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In recent years, artificial intelligence (Al) methods have prominently proven their use in solving complex problems. Across science
and engineering disciplines, the data-driven approach has become the fourth and newest paradigm. It is the burgeoning of
findable, accessible, interoperable, and reusable (FAIR) data generated by the first three paradigms of experiment, theory, and
simulation that has enabled the application of Al methods for the scientific discovery and engineering of compounds and materials.
Here, we introduce a recipe for a data-driven strategy to speed up the virtual screening of two-dimensional (2D) materials and to
accelerate the discovery of new candidates with targeted physical and chemical properties. As a proof of concept, we generate new
2D candidate materials covering an extremely large compositional space, downselect 316,505 likely stable 2D materials, and predict
the key physical properties of these new 2D candidates. Finally, we hone in on the most propitious candidates of functional 2D

materials for energy conversion and storage.
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INTRODUCTION

Prior to data-driven approaches, the evolution of material
discovery has experienced three paradigms'. The first paradigm
is rooted in experiments performed by trial and error methods, the
second paradigm utilizes the transformation of the experimental
results into theory, and the third paradigm is based on the
computational simulation of theoretical models. Each paradigm
arose under favor of the outputs of the previous paradigms. In
recent years, the rapid growth of available data generated by the
previous three paradigms and the rise of highly capable
algorithms have enabled the application of artificial intelligence
(Al), thereby starting the fourth and latest paradigm of material
discovery. The key impact of data-driven discovery is that it
strikingly accelerates material discovery by substantially decreas-
ing the required computational power, thus it removes the
boundaries of the compositional screening space. Al*~ and virtual
screening®'® methods have, in recent years, been successfully
applied to sub-fields of chemical and material sciences to discover
new chemical compounds and materials with exceptional
functionalities. By having unique structural properties, every sub-
field yet requires tailored procedures for virtual screening.
Moreover, in order to apply Al methods in disparate material
sub-fields, firstly, it is necessary to produce a sufficient amount of
high fidelity and quality data from experimental or computational
studies’’.

One of the thriving sub-fields of materials science is two-
dimensional (2D) materials. Having exceptional and tunable
properties the 2D materials hold strong promise for semiconduc-
tor, energy, and health applications'®'®. Since the 2010 Nobel
prize-winning discovery of graphene?® with a simple 2D structure
of carbon atoms but with attractive and complex physics, only a
few hundred distinct 2D materials have successfully been
synthesized?'. Despite a modest number of experimentally
realized compounds, very recently, new 2D materials repositories
that are based on robust quantum simulations have been
emerging'*?*?*, The in silico repositories have been generated

through the two sequential approaches of designing new 2D
materials: exfoliation of layers from three-dimensional (3D) bulk
structures and combinatorial exchange of atoms in 2D structures.
The first approach is based on screening of exfoliated layered
materials from 3D materials databases®*™’. The outputs of this
approach are new 2D materials with structures that can be used as
2D prototypes. The second approach involves the exchange of
one or more atoms of a known 2D prototype with atoms of
another chemical element. The outputs of the second method are
new 2D materials that have the same crystal prototype as the
original material but are composed of different chemical elements.
Irrespective of the two approaches, the resource intensive physics-
based calculations have restricted the boundaries of the chemical
search space for new 2D materials, such that the number of 2D
materials that could have been studied with density functional
theory (DFT) calculations, the work-horse computational
method?®, reaches to only a few thousand during the past years.
Albeit the DFT-calculated 2D materials databases consist of only a
few thousand materials, they are remarkable FAIR data resources
for data-driven Al methods. Among the major goals of Al, machine
learning (ML) is a felicitous method that shows great promise in
explorations of extremely vast search spaces of feasible chemical
compounds in form of molecules, 2D, and 3D materials.

