ATCNN model, we apply the trained model to a
set of specific compounds which have been studied intensely by
different levels of theory, and are often used to benchmark new
methods.>®3® The predicted results on the selected compounds
are listed in Table 3. Among these methods, the PBE calculated
band gaps (Egpge) differ greatly from the experimental value, and
are all underestimated. The GW approximation method®® is the
most accurate when calculating Eg, which resulted in a MAE of
0.22 eV and an RMSE of 0.33 eV. However, the GW-type calculation
is not currently amenable to high-throughput calculations due to
the expensive computational cost. The most effective way for
high-throughput screening is to predict E5 by the ATCNN model,
because it is both accurate (with a MAE of 0.25 eV and an RMSE of
0.58 eV, which are only worse than the GW calculation) and fast. In
addition, the structure of the £y prediction model can be used for
metal/insulator classification. For the sake of comparison, the
same dataset which contains 2458 unique insulators and 2458
metals as the SVC mdoel' is used to train and test the
classification model. The performance of the ATCNN classification
model is characterized by the receiver operating characteristic
(ROCQ) curve and the confusion matrix, as shown in Fig. 3¢, d. The
area under the ROC curve (AUQ) is 0.97, the same as the SVC
model. From the confusion matrix, it can be seen that ATCNN
model is more accurate in classifying metals (91.2% vs. 88.8%), but
slightly worse in classifying semiconductors than SVC model
(90.5% vs. 95.2%).
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DISCUSSION

For any ML algorithm applied in materials science, model
interpretability is desirable. Here, we take the E; prediction model
as an example to illustrate how to extract knowledge from the
ATCNN model. Generally, visualizing the element representations
is a good way to examine the learned features. In Fig. 4a, the 50
dimensional representations (for each element, the first FC layer
outputs 50 values) of main-group elements are shown. However,
these features are intertwined with each other and it is difficult to
visually see the relationship between elements. To better under-
stand the high-dimensional feature vectors, all features are first
decoupled by the principal component analysis method (PCA) and
then projected onto the space spaned by the first two principal
axes. PCA is a method of feature extraction and dimensionality
reduction, and it is widely used in previous studies to visualize the
high-dimensional features.>*™*' As seen in Fig. 4b, alkali metals
(group 1), alkali earth metals (group II), halogens (group VII), and

Table 3. Comparison of experimentally measured band gap (E), with
values calculated by PBE functional (Egpge), hybrid functional (Egpse),
the GW approach (Egcw), the SVR model that relies on manually
constructed feature descriptors (Egsvg), and the ATCNN model (Ej,
ATCNN)
Compound Eqy Eqgpee EgHse Egew Eg,svr Eg,ATcNN
(eV) (eV) (eV) (eV) (eV) (eV)
GaN 3.2 1.62 3.14 3.32 445 3.45
CdTe 1.6 0.62 1.52 1.76 1.43 1.58
LiF 14.2 9.2 11.47 15.1 9.87 12.39
TiO, 3.42 2.13 3.67 3.73 3.99 3.44
CuSbs, 1.38 0.9 1.69 1.1 1.39 1.40
ZnS 3.91 2.07 3.49 4.15 3.12 3.86
CuyZnSnS, 1.6 0.28 0.09 1.64 1.75 1.75
PbTe 019 0 0.19 026 0.2 0.31
CaAs 1.52 0.19 1.12 1.52 1.28 1.46
ZnO 3.44 0.67 249 3.2 3.41 3.46
MAE 1.65 0.67 0.22 0.75 0.25
RMSE 2.1 1.0 0.33 1.46 0.58
The experimental data and the calculated values are extracted from
previous literature'
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rare gases (group VIII) are clustered in different regions. Besides,
the elements O, N, and S are close to halogens, showing strong
non-metallicity, while the element In is close to alkali earth metal,
showing metallicity. Since the E; of elemental crystals are all 0, the
features are not learned through the elements, but are learned
through the compounds. The PCA results reflect the periodic law of
the elements, and confirm that the ATCNN model indeed learns the
properties of elements. Besides, the E; reflects the stability of
the compounds, and the stability of the compounds is related to the
arrangement of electrons outside the nucleus®*? that is, to
the periodic law of elements. Thus, the PCA results indicate that
the ATCNN model has captured the underlying physics of E:.

