Table 1 The three-dimensional convex hull of models found by the machine-learning algorithm
From: Fast, accurate, and transferable many-body interatomic potentials by symbolic regression
Fitness | Costa | Complexity | Expression |
---|---|---|---|
5393157 | 1 | 2 | \({\sum} {rf(r)}\) |
1800.1 | 1 | 4 | \({\sum} {r^{ - 3.20}f(r)}\) |
105.30 | 1 | 8 | \({\sum} {(649.17r^{ - 9.83} - 0.09)f(r)}\) |
54.144 | 1 | 10 | \({\sum} {(r^{10.20 - 5.49r} - 0.07)f(r)}\) |
26.906 | 2 | 13 | \({\sum} {r^{10.20 - 5.49r}f(r)} + 33.77\left( {{\sum} {f(r)} } \right)^{ - 1}\) |
8.1584 | 2 | 15 | \({\sum} {r^{10.21 - 5.48r}f(r)} + 1.19\left( {{\sum} {0.33^rf(r)} } \right)^{ - 1}\) |
7.8230b | 2 | 21 | \({\sum} {(r^{10.21 - 5.47r} - 0.21^r)f(r)} + 0.97\left( {{\sum} {0.33^rf(r)} } \right)^{ - 1}\) |
7.8229 | 2 | 25 | \(0.999{\sum} {(r^{10.21 - 5.46r} - 0.21^r)f(r)} + 0.97\left( {{\sum} {0.33^rf(r)} } \right)^{ - 1} + 5.76\) |
7.4131 | 4 | 19 | \({\sum} {r^{10.21 - 5.48r}f(r)} + \left( {3.07{\sum} {f(r)} } \right)\left( {{\sum} {0.31^rf(r)} } \right)^{ - 1}\left( {{\sum} {rf(r)} } \right)^{ - 1}\) |
4.7294b | 3 | 28 | \(7.33{\sum} {r^{3.98 - 3.94r}f(r)} + \left( {27.32 - {\sum} {(11.13 + 0.03r^{11.74 - 2.93r})f(r)} } \right)\left( {{\sum} {f(r)} } \right)^{ - 1}\) |
4.2932 | 4 | 29 | \(6.76{\sum} {r^{4.00 - 3.88r}f(r)} + 17.25\left( {{\sum} {f(r)} } \right)\left( {{\sum} {r^{11.68 - 3.07r}f(r)} } \right)^{ - 1} + 25.30\left( {{\sum} {f(r)} } \right)^{ - 1}\) |