In this study, we introduce a recipe for Al-aided virtual
screening of 2D materials. The recipe systematically generates
candidate materials covering an unprecedented chemical space of
compounds, identifies likely stable materials, and predicts key
properties of the stable materials candidates. As a proof of
concept, we used this recipe to generate a Virtual 2D Materials
Database (V2DB) that contains 316,505 likely stable 2D materials
with predicted properties. We provide a detailed description
below, alongside the open-source codes and data, and expect that
the recipe will be useful for future data-driven Al-aided discoveries
of new and functional 2D materials.
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RESULTS
Workflow overview

We followed three steps to effectively utilize the power of Al for
the large-scale virtual screening effort and to create the V2DB
(Fig. 1). First, by employing 22 different 2D crystal prototypes and
52 different chemical elements from the periodic table, we applied
a brute-force method to generate a systematic library of more
than 72 million 2D compounds. Next, using three sequential
filtering layers (i.e, symmetry, neutrality, and stability), we
identified ~316 thousand (0.4% of the total) likely stable 2D
materials. Finally, using artificial neural networks (ANN), we
predicted their key materials properties that are relevant to
energy conversion and storage.

Generation of new 2D materials

We systematically generated 2D materials in three consecutive
steps. First, we identified the base structures (i.e., prototypes) from
the training data (Fig. 2a). Secondly, we grouped elements
according to their assumed electrical charge states in the
compounds (Fig. 2b). Thirdly, we generated all possible new 2D
materials by brute-force elemental substitution (see “Methods")
using the prototype and element grouping information. A
heatmap of the chemical screening space is shown in Fig. 3. As
a result, we obtained 72,522,240 unverified candidate 2D
materials.

Filtering

To discard geometrical duplicates, assure neutrality and stability of
the newly generated compounds, we applied the following three
filters (see “Methods"):

® Symmetry filter: removes geometrical duplicate copies of

compounds.

® Neutrality filter: removes compounds with a nonzero net
charge.

® Stability filter: removes compounds that are predicted to be
unstable.

After applying three layers of filters, we obtained 316,505
validated candidate 2D materials (Fig. 4). Table 1 shows the
remaining number of materials after applying filters to each
prototype of 2D compounds.

Property prediction

Al-aided materials design approaches that effectively utilize the
complex physical and chemical knowledge on known materials
hold a strong promise for new scientific discoveries that would not
have been possible in other ways?3°. We developed ANN models
for the prediction of important physicochemical and electronic
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properties, including the stability, heat of formation, energy above
convex hull, nature and numerical value of band gap, valance
band maximum (VBM), conduction band minimum (CBM), metal
work function, and magnetic state (NM: nonmagnetic, FM:
ferromagnetic, and AFM: antiferromagnetic), of filtered, likely
stable 2D materials. We used a total of 2226 2D materials from the
Computational 2D Materials Database (C2DB)*® to train and
validate our ML models (see “Methods”). We used the property
data of 2D materials as obtained by the most commonly applied
theoretical method, that is DFT calculations employing the
Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional of
the generalized gradient approximation. As inputs to our ML
models, we solely used basic chemical features that require almost
no computational cost. We trained different and independent
ANN models for the prediction of each target property (see
“Methods”). Figure 5 shows the cross-validation performance of
regression and classification models that are used to predict the
properties of newly generated 2D materials. The details of the
cross-validation results are provided in the Supplementary
Information Section 3.1.

Virtual screening

The application of Al methods to accelerate the search for suitable
materials for high-tech applications is an emerging and prominent
approach. An exciting arena of materials design is the develop-
ment of new functional materials for energy conversion and
storage. Multi-scale high-throughput computational screening
studies have recently been utilized as systematic approaches®'*?
in order to accelerate the discovery of new 2D energy materials for
photovoltaics*>° as well as photocatalytic solar fuel generation
through the conversion of feedstock molecules, including
H,0'%3136-38  0,37394% and N,*. To illustrate the use of Al
methods for the virtual screening of candidate 2D materials, Fig. 6
shows an assortment of 2D materials that are categorized, through
a cognitive determination of their intrinsic physicochemical and
electronic properties, for different energy conversion and storage
applications. In Fig. 6, the Al-predicted light-absorbing 2D
materials, which would convert energy from the sun into a flow
of charge carriers either to directly generate electric power or to
drive the chemical conversion reactions of small molecules (i.e.,
H,0, CO,, and N,) into useful products, are shown using different
colors. To identify the best candidates for each application, we
used the ML-predicted band gap, VBM, and CBM as descriptors.
For instance, the 2D materials with a band gap between 0.75 and
1.75eV are promising candidates for efficient single-junction
photovoltaic cells*'*?. Although some of the remainder of the
semiconducting 2D materials with other band gaps should not be
precluded, as they still would be interesting for multi-junction
solar cells. To identify efficient 2D materials for the selective