In summary, we treat compounds as atom tables and propose a
universal ML framework called ATCNN to predict the experimental
measured properties. The ATCNN model automatically learns the
features needed and directly predict the properties without
having to manually construct feature vectors. Under this frame-
work, we construct ATCNN-I and ATCNN-II model to predict the
superconducting transition temperature. The ATCNN-I is accurate
to predict the T. of superconductors, while the ATCNN-II is not
only accurate, but also able to distinguish between super-
conductors and non-superconductors. Using the ATCNN-II model,
we have screened dozens of unexplored compounds that are
potential high T. materials. In addition, for experimental measured
Er and Eg, the accuracy of the ATCNN model exceeds the standard
DFT calculations. Furthermore, we use PCA method to analyze the
learned features of main-group elements, and find that the ATCNN
model indeed learns the properties of elements and reproduces
the chemical trends which reflects the underlying physics of E:.

METHODS

In the framework of ATCNN, a compound is treated as a 10 x 10 pixels
image that is called AT. Each pixel of AT represents an element, and its
value is the proportion of this element in the compound. Therefore, a 10 x
10 pixels AT can represent any materials within 100 elements. Because all
compounds involve only the first 86 elements of the periodic table, the size
of the AT is sufficient. The elements represented by each pixel can be
specified randomly, but must be unique and deterministic. For conve-
nience, we specify them in the order of the periodic table of elements. That
is, the first pixel represents the proportion of the H element, and the last
pixel represents the proportion of the Fm element. We do not use the
actual structure of the periodic table as AT because we try to build the ML
models with as little prior knowledge as possible, and it is difficult to
represent Actinides and Lanthanides in the periodic table. AT represents
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Fig. 4 Features analysis of the E; prediction model. a Illustration of the feature vectors of 36 main-group elements in vector space. Group |
represents the first main-group elements, group Il represents the second main-group elements, and so on. b Projection of the feature vectors
of 36 main-group elements onto the plane spanned by the first and second principal axes (PC1 and PC2). The percentage represents the ratio
of the variance on the principal axe direction. Elements are colored according to the their elemental groups
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only the compound, and its feature vector will be learned through
convolutional neural networks (CNN).

A typical CNN contains two major components: convolutional layers
(Conv) and pooling layers (Pool). In the first Conv, the convolution is
performed on the AT with the use of the filters or kernels to then produce
feature maps. Each convolution kernel produces a feature map of the
original map size,

A, = ConV(AT, K m, ), M

where A is the [th feature map produced by the /th kernel K ,,x, with the
size of m x m. The kernels K are learned automatically by the network. ¢ is
the non-linear activation function called Rectified Linear Unit (Relu)?®
which is defined as ¢(x) = max(0,x). The n+ 1th Conv takes the feature
maps A" produced by the nth Conv as input and outputs new feature
maps A" 7,

A = Conv(N" Kimum, @) ?

After several Convs, the final feature maps A are obtained. Then the
max-pooling method is used to reduce the size of A’ and produce the
feature vector v

A" = Pool (A", Py.1), 3)
v=> ohj, @
]

where @ is the concatenation operator and I\,"ij is the entry of the /th
feature map of A'. Py, denotes the pool with the size of h x h. The role of
the Pool layer is to reduce the size of the feature map, but in our model,
the size of the Atom Table is just 10 x 10, so we do not use the Conv layer
and the Pool layer alternately like the common CNN. In fact, using one Pool
layer after the final Conv layer is best in our models. Finally, several FC
hidden layers are used to capture the complex relation between feature
vector and target property. The parameters of the entire network are
learned by minimizing the loss function. For predictions of T, Eg, and E,
the loss functions are root mean square error (RMSE), mean absolute error
(MAE), and MAE, respectively. To ensure that the results are non-negative,
we add the Relu activation function in the output layer in the predictions
of Tc and Eg. Thus, the predicted T and £ are positive and consistent with
the actual situation.

DATA AVAILABILITY

The data sets used to generate the results in this work are available at https:/github.
com/xinyu1905/ATCNN.

CODE AVAILABILITY

The codes that use the ATCNN models are available at https://github.com/xinyu1905/
ATCNN.

ACKNOWLEDGEMENTS

This research was supported by the National Key Research and Development
Program of China under Grant no. 2016YFB0700102, the National Natural Science
Foundation of China under Grant nos. 11774195 and 11704322; the Natural Science
Foundation of Shandong Province for Doctoral Program under Grant no.
ZR2017BA017.

