Algorithm 3R Recursive evaluation of adjoints ω
1: | ωiv = 0 |
2: | for \({\bf{v}}\equiv {\bf{v}}^{\prime} \cup {\bf{v}}^{\prime\prime} \leftarrow {\mathcal{G}}\), in reverse order do |
3: | \({\theta }_{{\bf{v}}}={\sum }_{p}\partial {\mathcal{F}}/\partial {\varphi }_{i}^{(p)}{\tilde{{\bf{c}}}}_{{\mu }_{i}{\bf{v}}}^{(p)}\) |
4: | ωiv += θv |
5: | \({\omega }_{i{\bf{v}}^{\prime} }+\!={\omega }_{i{\bf{v}}}{{\bf{A}}}_{i{\bf{v}}^{\prime\prime} }\) |
6: | \({\omega }_{i{\bf{v}}^{\prime\prime} }+\!={\omega }_{i{\bf{v}}}{{\bf{A}}}_{i{\bf{v}}^{\prime} }\) |
7: | end for |