Filtering: Property @
- Symmetry Filtered Prediction: v

Q - Neutrality 2D {0} — U
Q - Stability materials G U

Fig. 1 The workflow of Al-aided virtual screening of 2D materials. Step 1: The generation of all possible 2D material compositions with 2D
prototype structures by brute-force elemental substitution method. Step 2: The downselection of likely stable 2D materials through symmetry,
neutrality, and stability filters. Step 3: The prediction of key physical properties of stable 2D materials using ML.
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Fig. 2 Structural prototypes and chemical elements used for the generation of new 2D materials. a Top and side views of prototypes as
grouped by unit-cell compositions. b Periodic table of chemical elements showing A-type positively charged ions (cations) in color blue,
B-type negatively charged ions (anions) in red, and elements that have been excluded as gray.
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Fig. 3 The heatmap of chemical screening space. Dark colors show the chemical spaces of compounds that are well represented in the
training data of our ML models, whereas lighter colors show the poorly represented combinations of crystal prototypes and chemical
elements in the training data. White color shows the absent data in the training set.
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Fig. 4 Funnel representation of filtering steps with numbers. The
number of (#) and the percentage of (%) materials remaining after
applying each filter.
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photocatalytic conversion of H,0*, CO,*, and N,**, we used the
following band gap, VBM, and CBM values, all in units of eV:

All: band gap < 1.75 and VBM < —5.67.

H,O: CBM > -4.44.

COy: -4.47 < CBM < -4.44,

N,: -4.53 < CBM < -4.44.

In this study, we used the high-throughput DFT-PBE calculated
data to train our ML models. Using this functional, the predictions
from recent codes and pseudopotentials have been found to
agree very well for elemental crystals*®. However, it is also known
that the PBE functional is usually not the best method available to
predict the electronic properties of materials*’~*°, Although a
variety of more accurate ab initio treatments are available, due to
the computational efficiencies, they are currently not easily
applicable for the study of large numbers of materials. Alterna-
tively, it is possible to rescale PBE predictions to the predictions of
more accurate methods***7%°°  Accordingly, we applied a
regression study between PBE and GoW,, results on 188 instances
of 2D materials from C2DB that have been calculated using both
methods. Figure 7 shows the regression results associated with
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the below equations of band gap, VBM, and CBM.

Egap(GOWO) =1.63- Egap(PBE) + 0.54 (1)
Evgm(GoWo) =1.14- Evgm(PBE) + 0.55 (2)
ECBM(GOWO) =1.01- ECBM(PBE) +0.71 (3)

Using Egs. 1-3, we estimated the GoW,, values of the respective
electronic properties of the 2D materials and included these in
the V2DB.

DISCUSSION

In this work, we illustrated the usefulness of Al methods for the
design of new 2D materials and the discovery of good candidates
for some exemplified photovoltaic and photocatalytic energy
applications. As a proof of concept, we performed an Al-aided
discovery of stable 2D materials. We screened more than 72
million virtually generated 2D materials, and using ML methods
we determined the thermochemical, electronic, and magnetic
properties of ~316 thousand likely stable 2D materials. We
demonstrated the use of Al to work on a very large chemical
space of feasible compounds. We identified thousands of
promising candidate materials for photovoltaics and photocata-
lytic conversion of small molecules into fuels, all essentially by
using only 22 different 2D crystal prototypes and a very modest
size of quantum mechanical simulation data of 2226 2D
compounds. Additionally, we showed that the basic elemental
and structural information is effectual in determining the stability
and the other key properties of 2D materials. Moreover, we
validated the robustness of our approach by comparing the
predicted properties of materials with data from an external
database. Furthermore, to assist the future virtual screening efforts
on the exponentially scaling virtual search space of material
compositions, we provided the full details of a recipe for 2D
material design through generation, filtering, and property
prediction of compounds. The recipe is generic and tunable to
work on new simulation and/or experimental datasets, particularly
interesting by virtue of an anticipated future abundance of high
fidelity and quality data on the structures and properties of 2D
materials.

It is still an open question how far the data-driven virtual
material screening methods can be generalized. A recent study by
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Table 1. The number of generated and filtered 2D materials for each prototype.

Prototype Unit cell Symmetry Total After After After Stable/Neutral
name group type generated symmetry filter neutrality filter stability filter materials
BN AB z 420 420 319 20 0.063
GeSe AB z 420 420 319 79 0.247
BiTel ABB z 4200 4200 3735 1249 0.334
cdl, ABB Y 4200 2310 2048 409 0.200
GeS, ABB Y 4200 2310 2048 70 0.034
MoS, ABB Y 4200 2310 2048 214 0.104
MoSSe ABB z 4200 4200 3735 1211 0.324
AuSe AABB Y 176,400 97,020 69,576 3871 0.056
CH AABB XY 176,400 49,665 35,607 3020 0.084
FeSe AABB XY 176,400 49,665 35,607 551 0.015
Gas AABB XY 176,400 49,665 35,607 29 0.001
GaSe AABB XY 176,400 49,665 35,607 136 0.004
ISb AABB XY 176,400 49,665 35,607 4923 0.138
NiSe AABB XY 176,400 49,665 35,607 203 0.005
PbS AABB XY 176,400 49,665 35,607 3852 0.108
PbSe AABB XY 176,400 49,665 35,607 0 0
RhO AABB z 176,400 176,400 127,651 0 0

SnS AABB XY 176,400 49,665 35,607 0 0
FeOCI AABBBB XYY 17,640,000 2,731,575 2,621,992 16,932 0.006
MnS, AABBBB XYY 17,640,000 2,731,575 2,621,992 0 0
PdS, AABBBB XYY 17,640,000 2,731,575 2,621,992 19,411 0.007
WTe, AABBBB XY 17,640,000 1,390,620 1,334,218 260,325 0.195

Kauwe et al®' shows that ML can successfully be used to
extrapolate the DFT-calculated properties of materials beyond the
training set. Another recent study by Xiong et al.>%, however,
shows that the performance of ML models on the predictions of
the unexplored materials is lower than their cross-validation
performance on the training set. To investigate the extrapolation
performance of our ML models, we developed a heatmap of the
represented compounds in our training data. In Fig. 3, the strongly
represented regions of the chemical space are shown with dark
colors, whereas the weakly represented regions are shown with
light colors. The white color shows the regions that have not been
found in the training data. According to our cross-validation
results, there is a relation between the accuracy of ML model
predictions and the number of instances of prototypes and
elements of the 2D materials. For example, the error in predictions
of the band gap becomes significantly large for the prototypes
that are represented by only a few instances, such as BN, GeSe,
ISb, and SnS (see Supplementary Fig. 9), in the training data. We
further analyzed the most extreme deviations in results when
compared to an external dataset of 2D materials (see Supple-
mentary Table 5). According to this analysis, our ML model used
for the prediction of the band gaps is most erroneous when
extrapolating the data on the GeSe prototype. The shortness of
instances for this prototype, as shown in Fig. 3, has already
signaled this conclusion. Similarly, for the Cdl, prototype, the
model adequately predicts all 2D materials with the exception of
compounds that contain oxygen or fluorine atoms. The poor
performance of the model on the extrapolated data can be
explained by considering the cross-validation prediction errors of
the oxygen containing compounds in the Cdl, and the absence of
the fluorine containing compounds on this crystal prototype in
training data. As a result, the newly generated 2D materials with
elements and prototypes that are poorly represented in the
training data are expected to be prone to uncertainties in their
predicted properties. For this reason, the predicted data on these

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

materials should be handled with care. In this respect, the
chemical space heatmap shown in Fig. 3 is a useful guideline
when considering the reliability of the predictions on the entire
compound space of 2D materials found in the V2DB.

Defining the chemical screening space and the filtering
thresholds are determining points for the robustness of a
predictive model. In our recipe, the generation and filtering
processes of the 2D materials are all tunable even when using the
present training data. Therefore, a further increase in the
robustness of the ML models can be achieved by: (i) choosing
to work on with prototypes that are sufficiently represented in the
training data, (ii) choosing to work on with chemical elements that
are sufficiently represented in the training data, (iii) keeping the
atomic compositional variance of the 2D unit cells small, (iv)
tightening the stability thresholds (e.g., AH and AH,,;) to reduce
the false-positive rate during the stability predictions.

The stability of a compound hints its synthesizability but does
not necessarily ensure it. The synthesis of a 2D material is a
complex process and depends on many factors beyond the
assessment of its stability. In particular, one can expect that
synthesizing 2D materials that consist of a mixture of chemical
elements may prove to be challenging. Therefore, the newly
predicted candidates may, for instance, be filtered according to
the diversity of the atoms they contain. Moreover, a further
selection of the 2D materials for experimental studies is possible
by taking into account the toxicity and the abundance of the
constituent elements>>,

METHODS
Training data

Training data is the base resource for both the generation, such as during
the selection of prototypes and elements, of new materials and the
development of ML models that are used to predict the stability and key
properties of the generated materials. The following points should be

npj Computational Materials (2020) 106
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Fig. 5 The 20-fold cross-validation performance of ML models on the prediction of material properties. The top six figures show the
regression results in R-squared (R?) and mean absolute error (MAE) in units of eV/atom or eV. The bottom three figures show the confusion

matrices and the F-Measure values of the classification models.

considered when deciding upon the usefulness of a training dataset of 2D
materials computed features:

® preferably computed using the same physics-based method;

® having information about the uncertainty of the employed computa-
tional method to generate data;

® having traceable material structure information (i.e, space group,
lattice parameters, and atom coordinates);

® having well-established stability information on compounds;

having sufficiently large number of data instances;

® having ample diversity in compound structures and chemical
compositions.

In consideration of the above points, to generate the V2DB, we collected
the training data from the C2DB*3, an openly accessible 2D materials
database with the DFT-calculated structures and information on the stability,
electronic, and magnetic properties of compounds that have been obtained
via a trustworthy workflow. The C2DB contains the data on 3331 2D
materials. We filtered the DFT-computed data using the following criteria:

® include materials that belong to the selected prototypes (Fig. 2a);

® include materials that contain only the selected chemical elements
(Fig. 2b);

® include materials that have dynamic stability data (Supplementary
Information Sections 1.2 and 1.3);

® include materials that hBave DFT(PBE) band gap data.

A total of 2226 2D materials from the C2DB have successfully met all of
the above criteria.

npj Computational Materials (2020) 106

Selection of prototypes

The crystal prototypes are used as categorical references of structures.
Materials that have the same prototype show similar build architecture in
terms of the crystal symmetry (i.e., space group and positions of atoms in
the unit-cell). The selection of prototypes is the first step of the new
compound generation process, and together with the selection of
elements step that is explained next, it concurrently determines the
borders of the chemical search space of the compounds. We followed the
below steps during the selection of prototypes:

® identification of prototypes;
® grouping prototypes according to unit-cell configurations (Fig. 2a);
® selection of prototypes by unit-cell groups (Table 1).

The prototypes were carefully defined in the training data, and therefore
we used them as are. In other situations when the prototype information is
not explicitly provided, for instance in an emerging new dataset of 2D
materials, the compounds that satisfy the below conditions can be
considered to exist with the same prototype structure:

® same space group;
® same number of atoms in unit-cell.

In the next step, the identified prototypes are grouped according to the
number of “A” (positively charged; cations) and “B” (negatively charged;
anions) type atoms found in the unit cell. Finally, a cutoff for the maximum
number of atoms per unit-cell is set. The number of atoms allowed in a unit
cell exponentially affects the total number of new materials to be

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



generated (see Table 1). For this reason, it is advised to set a small cutoff
value, unless there is sufficiently large and homogeneously distributed
data among different compositions of materials.

As shown in Fig. 2a, by setting a cutoff of six atoms per unit-cell, four
different unit-cell groups are selected: AB, ABB, AABB, AABBBB. These unit-
cell groups accommodate all of the 22 different crystal prototypes that are
used as base structures during the process of candidate 2D material
generation.

Selection of elements

Along with the crystal prototypes, the chemical elements are the most
important descriptors of materials. They are effective during both, in
defining the size of chemical search space, and in developing the new ML
models that are aimed at the prediction of material properties. To reliably
predict the properties of newly generated 2D materials, the chemical

5.0

—5.5
VBM (eV)

Fig. 6 Virtual screening of the Al-predicted candidate 2D
materials for the different renewable energy technologies. The
2D materials that are suitable for efficient photovoltaic cells are
shown in magenta. The candidate 2D materials for the photoelec-
trochemical splitting of water into oxygen and hydrogen are shown
in blue. The candidate 2D materials that are predicted to be
photocatalytically active for CO, reduction and inactive for oxygen
evolution from water are shown in red. The candidate 2D materials
that are predicted to be photocatalytically active for N, reduction
and inactive for oxygen evolution from water are shown in both red
and green. For the classification of the promising materials for
different energy applications, we used the ML-predicted band gap,
VBM, and CBM of the 2D materials and the alignment of the frontier
energy bands with respect to the redox potentials of the chemical
conversion reactions under study, typically at pH=0 in aqueous
solution vs. NHE, 25°C, and 1-atmosphere gas pressure. The values
of the properties are predicted by using the final ML models that
have been trained on the entire training data.
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elements of the generated compounds must be sufficiently present in the
training data. Therefore, the chemical elements are selected by deciding
on a minimum number of instances of different compounds within the
training data that contain those elements. Accordingly, there is usually a
trade-off between the total number of materials to be generated and the
accuracy of the ML models to be developed. High threshold values for the
minimum number of instances for chemical elements will naturally
decrease the total number of newly generated compounds, but they will
facilitate a better estimation of the properties of materials using Al
methods. Thus, the threshold values can be adjusted according to own
discretion.

After an analysis of the number of occurrences of the chemical elements
in the 2D materials of the prototypes, we selected elements that appeared
in @ minimum of ten different DFT-calculated compounds (see Supple-
mentary Fig. 4). As shown in Fig. 2b, after applying this threshold we
selected 42 A-type and 10 B-type, therefore a total of 52 different chemical
elements from the periodic table.

Brute-force elemental substitution

We applied a brute-force elemental substitution method to generate a
systematic and complete library of new 2D materials. Our brute-force
elemental substitution algorithm systematically generates all possible
candidate materials through the substitution of elements shown in Fig. 2b
within the groups of prototypes shown in Fig. 2a. First, the atoms are
classified into two categories of A and B depending on their anticipated
electronic charges. Atoms from the “A” category always have positive
charges, whereas atoms from the “B” category always have negative
charges. Using these two categories, we defined simple substitution rules
as follows:

® A-type atom can only be replaced by an A-type atom.
® B-type atom can only be replaced by a B-type atom.

Using a brute-force elemental substitution approach on the selected list
of prototypes and chemical elements, we generated 72,522,240 new, but
yet unfiltered 2D materials.

Symmetry filtering

The brute-force method generates all possible compositions of 2D
compounds and disregards the symmetry of individual crystals. Therefore,
the symmetrically identical duplicates should be identified and unified by
removing the exact copies of compounds. For this purpose, we developed
an algorithm that detects the duplicates in the generated 2D materials. The
algorithm assigns symmetry labels to compounds based on the crystal
prototypes and the atomic compositions. All compounds that share the
same prototype structure have the same symmetry label. To define the
symmetry labels for prototypes, we analyzed the symmetry in the unit-cell
by considering pairs of atoms that belong to the same charge category, as
shown in Fig. 2b. The 2D material is labeled with “Z” when no pairs of
atoms are matched in its unit-cell (Table 1). The labels “X” and “Y” are used
when pairs of A- and B-type atoms, respectively, are identified as
symmetric according to a cut-plane that divides the unit cell into two
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Fig. 7 The relation between the PBE and G,W, calculated band gaps, VBMs, and CBMs. The main figures show the regression analysis
between DFT-PBE results in the horizontal and GoW,, results in the vertical axes, respectively. The top and right figures show the histograms of

2D material counts for the associated axes.
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symmetric pieces. For all the crystal prototypes and unit-cells considered in
the current study, we used a total of five symmetry labels, as explained
below:

® 7Z: No symmetry in the prototype.

® X:“A” atoms are symmetric.

® Y:“B” atoms are symmetric.

® XY: All “A” and “B” atoms are symmetric.

® XYY: “A” atoms are symmetric, two “BB” atom couples are symmetric
independently (specifically for AABBBB unit-cell group structures).

Using the symmetry filtering, we detected and removed the duplicate
copies from the whole set of generated compounds. A total of
10,321,920 structurally unique 2D materials have sifted through the
symmetry filter.

Neutrality filtering

The neutrality filter considers all of the possible charge combinations of
constituting elements for the compound under investigation, as calculated
by different charge contributions of its A- and B-type atoms. In a condition
when a no charge neutral composition can be achieved between the
constituting atoms of the compound, the 2D material is removed from the
list of candidates. We used Greenwood's tabulated data® as a reference of
possible charge states of the atoms in our 2D material compositions. In
addition to a reference table of elemental electrical charges, we applied
the following criteria:

® A-type atoms can only have positive electrical charge(s).
® B-type atoms can only have negative electrical charge(s).

After applying the neutrality filter, the compounds that are not charge
neutral are removed from the list of candidates, and a total of 9,732,136 2D
materials remained.

Stability filtering

One of the important challenges of virtual material discovery is the
uncertainty of the experimental synthesizability of the newly designed
compounds. An approach to mitigate this uncertainty is to estimate the
stability of the newly designed material. In simple terms, the stability of a
material is defined as the ability to maintain the designed atomic
configuration under specific physical and chemical conditions. A recent
study>> demonstrated the applicability of an ML approach to predict the
thermodynamic stability of 2D materials. However, a more comprehensive
and accurate stability filter requires the inclusion of the three key factors of
energy, phonon, and dynamic stability>®. Considering these three factors,
we developed ML models in order to identify the likely stable materials
from the newly generated and filtered library of candidate 2D materials. To
determine the stability of the compounds, we used the following three
criteria on the ML-predicted properties, that is “is stable”, “heat of
formation (AH)”, and “energy above convex hull (AHp)":

® s stable =True.
® AH<O0.2eV/atom.
®  AHpy <0.2eV/atom.

“Is stable” is a binary property data that is derived from a combination of
thermodynamic and dynamic stability levels of materials as learned from
the training data (see Supplementary Information Section 1.2). Fundamen-
tally, both the AH and AH,,,; must be negative in order to consider that
material as thermodynamically stable. However, noting the accuracy of the
DFT methodology using the PBE functional is ~0.2 eV/atom®’, we used
0.2 eV/atom as a high cutoff in order to maximize the recall. Yet, we note
that it is possible to use the low cutoff of -0.2 eV/atom to maximize the
precision of the ML model. After applying the stability filter, a total of
316,505 2D materials have remained as likely stable candidates. The
technical details of our ML models that are developed and used for the
task of stability filtering are provided in the Supplementary Information
Section 1.2.

ML model development

All machine learning models are developed using the scikit-learn machine
learning library on python 3.6. A separate ANN has been trained for each
target material property. Importantly, as input features for our ML models,
we used only the basic element level information, which is non-DFT-
calculated and can directly be extracted from the atomic composition of

npj Computational Materials (2020) 106

materials. The following features are used for our ML models (see
Supplementary Information Section 2.1):

® Atom per unit-cell: total number of atoms in the unit-cell of the 2D
compound.

® Prototype vector: one-hot vector of the 2D crystal prototypes.

® Chemical composition vector: a vector with a ratio information of each
chemical element within the unit-cell of the 2D compound, as
calculated individually for A- and B-type atoms.

® Electronegativity vector: the geometric mean of the Pauling scale
electronegativity of the chemical elements within the unit-cell of the
2D compound, as calculated individually for A- and B-type atoms.

We tuned each ML model independently by optimizing the hyper-
parameters using a grid search method (see Supplementary Information
Section 2.2). We used a 20-Fold cross-validation technique for evaluating
our ML models. To reduce bias, we trained the final ML models, which are
used for the identification of likely stable 2D material candidates and the
prediction of their key properties, using the entire DFT dataset. It should be
noted that the labeling procedure applied here is deterministic and only
the basic features with element level information are used. Therefore, it is
expected that the predicted properties for materials that have the same
prototype and the same chemical formula will be labeled with exactly the
same values. Further information on the development of ML models is
provided in the Supplementary Information Section 2.

ML model validation

Very recently, 2Dmatpedia®*, a new 2D material database has been
announced. The 2Dmatpedia contains a total of 6351 2D compounds
with properties that were calculated using DFT. Although there are some
differences in the threshold parameters used for the DFT calculations,
essentially the 2Dmatpedia and the C2DB have a similar computational
methodology, in terms of the use of PBE exchange-correlation
functional, atomic pseudopotentials, and structural optimizations.
Therefore, we used the 2Dmatpedia database to validate the accuracy
of our ML model for the prediction of the band gap, which is the only
comparable DFT-calculated property between 2Dmatpedia and C2DB. To
screen for the mutual materials in our V2DB and the 2Dmatpedia, we first
developed an algorithm that compares the materials based on their
chemical formula and the space group. However, the formula and space
group information are not sufficient enough to confirm the identicality
of the materials from the two sources. Therefore, we also paired the
materials by comparing their three-dimensional structure views. As a
result, we identified a total of 103 matched materials from the two
databases of V2DB and 2Dmatpedia. Twenty-seven of these compounds
were not found in C2DB, therefore they were not included in the training
set. The predicted band gaps of the matched materials have MAE of
0.438 eV. Considering that there is a cumulative effect of the difference
between the C2DB and 2Dmatpedia with MAE = 0.132 eV, and the cross-
validation error of our ML model for band gap predictions with MAE =
0.135 eV, the result is promising for the applicability of our ML model. It
is also important to note that the validation data comprises only 5 out of
the 22 crystal prototypes of the generated chemical space of the 2D
materials. Therefore, a larger and sufficiently diverse data will provide a
more comprehensive validation. The distributions of the band gap
energy differences between the V2DB and 2Dmatpedia databases are
provided in Supplementary Figs. 11 and 12. Additionally, we analyzed
the most extreme errors (see Supplementary Tables 4 and 5) and
discussed the possible weaknesses of the model for generalizability
above in the “Discussion” section.

DATA AVAILABILITY

V2DB is stored in the comma-separated values (CSV) format and it contains chemical
formula, crystal prototype, and physicochemical, electronic and magnetic property
information of 2D materials as further explained in Supplementary Table 1. V2DB is
openly accessible at the Harvard Dataverse Repository®® and AMD research group
website (https://www.amdlab.nl/database/V2DB/).

CODE AVAILABILITY

The reproducibility of the generation algorithm of 2D materials and the property
prediction algorithms can be verified by executing the provided scripts on Code
Ocean®®.
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