AUTHOR CONTRIBUTIONS

JN. and S.Z. designed the research. S.Z. worked on the model. S.Z, Y.Z. and G.L.
collected the data. S.Z, X.W. and J.N. wrote the text of the manuscript. All authors
discussed the results and commented on the manuscript.

ADDITIONAL INFORMATION

Supplementary Information accompanies the paper on the npj Computational
Materials website (https://doi.org/10.1038/541524-019-0223-y).

Competing interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

npj Computational Materials (2019) 84

REFERENCES

1.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

Pilania, G, Wang, C, Jiang, X, Rajasekaran, S. & Ramprasad, R. Accelerating
materials property predictions using machine learning. Sci. Rep. 3, 2810 (2013).

. Schutt, K. T. et al. How to represent crystal structures for machine learning:

towards fast prediction of electronic properties. Phys. Rev. B 89, 205118 (2014).

. Ward, L., Agrawal, A, Choudhary, A. & Wolverton, C. A general-purpose machine

learning framework for predicting properties of inorganic materials. npj Comput.
Mater. 2, 16028 (2016).

. Olexandr Isayev et al. Universal fragment descriptors for predicting properties of

inorganic crystals. Nat. Commun. 8, 15679 (2017).

. Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an

accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120,
145301 (2018a).

. Schitt, K. T, Sauceda, H. E.,, Kindermans, P.-J, Tkatchenko, A. & Mdiller, K-R.

SchNet—a deep learning architecture for molecules and materials. J. Chem. Phys.
148, 241722 (2018).

. Chen, C, Ye, W,, Zuo, Y., Zheng, C. & Ong, S. P. Graph networks as a universal

machine learning framework for molecules and crystals. Chem. Mater. 31,
3564-3572 (2019).

. Tehrani, A. M. et al. Machine learning directed search for ultraincompressible,

superhard materials. J. Am. Chem. Soc. 140, 9844-9853 (2018).

. Jain, A. et al. Commentary: the Materials Project: a materials genome approach to

accelerating materials innovation. APL Mater. 1, 011002 (2013).

. Curtarolo, S. et al. Aflow: an automatic framework for high-throughput materials

discovery. Comput. Mater. Sci. 58, 218-226 (2012).

. Kirklin, S. et al. The Open Quantum Materials Database (OQMD): assessing the

accuracy of DFT formation energies. npj Comput. Mater. 1, 15010 (2015).

. De Jong, M. et al. A statistical learning framework for materials science: appli-

cation to elastic moduli of k-nary inorganic polycrystalline compounds. Sci. Rep. 6,
34256 (2016).

. Chan, M. K. Y. & Ceder, G. Efficient band gap prediction for solids. Phys. Rev. Lett.

105, 196403 (2010).

. Zhuo, Y., Tehrani, A. M. & Brgoch, J. Predicting the band gaps of inorganic solids

by machine learning. J. Phys. Chem. Lett. 9, 1668-1673 (2018).

. Stanev, V. et al. Machine learning modeling of superconducting critical tem-

perature. npj Comput. Mater. 4, 29 (2018).

. Hamidieh, K. A data-driven statistical model for predicting the critical tempera-

ture of a superconductor. Comp. Mater. Sci. 154, 346-354 (2018).

. Heyd, J. & Scuseria, G. E. Efficient hybrid density functional calculations in solids:

assessment of the Heyd-Scuseria—-Ernzerhof screened Coulomb hybrid func-
tional. J. Chem. Phys. 121, 1187-1192 (2004).

. Krizhevsky, A., Sutskever, I. & Hinton, G. ImageNet classification with deep con-

volutional neural networks. In Advances in Neural Information Processing Systems
(eds Pereira, F., Burges, C. J. C,, Bottou, L. & Weinberger, K. Q) 1097-1105 (Curran
Associates, Red Hook, NY, USA, 2012).

. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In

Proc. 29th IEEE Conference on Computer Vision and Pattern Recognition (eds
Agapito, L., Berg, T, Kosecka, J. & Zelnik-Manor, L.) 770-778 (IEEE Computer
Society, Los Alamitos, CA, USA, 2016).

Hinton, G. et al. Deep neural networks for acoustic modeling in speech recog-
nition. IEEE Signal Proc. Mag. 29, 82-97 (2012).

Song, W. & Cai, J. End-to-end Deep Neural Network for Automatic Speech Recog-
nition. Standford CS224D Reports (2015).

