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Finite-size correction for slab supercell calculations of
materials with spontaneous polarization
Su-Hyun Yoo 1✉, Mira Todorova 1✉, Darshana Wickramaratne 2,3, Leigh Weston2, Chris G. Van de Walle 2 and
Jörg Neugebauer 1

The repeated slab approach has become a de facto standard to accurately describe surface properties of materials by density
functional theory calculations with periodic boundary conditions. For materials exhibiting spontaneous polarization, we show that
the conventional scheme of passivation with pseudo hydrogen is unable to realize a charge-neutral surface. The presence of a net
surface charge induces via Gauss’s law a macroscopic electric field through the slab and results in poor size convergence with
respect to the thickness of the slab. We propose a modified passivation method that accounts for the effect of spontaneous
polarization, describes the correct bulk limits and boosts convergence with respect to slab thickness. The robustness, reliability, and
superior convergence of energetics and electronic structure achieved by the proposed method are demonstrated using the
example of polar ZnO surfaces.
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INTRODUCTION
Density functional theory (DFT) has evolved into the work-horse
approach for electronic structure calculations allowing to study of
almost all aspects of materials and their properties. A common
assumption underlying most DFT codes is periodic boundary
conditions (PBC). These conditions naturally reproduce the
translational symmetry of crystals to describe an infinite bulk
crystal. Thus only the unit cell has to be represented, allowing for
highly efficient calculations. PBC can also be easily extended to
study structures where translational symmetry is broken. For
surfaces, where translational symmetry applies only along the
lateral dimensions, a repeated finite-slab configuration is used.
Similar approaches are used for point and extended defects1.
Common to all these approaches is that one or more dimensions
that are infinite are approximated by finite cell dimensions. Thus, a
prerequisite to obtaining accurate results is to ensure that the size
of this dimension(s) is sufficiently large by performing careful
convergence checks. Otherwise, finite-size errors may become
substantial and obscure the results.
A major reason why PBC have become so popular and

successful is that finite-size errors quickly decay even for modest
system sizes. For example, accurate surface calculations can be
performed using slabs consisting of only a few (typically 5–10)
atomic layers2,3. Finite-size convergence, however, dramatically
slows down when long-range interactions are present. Such
Coulombic interactions are present in various technologically
relevant systems. Prominent examples are charged defects at
surfaces4–6 in the context of catalysis or Fermi level pinning at
semiconductor devices, and electrified surfaces in strong electric
fields7–9 or in electrochemical environments10–12. Indeed, slow
convergence for such systems has been reported13. The origin of
the slow convergence can be easily understood when considering
that a slab with two oppositely charged surfaces represents
electrostatically a sheet capacitor. Thus, a constant electric field
throughout the entire slab arises which does not decay when
going away from the surface toward the bulk. This asymptotic

behavior of surfaces is fundamentally different from that for
charged point defects where the potential decays inversely
proportional with the distance to the defect.
To overcome these extremely slow convergence rates for

charged surface calculations, two main strategies are followed.
The first strategy is to derive and compute the asymptotic
behavior of the target quantity, usually the total energy Etot, as a
function of slab thickness. The converged limit can then be simply
obtained by the finite-size energy plus the change of the
asymptotic function from that size to infinity. This strategy has
been originally developed for and highly successfully applied to
charged point defects1,14–16. It has later been extended to
surfaces4,6,17. The second strategy is to employ boundary
conditions such that the correct asymptotic limit is already
reproduced in the finite-size supercells. For surfaces, this strategy
has been successfully applied to remove long-range electric fields
that arise when studying unpassivated polar surfaces9,18,19.
In the present study, we will follow the second strategy and

derive a concept that efficiently overcomes the extremely slow 1/d
convergence (with d the slab thickness) when computing surface
properties, such as surface states or surface energies, for systems
exhibiting spontaneous polarization. This type of polarization is
present in many technologically relevant semiconductors and
insulators. A prominent example are the group-III-nitrides, which
are the technological backbone of energy-efficient lighting20,21. Also,
many oxides discussed in the context of topological insulators22,
opto- and micro-electronic devices23,24, catalysis25–27, and other
applications exhibit spontaneous polarization. Thus, schemes that
boost size convergence for these technologically important and
scientifically exciting material systems are highly desirable.
While the discussions and the proposed methodology are

generic and can be applied to any material exhibiting sponta-
neous polarization we will focus on ZnO as a prototype system,
because of the wealth of previous studies that exist for ZnO
surfaces2,27–29.
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The paper is organized as follows. Section “Convergence behavior
in the conventional scheme” shows calculations performed using
the conventional scheme to passivate partially filled surface
dangling bonds (db). This scheme is shown to have deficiencies
when applied to materials exhibiting spontaneous polarization. In
Sections “Origin of convergence failure”, “Fundamentals of the
proposed scheme”, and “Implementation and parameterization of
the proposed scheme”, we analyze the origin of these deficiencies,
propose a scheme to overcome them, and give practical advice to
its application. Finally, in Section “Applications: surface phase
diagram” and in Section “Applications: electronic structure” the
proposed scheme is applied to study surface properties of ZnO, such
as surface phase diagrams and surface band structures.

RESULTS AND DISCUSSION
Convergence behavior in the conventional scheme
The common approach in DFT is to model surfaces using a
repeated slab approach. Within this approach, the translational
symmetry along the direction perpendicular to the surface is
broken by the introduction of a vacuum region within the
supercell. To decouple consecutive slabs, as well as the two
surfaces bounding the slab, the vacuum thickness has to be
carefully controlled to guarantee size convergence. If the thickness
of the substrate or epitaxial film to which the surface is attached is
thicker than the DFT slab, which is the case for typical
technological applications and devices, also convergence with
respect to the slab thickness needs to be carefully controlled. We
note that when describing thin nanostructures consisting of only a
few atomic layers or 2D materials the slab thickness of the real
structure and the DFT slab can be exactly matched. In this case,
the buildup of electric fields through the slab and charge transfer
between front and back surface are real, i.e., slab size convergence
and related corrections should not be applied.
Since surface properties are commonly given for the case of

zero external electric fields, we employ the dipole correction30 to
remove the spurious external electric field that arises when the
front and back surfaces of the slab is structurally inequivalent and
have different work functions. We note that the dipole correction
can be also used to model a slab embedded in an external electric
field. In particular, its generalized form9 is now being used to study
surfaces even in extremely high electric fields31.
Creating a slab for a wurtzite (WZ) material, like ZnO, by cleaving

the bulk perpendicular to its polar direction (the c-axis) results in two
nonequivalent surfaces. These are the ZnO(0001) surface, which is
terminated by Zn atoms, and the ZnOð0001Þ surface, which is
terminated by O atoms. Because all partially filled Zn dbs are located
on one side of the slab, while all partially filled O dbs are located on
the other side of the slab, the charge is transferred from the Zn to
the O side of the slab. To prevent this spurious charge transfer we
first apply the conventional scheme and passivate the partially filled
O db on the ZnO(0001) surface of the slab by pseudo hydrogen
atoms18 of valence 1/2 (denoted in the following as psH0.5).
For many semiconducting and insulating materials, this scheme

shows a highly efficient size convergence18. However, as we
demonstrate in the following, materials exhibiting spontaneous
polarization exhibit a poor size convergence. We consider the ZnO
set-up described above, in which the O-terminated side of the slab
is passivated by psH0.5. For the WZ ZnO(0001) surface of the slab
we focus on two structures that satisfy electron counting (EC), i.e.,
structures in which all low-lying db states (usually states of the
anion) are filled and all high-lying db states (usually cation states)
are empty32. Structures that satisfy EC represent local minima on
many surfaces and can be constructed simply by counting the
number of electrons in the db states. Here, we use the (2 × 2)-Oad

and the (2 × 2)-VZn structures, in which an O atom is adsorbed on,
respectively a Zn atom is removed from, a (2 × 2) surface unit cell

of the ZnO(0001) surface. For these (and all other cases reported in
this work) we perform DFT calculations using the Vienna Ab initio
Simulations Package (VASP)33,34 with projector augmented waves
(PAW)35. Both the generalized gradient approximation due to
Perdew, Burke, and Ernzerhof (PBE)36,37 and the hybrid functional
due to Heyd, Scuseria, and Ernzerhof (HSE06)38,39 are used for
exchange-correlation functionals (for further details on the set-up
see Section “Methods”).
An important physical quantity in surface science is the energy

difference between two surfaces. This difference provides direct
information about which surface is thermodynamically more
stable and is thus the key quantity to construct surface phase
diagrams. The energy difference between the two EC structures of
interest is defined as

ΔEα ¼ Eð2 ´ 2Þ�Oad
tot; α � Eð2 ´ 2Þ�VZn

tot; α � EZnOtot; α ; (1)

where α indicates the bulk phase (e.g., WZ) and EZnOtot accounts for
the fact that to convert the Oad into a VZn surface an O and a Zn
atom, i.e., a ZnO formula unit, have to be removed. The
convergence of ΔEα with respect to slab thickness is shown in
Fig. 1a. An accuracy of 1 meV/uc (meV/surface unit cell) is typically
needed to identify the thermodynamically most stable surfaces.
The two green points, obtained for the thinnest considered slabs
consisting of 6 bilayers (BL), i.e., six Zn and six O atoms in a (1 × 1)
unit cell, respectively seven BL, give the impression that the
energy difference is already converged to within 1 meV/uc.
However, increasing the slab thickness (blue points) up to 14 BL
(the thickest slab we considered) reveals a qualitatively very
different convergence behavior. In fact, a linear fit (dashed blue
line) indicates that a slab thickness dslab of 61.2Å (corresponding
to more than 23 BL) is required to converge the energy to within 1
meV/uc. The resulting surface energy difference ΔEWZ is vastly
different (by more than 10meV/uc) from the one obtained for the
conventionally sized 6 BL (7 BL) calculations (green line).
These results clearly demonstrate a poor size convergence

which directly translates to large system sizes that are computa-
tionally expensive for DFT. Particularly in the context of surface
studies, where lateral dimensions of reconstructions can be very
large, this would lead to calculations that become practically
intractable. For example, the study of surface reconstructions on
ZnO(0001) surfaces requires (at least) a (

ffiffiffiffiffi
48

p
´

ffiffiffiffiffi
48

p
) surface unit

cell40, resulting in a DFT calculation with more than 2000 atoms to
achieve a 1meV/uc accuracy in the surface energy.
The kink in the energy dependence observed in Fig. 1a for WZ

ZnO is directly related to the change in convergence behavior
discussed above. Using the averaged electrostatic potential we
can directly evaluate the electric field as a function of position in
the slab; the technical details are described in Section “Imple-
mentation and parameterization of the proposed scheme”.
Plotting the resulting electric field values at different slab
thicknesses for a slab with the (2 × 2)-Oad surface reconstruction
(Fig. 1b) reveals a qualitatively similar convergence behavior: there
is again a kink in the curve. Extrapolation of the values (blue
dashed line) shows that the field approaches zero as the slab
thickness approaches infinity.
The field through the slab can also be visualized in the layer-

resolved density of states (LDOS). We show electronic structures
and electrostatic potentials calculated with HSE06 since the effects
are better visible due to the improved description of the bandgap.
The LDOS together with the total DOS and the averaged
electrostatic potential for a ZnO(0001) (2 × 2)-Oad slab (Fig. 2a)
are shown in Fig. 2b and c for two different slab thicknesses (9 BL
and 13 BL). The presence of the electric field tilts the band edges.
As a consequence, the effective overall bandgap of the system
decreases significantly (Fig. 2b) or even vanishes (Fig. 2c), as seen
in the total DOS. Beyond a critical thickness, the valence-band
maximum (VBM) on one side of the slab and the conduction-band
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minimum (CBM) on the other side of the slab overlap (Fig. 2c). This
overlap, which leads to a disappearance of the bandgap, is
referred to as breakdown: electrons from the VB at the right
surface are transferred into the CB at the left surface.
The quantitative changes observed as a function of slab

thickness indicate that within the conventional calculation
scheme, extremely large slab thicknesses are required to obtain
converged results. The occurrence of breakdown in such thick
slabs also makes it impossible to analyze the electronic band
structure directly. Even more problematic is the fact that different
convergence regimes occur, which may give the incorrect
impression that results for small slab thicknesses are already
converged, but they actually extrapolate to the wrong limit. In the
next section, we will shed light on the origin of this behavior by
deriving asymptotic bulk limits, which a slab set-up has to
emulate. Based on those insights we will propose a scheme to
achieve the correct limits.

Origin of convergence failure
In this section, we derive the asymptotic limit of electronic
structure for infinitely thick slabs (semi-infinite systems). We focus
on two representative and well-studied polar surface orientations
(Fig. 3): the (111) orientation for zinc blende (ZB) (no spontaneous
polarization) and the (0001) orientation for the WZ structure (with
spontaneous polarization). These close-packed surface structures
show an identical atomic structure in the top surface layer; the
difference is that ZB ZnO does not have a spontaneous
polarization. Indeed, the symmetry of the ZB structure is such
that all nearest-neighbor bonds are equivalent. At the bulk-
truncated surface, where the cut is performed such that the
number of cuts (broken) bonds is minimized, each atom has one
db pointing away from the surface.
Defining Zc and Za as the valencies of a cation, respectively

anion atom, we note that in the case of the ZB structure the O dbs
located on one side of the slab are partially filled with Za/4 (i.e., 3/
2) electrons, while Zn dbs on the other side of the slab is filled

Fig. 1 Convergence of passivation schemes as a function of slab
thickness. a The energy difference between two electron-counting
reconstructions [(2 × 2)-Oad and (2 × 2)-VZn] on the wurtzite (WZ)
ZnO(0001) and the zinc-blende (ZB) ZnO(111) surface, and b the
calculated electric field in a WZ ZnO(0001) slab with a (2 × 2)-Oad

reconstructed surface, as a function of 1=d2slab, where dslab is the
thickness of the slab. The green, blue and orange points are
obtained from calculations using the conventional passivation
scheme. Systems in which the CBM on one side of the slab overlaps
(does not overlap) with the VBM on the other side of the slab are
termed breakdown (no breakdown). Also shown are results (red
points) obtained from calculations employing the proposed scheme.
The dashed lines are fits revealing the extrapolated values for an
infinitely thick slab. The calculations were performed using the PBE
exchange-correlation functional.

Fig. 2 Atomic and electronic structure, and electrostatic potential
energy profile of a WZ ZnO(0001) slab. a Side view of a WZ ZnO
slab, in which the O dbs on the ZnOð0001Þ surface are passivated by
psH0.5 and the ZnO(0001) surface has a (2 × 2)-Oad reconstruction.
The slab thickness dslab, the cell length L and a ZnO bilayer (BL) are
indicated in the figure. b and c: The computed electrostatic
potential energy profile and the layer-resolved density of states
(LDOS) for slabs with this atomic arrangement. The slab thickness
dslab has been chosen to show b no breakdown (9 BL) and c
breakdown (13 BL). The planar- and the macroscopic-averaged
electrostatic potential energies are shown as blue and red solid
lines, respectively. The LDOS along the z axis (axis perpendicular to
the slab surfaces) is resolved for each Zn–O BL and shown as a gray
region. The energy of the highest occupied state is set to 0 eV.
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with Zc/4 (i.e., 1/2) electron, as shown in Fig. 3a. Because cation
dbs have higher orbital energy compared to anion dbs, in a finite-
size slab a charge transfer from the Zn to the O side of the slab
occurs, denoted as qt in Fig. 3b. This results in two oppositely
charged surfaces that form a sheet capacitor. As a consequence of
the charged capacitor, a macroscopic electric field arises, as shown
in the band structure in the lower part of Fig. 3b. The schematic
picture is confirmed by an actual DFT calculation (cf. Supplemen-
tary Fig. 1). After charge transfer both ZB ZnO surfaces fulfill EC32,

i.e., all cation/anion dbs states are completely empty/filled.
However, the slab surfaces are no longer charge-neutral.
The macroscopic electric field induced by the charge transfer

results in canted valence and conduction bands (Figs. 3b and 4a).

Fig. 3 Schematic picture. Schematics illustrating how to construct
and passivate an asymmetric semiconductor slab within a DFT code
in order to mimic a semi-infinite bulk system. Panels a–d describe
the case of a material not exhibiting spontaneous polarization, while
panels e–i describe the case of a material exhibiting spontaneous
polarization. Corresponding band diagrams are shown right below
the schematic of the slab: for a finite slab formed by truncating the
bulk before charge transfer from cation dbs to anion dbs (a, e) and
after charge transfer (b, f), for a semi-infinite bulk structure (c, g) and
for a slab where the left side is passivated by the conventional (d, h)
and the proposed (i) scheme. Surface atoms are shown as balls
containing a chemical element (O or Zn). The green/cyan colors
within a db at the surface indicate filling, while parts remaining
white/gray indicate missing electrons (i.e., empty dbs). The
corresponding amount of electrons in a db is written in the green
box in units of electrons (e−). Passivation of the left side of the slab is
denoted by psH. In each schematic for the structure of a slab the
core charge (white rectangle with Ztot) and the valence electrons
(blue rectangle with Ne) are shown as separate entities to visualize
the charge displacement. qt, qp and qs stand for transferred charge,
polarization charge and surface charge, expressed in units of
elementary charge (e). The valence of the pseudohydrogen atom
(ZpsH) is shown as a “blow up”. “EC” stands for electron counting.

Fig. 4 Electrostatic potential energy profile and LDOS. a WZ ZnO
(0001) (1 × 1) five BL slab to which no passivation is applied and
breakdown has occurred, i.e., the charge has been transferred from
one side of the slab to the other. b WZ ZnO(0001) (2 × 2)-Oad 13 BL
slab for which the O dbs on the left surface has been passivated
using the proposed passivation scheme. The planar-averaged and
the macroscopic electrostatic potential energies are shown as blue
and red solid lines, respectively. The LDOS along the z-axis (axis
perpendicular to the slab surfaces) is resolved for each Zn–O BL and
shown in gray. The energy of the highest occupied state is set to
0 eV.
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As a consequence, the effective bandgap is dramatically reduced and
may even disappear. This sets an upper limit on the charge transfer
qt: once the occupied valence band on the left side moves above the
empty conduction band on the right side (which formally
corresponds to the formation of a negative band gap) a back
transfer of the electronic charge from the left to the right surface
occurs. This back transfer of charge reduces the magnitude of the
electric field. In the limit of an infinitely thick slab, the full charge has
been transferred back. As a consequence, the field disappears and
the Zn/O dbs on the surface become again partially occupied by
1
2 e

�/ 3
2 e

� (Fig. 3c). Therefore, following the conventional strategy to
passivate the O surface of a ZB ZnO(111) slab by providing the
missing 1/2 electron in an O db by a pseudo hydrogen atom18 with
valence 1/2 (psH0.5) correctly reproduces the asymptotic bulk limit
(Fig. 3d): there is no electric field in the slab and both surfaces are
charge-neutral. The absence of a field that depends on the slab
thickness is the fundamental origin of the fast convergence behavior
for ZB shown in Fig. 1a (orange line).
We now discuss changes that occur when spontaneous polariza-

tion is present using the prototype example of WZ ZnO. The induced
changes are summarized in Fig. 3e–i. Spontaneous polarization in WZ
originates from a shift in the electron cloud, relative to the ZB
structure, leading to a negative charge qp on the surface as shown in
Fig. 3e. This charge corresponds to the difference in formal
polarization Pf between the WZ and the ZB structure, i.e.,
qp ¼ PWZ

f � PZBf . Note that we focus here on the component of
polarization in the direction of the polar axis ([0001] for WZ and [111]
for ZB). Additional comments about the definition of the polarization
charge are included in the Supplementary Notes Section A.

Fundamentals of the proposed scheme
Having identified the polarization charge qp as the origin of the failure
of the conventional passivation scheme we will now derive (i) the
correct limit for infinitely thick slabs and (ii) extend the conventional
passivation scheme to systems exhibiting spontaneous polarization.
To derive the correct asymptotic limit we use the same arguments as
in the polarization-free case: in this limit, any macroscopic field must
disappear, i.e., the slab surfaces must be charge-neutral. For cases with
spontaneous polarization, this means that the charge displacement qp
due to spontaneous polarization must be compensated for so that
the surface attains a net charge of 0.
In order to achieve a field-free structure (Fig. 3g), we need to

remove the charge qp from the (0001) surface. This can be
accomplished by transferring this charge to the left surface [the O-
terminated (0001) surface], to which end we modify the pseudo
hydrogen atom (denoted in the following as psH*) such that the
psH–O bond seen in Fig. 3h becomes an acceptor bond41. Note
that the modified pseudohydrogen atom psH* remains a charge-
neutral object, i.e., valence and nuclear charge are equal, and as
such does not induce any uncompensated free carriers and/or a
compensating background charge in the supercell, which remains
neutral. Practical advice on how to adjust the charge of the
pseudohydrogen is given in the Supplementary Notes Section B.
Before charge transfer, such a bond is not completely occupied
and thus can accept a fraction of an electron. For the specific case
of a bond between psH* (charge 1

2 þ
qp
e ) and oxygen (which

contributes 6/4= 1.5 electrons to each of its four bonds) the
occupation is two plus the polarization charge, i.e.,
1
2 þ

qp
e þ 3

2 ¼ 2þ qp
e . Since the energy level of this bond is below

the VBM it will be filled to a total of two electrons, giving rise to a
net negative charge qp. By construction, this charge is the exact
opposite to the polarization charge at this surface. The two
charges thus exactly cancel and make the surface charge-neutral
(Fig. 3i). In contrast to the conventional compensation scheme, the
valence of the pseudo hydrogen is no longer simply a function of
valence and bond coordination of the surface atom. Instead, the

polarization charge, which is an inherent bulk property, also enters
(cf. inset in Fig. 3i).
The success of the proposed scheme in eliminating the

macroscopic electric field is seen in Fig. 1 and Fig. 4b. Figure 1
shows a dramatically improved size convergence: the energy
difference is converged to within 1 meV/uc already for the
thinnest considered slab of six BLs (Fig. 1a). Indeed, as shown in
Fig. 1b there is no electric field left. The values for the energy
difference between the two considered reconstructions (Fig. 1a)
obtained by extrapolation to an infinitely thick slab (blue line) and
by applying the proposed passivation scheme (red line) agree to
within 1.5 meV/uc. The proposed scheme also overcomes the
artifacts in band-structure and DOS calculations: band edges are
no longer canted but perfectly flat (Fig. 4b) revealing again the
absence of an electric field. Furthermore, the surface state
originating from the partially filled db of the adsorbed oxygen
atom on the Zn-terminated surface, which was difficult to discern
in the slab passivated with psH0.5 (Fig. 2c), is now clearly visible as
a peak in the DOS at ~0 eV in Fig. 4b. A similarly improved
convergence behavior is observed for the energy, structural
properties, and electronic structure of GaN and AlN when using
the proposed scheme, as seen in Supplementary Figs. 1–4.
An interesting implication of introducing valencies that are not

a simple integer fraction, such as 1/2 or 3/2, is that surface
reconstructions that satisfy the EC rule, which requires bonds with
integer fillings (either 0 or 2), can only be obtained for large
surface unit cells. Specifically, the product qp ⋅ Nsurf (with Nsurf the
number of surface atoms in the cell) needs to be an even integer.
In the example discussed here, qp=−0.020, and therefore a
surface unit cell with about 100 surface atoms would be required
to achieve EC.
The proposed scheme is readily implemented in DFT calculations:

all that is needed is, in the case of passivating an O db, to replace the
pseudo hydrogen with valence (12 by pseudo hydrogen with valence
1
2 þ

qp
e , i.e., psH

�
0:5þqp=e

). As a consequence, both surfaces of the WZ

ZnO(0001) slab become charge-neutral and the slab remains field-
free. Practical guidelines for determining the pseudo hydrogen
charge will be developed in the following section.

Implementation and parameterization of the proposed
scheme
A key input quantity to our proposed passivation scheme is the
proper valence of the pseudo hydrogen. This value is obviously
related to the spontaneous polarization constant of the respective
material and there are different ways by which it can be
determined. One option is to perform a Berry phase calculation
employing the modern theory of polarization42,43. This allows to
explicitly calculate the spontaneous polarization constant of a
specific material and thus the polarization charge qp. For our
example of ZnO the calculated spontaneous polarization constant
referenced to ZB ZnO is −0.020 e/uc. Since we are interested in
studying the (0001) surface, we want to passivate the ð0001Þ side
of the slab. The pseudo hydrogen atom will need to have a
valence ZpsH� ¼ 1=2� 0:020 ¼ 0:480 to passivate the O db; we
will denote it as psH�

0:480.
A second approach to obtain the spontaneous polarization

constant is to use the electric field we observed in the finite-sized
slab calculations (cf. Fig. 2). In this approach, we perform a
calculation using a slab, in which the partially filled dbs on each of
the two slab surfaces are passivated using conventional psH atoms,
i.e., ZpsH= Zc/4 on the anion-terminated side and ZpsH= Za/4 on
the cation-terminated side. The slab in this calculation has to be
thinner than the critical thickness at which breakdown occurs.
Furthermore, the atoms are fixed at their bulk positions, which is
appropriate since we are interested in bulk polarization. Keeping
the atoms fixed and thus excluding atomic relaxations allows us to
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use the electronic part of the dielectric constant (i.e., the high-
frequency dielectric constant) when extracting the polarization
charge from the observed electric field. Based on this set-up we
can directly calculate the spontaneous polarization constant with
respect to the ZB phase from the surface-bound charge obtained
by using Gauss’ law (qs ¼ E � ε, where qs, E and ε are the surface-
bound charge, electric field along the polar direction, and the
dielectric constant). We note that according to the surface theorem
of the modern theory of polarization44 the surface-bound charge
obtained in this fashion corresponds to the polarization charge
when the latter is determined using the ZB phase as a reference.
For the example of ZnO(0001) we measure the electric field in a 7
BL slab as Ez= 75.51mV/Å. Using our calculated high-frequency
dielectric constant for ZnO ε= 5.25, we obtain for the surface-
bound charge qs=−0.021 e/uc. This value is in very good
agreement with the spontaneous polarization constant of WZ
with respect to the ZB phase obtained from a Berry phase
calculation, −0.020 e/uc. Based on the obtained value, we can now
use psH�

0:480 for passivating the O db on the ZnO(0001) surface, or
psH�

1:520 for passivating the Zn db on the ZnO(0001) surface.

Applications: surface phase diagram
In the following, we apply the proposed passivation scheme to
study surface properties such as surface phase diagrams and
surface band structures, which are important in the context of,
e.g., catalysis2,27, corrosion40, or semiconductor devices45. We use
again the example of a Zn-terminated (0001) surface of WZ ZnO.
Typical calculations for ZnO surfaces use slabs of about 4–8

Zn–O BLs thickness, as well as the conventional passivation
scheme2,28,29,46. The energy convergence analysis (Fig. 1a) shows
that within this conventional scheme slabs of 8 BL produce energy
differences that are inaccurate by 10meV/uc; slabs thicker than 23
BL are needed to converge energy differences to within 1meV/uc.
Therefore, we investigate how the convergence behavior affects
commonly computed surface properties, such as surface phase
diagrams. To perform this benchmark we consider several surface
reconstructions of the ZnO(0001) surface28,40. These reconstruc-
tions have been selected to be energetically highly stable. They
also have a small surface unit cell to enable extensive convergence
checks with respect to slab thickness. All these structures obey EC.
Specifically, we consider the 0.5 monolayer (ML) OH structure, in
which OH groups are adsorbed on 1/2 of the surface atoms of the
Zn-terminated surface in a regular pattern, the already discussed
(2 × 2)-Oad and (2 × 2)-VZn structures, and a (

ffiffiffiffiffi
12

p
´

ffiffiffiffiffi
12

p
)-n3

triangular reconstruction, in which 6 Zn and 3 O atoms are
removed from the surface Zn-O BL in a (

ffiffiffiffiffi
12

p
´

ffiffiffiffiffi
12

p
) surface cell.

For each of these structures α we evaluate the excess Gibbs free
surface energy ΔGα with respect to a reference structure. Here we
chose the (2 × 2)-Oad structure as the reference, i.e.

ΔGα ¼ Eαtot � Eð2 ´ 2Þ�Oad
tot �

X
Niμi : (2)

Eαtot is the DFT total energy of the surface phase α, μi is the chemical
potential (i.e., the energy of the reservoir) of element i and Ni is the
number of atoms of element i exchanged with the reservoir. For
the construction of the surface phase diagrams, we use energies
obtained from calculations for two different slab thicknesses.
Specifically, we employ a 5 BL structure, where no breakdown
occurs, as well as a thicker 9 BL structure that shows breakdown.
For each structure, both the conventional and the proposed
passivation schemes are applied. The resulting four surface phase
diagrams are shown in Fig. 5. These diagrams are not intended to
identify the globally stable surface reconstructions, since we limit
our benchmark to only four surface structures rather than studying
all known ones (which would be computationally extremely
expensive). Still, the constructed diagrams contain sufficient
information to reach conclusions regarding convergence with
respect to slab thickness.

Each diagram shows only two stable phases over the thermo-
dynamically allowed range of chemical potentials. Interestingly,
these two phases are not always the same. The fact that they are
not identical implies that slab convergence has not only a
quantitative but even a qualitative impact. As shown in Fig. 5 this
qualitative change occurs only when applying the conventional
passivation scheme (psH0.5 used to passivate the O dbs). For the
five BL slab the Zn vacancy reconstruction is predicted to be
thermodynamically stable in the left bottom corner of the phase
diagram (cf. Fig. 5c). However, the 9 BL slab shows that this
reconstruction is unstable and a triangular structure becomes
energetically preferred (Fig. 5d). This qualitative change is a direct
consequence of the slow convergence of the conventional scheme
with slab thickness. In contrast, using our proposed scheme we
observe the correct phase diagram already for small and thus
computationally highly efficient slab thicknesses: both the nature of
the low-energy phases and the boundary in surface phase diagrams
remain the same when the slab thickness is increased (Fig. 5a, b).
We conclude that the proposed scheme allows obtaining

converged results at significantly reduced computational costs.
For some of the systems studied here the required CPU time could
be reduced by more than an order of magnitude.

Applications: electronic structure
Finally, we demonstrate that the proposed passivation scheme not
only improves surface energetics, but enables the description of
accurate and converged surface band structures. Figure 6 shows
the surface band structures calculated for the (2 × 2)-Oad 13 BL
slab (the same slab as in Fig. 4b), using the conventional (Fig. 6a)
and the proposed (Fig. 6b) passivation schemes.
Using the conventional scheme we obtain a surface band

structure that is severely distorted because the conduction band
on one side of the slab overlaps with occupied surface states near
the valence band on the other side of the slab. We note that this
behavior cannot be improved by using thicker slabs: due to the
breakdown, the bandgap remains zero even in the asymptotic limit
of infinitely thick slabs. The proposed scheme removes this artifact
and the energy difference between the highest occupied state (the
surface state) and the lowest unoccupied state (the CBM) becomes
2.42 eV. We know this value is reliable because of the absence of
an electric field in the slab, as seen in Fig. 4b. The surface band
structure in Fig. 6b also allows us to determine the energy
difference between the CBM and the VBM, which turns out to be
3.36 eV. This is slightly larger than the bulk bandgap (3.27 eV) due
to the expected presence of quantum confinement in a finite slab.
We have carefully analyzed the convergence behavior of slab

calculations for materials exhibiting spontaneous polarization.
Based on this analysis we show that the conventionally used
passivated-slab scheme fails: applying it results in a poor
convergence with respect to slab thickness and an inaccurate
description of surface states. By analyzing the asymptotic bulk
limit, we extend the conventional slab passivation scheme to
accurately reproduce this limit. The proposed scheme is shown to
rapidly converge with slab thickness and to provide accurate and
robust results when computing surface energies, surface phase
diagrams, and surface states. The proposed formalism can be
easily employed in all existing codes since it only requires
replacing the passivating pseudo hydrogen atom with valence
ZpsH= Zc/4 or ZpsH= Za/4 by one with valence ZpsH� ¼ Zc=4þ
qp=e or ZpsH� ¼ Za=4� qp=e. The proposed scheme will thus allow
performing slab calculations for systems exhibiting spontaneous
polarization with the same quality and computational resources as
for systems where spontaneous polarization is absent.
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METHODS
DFT calculations
The VASP code33,34, employing the PAW approach35, is used for all
presented DFT calculations. The kinetic energy cutoff employed for the
plane-wave basis set is 500 eV. A Γ-centered (8 × 8 × 6) k-point grid is used
for WZ bulk and a (8 × 8 × 1) grid is used for the (1 × 1) surface unit cell to
perform Brillouin-zone integrations. Equivalently folded k-point meshes are
used for larger surface cells. In order to obtain accurate electronic structure
results, the electronic relaxation is carried out until the total energy
convergence is less than 10−7 eV per surface unit cell.
Consecutive slabs are decoupled by 18Å of vacuum in the supercell.

Atomic positions in the three outermost Zn–O BLs of slabs are relaxed,
while all other atoms are kept fixed to their bulk positions. The dipole

correction scheme30 is used to remove the artificial electric field in the
vacuum region.
For the exchange-correlation functional we use the generalized gradient

approximation PBE36,37 for analysis related to energetics and the hybrid
functional HSE0638,39 for analysis of the electronic structure. The reason is
the decay behavior of the potentials: When employing (semi-)local
exchange-correlation functionals the effective electron potential of a
surface decays exponentially toward the vacuum. Exact exchange (EXX)
reproduces the exact asymptotic behavior proportional to 1/z, with z being
the distance of a point in a vacuum from the surface47–50, which results in a
slow decay of the potential extending far into the vacuum and hence a
significantly slower supercell-size convergence.
As expected, we observe a slow 1/z convergence characteristic for EXX

for small and intermediate vacuum sizes. Since the EXX contribution is

Fig. 5 Phase diagram constructed using selected ZnO(0001) surface phases. The DFT energies used for the construction are obtained from
calculations for two different slab thicknesses and for the two discussed passivation schemes. Different colors indicate different surface
phases: 0.5 ML OH adsorbed on a bulk-terminated surface (blue), a Zn vacancy in a (2 × 2) unit cell (green), and a triangular reconstruction
ð ffiffiffiffiffi

12
p

´
ffiffiffiffiffi
12

p Þ � n3 in which 6 Zn atoms and 3 O atoms are removed from the first two surface layers (red). The respective surface structures
(top view) are shown as insets with O, Zn, and H atoms shown as red, white, and blue balls.
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smoothly truncated in HSE06 at a distance of 10Å one might expect at the
largest vacuum sizes that the slow converging EXX is absent. The surface
energy data shown in Supplementary Fig. 6b clearly shows the expected
slow convergence for supercells with a small to medium vacuum region.
For the supercells with the largest vacuum size (>30Å) the slow
convergence seems to disappear. However, the much larger scatter in
the HSE06 computed surface energies prevents validation of convergence
with the accuracy achieved when using semilocal DFT functionals such as
PBE (Supplementary Fig. 6b). Therefore, we use the HSE06 functional for
the electronic structure analysis (where having correct bandgaps is
important, and the size of the supercells allows achieving electronic
convergence) and the PBE functional for the energetics.
With our chosen convergence parameters we obtain for ZnO bulk lattice

parameters a= 3.286Å, c/a= 1.613 and u= 0.379 using PBE and a= 3.248 Å,
c/a= 1.609 and u= 0.380 for HSE06 (with α= 0.36). These values show good
agreement with experimental51,52 and theoretical results2,28,46. Based on the
calculated lattice parameters, the calculated spontaneous polarization
constants for bulk ZnO are− 0.041 C/m2 (equivalent to −0.0203 e/uc) for
PBE and− 0.046 C/m2 (equivalent to −0.0207 e/uc) for HSE06, respectively,
which lie within the range of previously reported values (−0.022 to −0.057
C/m2)53–56. Our calculated bulk bandgap for ZnO is Eg= 0.73 eV with PBE and
Eg= 3.27 eV with HSE06 (α= 0.36), in good agreement with other theoretical
work [Eg= 0.74 eV (PBE)57, Eg= 3.29 eV (HSE06, α= 0.36)58]. The experimental
ZnO bandgap is reported to be Eg= 3.3759 to Eg= 3.44 eV60.
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