Wu, Y. et al. Google’s neural machine translation system: bridging the gap
between human and machine translation. arXiv preprint arXiv:1609.08144
(2016).

Hahnloser, R. H. R., Sarpeshkar, R., Mahowald, M. A,, Douglas, R. J. & Seung, H. S.
Digital selection and analogue amplification coexist in a cortex-inspired silicon
circuit. Nature 405, 947 (2000).

National Institute of Materials Science, Materials Information Station. SuperCon.
https://supercon.nims.go.jp/index_en.html (2011).

Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and
discovery with high-throughput density functional theory: the Open Quantum
Materials Database (OQMD). JOM 65, 1501-1509 (2013).

Drozdov, A. P., Eremets, M. I, Troyan, I. A, Ksenofontov, V. & Shylin, S. I. Con-
ventional superconductivity at 203 kelvin at high pressures in the sulfur hydride
system. Nature 525, 73 (2015).

Reich, S., Leitus, G. Popovitz-Biro, R, Goldbourt, A. & Vega, S. A possible 2D
H,WO3 superconductor with a T, of 120 K. J. Supercond. Nov. Magn. 22, 343-346
(2009).

Srivastava, N., Hinton, G, Krizhevsky, A,, Sutskever, |. & Salakhutdinov, R. Dropout:
a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15,
1929-1958 (2014).

Delft, D. V. & Kes, P. The discovery of superconductivity. Phys. Today 63, 38-43
(2010).

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences


https://github.com/xinyu1905/ATCNN
https://github.com/xinyu1905/ATCNN
https://github.com/xinyu1905/ATCNN
https://github.com/xinyu1905/ATCNN
https://doi.org/10.1038/s41524-019-0223-y
https://supercon.nims.go.jp/index_en.html

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Xu, M. et al. Single crystal MgB, with anisotropic superconducting properties.
Appl. Phys. Lett. 79, 2779 (2001).

Subedi, A, Zhang, L., Singh, D. J. & Du, M. H. Density functional study of FeS, FeSe,
and FeTe: electronic structure, magnetism, phonons, and superconductivity. Phys.
Rev. B 78, 134514 (2008).

Cava, R. J. et al. Oxygen stoichiometry, superconductivity and normal-state
properties of YBa,Cuz0;_s. Nature 329, 423 (1987).

Jha, D. et al. Elemnet: deep learning the chemistry of materials from only ele-
mental composition. Sci. Rep. 8, 17593 (2018).

He, Y., Cubuk, E. D., Allendorf, M. D. & Reed, E. J. Metallic metal-organic frame-
works predicted by the combination of machine learning methods and ab initio
calculations. J. Phys. Chem. Lett. 9, 4562-4569 (2018).

Jain, A. et al. A high-throughput infrastructure for density functional theory cal-
culations. Comput. Mater. Sci. 50, 2295-2310 (2011).

Shishkin, M., Marsman, M. & Kresse, G. Accurate quasiparticle spectra from self-
consistent GW calculations with vertex corrections. Phys. Rev. Lett. 99, 246403
(2007).

Clark, S. J. & Robertson, J. Screened exchange density functional applied to solids.
Phys. Rev. B 82, 085208 (2010).

Crowley, J. M., Tahir-Kheli, J. & William, A. Goddard lIl. Resolution of the band gap
prediction problem for materials design. J. Phys. Chem. Lett. 7, 1198-1203 (2016).
Xie, T. & Grossman, J. C. Hierarchical visualization of materials space with graph
convolutional neural networks. J. Chem. Phys. 149, 174111 (2018b).

S. Zeng et al. an

40. Zhou, Q. et al. Learning atoms for materials discovery. Proc. Natl Acad. Sci. USA
115, E6411-E6417 (2018).

41. Herr, J. E, Koh, K,, Yao, K., & Parkhill, J. Compressing physical properties of atomic
species for improving predictive chemistry. arXiv preprint arXiv:1811.00123
(2018).

42. Pyykko, P. Understanding the eighteen-electron rule. J. Organomet. Chem. 691,
4336-4340 (2006).

Open Access This article is licensed under a Creative Commons

[ Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2019

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2019) 84


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Atom table convolutional neural networks for an accurate prediction of compounds properties
	Introduction
	Results
	Discussion
	Methods
	Supplementary information
	Supplementary information
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGMENTS




