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Rational design of chemically complex metallic glasses by
hybrid modeling guided machine learning
Z. Q. Zhou 1, Q. F. He 1, X. D. Liu 2, Q. Wang3, J. H. Luan4, C. T. Liu 1,4 and Y. Yang 1,4,5✉

The compositional design of metallic glasses (MGs) is a long-standing issue in materials science and engineering. However,
traditional experimental approaches based on empirical rules are time consuming with a low efficiency. In this work, we
successfully developed a hybrid machine learning (ML) model to address this fundamental issue based on a database containing
~5000 different compositions of metallic glasses (either bulk or ribbon) reported since 1960s. Unlike the prior works relying on
empirical parameters for featurization of data, we designed modeling guided data descriptors in line with the recent theoretical
models on amorphization in chemically complex alloys for the development of the hybrid classification-regression ML algorithms.
Our hybrid ML modeling was validated both numerically and experimentally. Most importantly, it enabled the discovery of MGs
(either bulk or ribbon) through the ML-aided deep search of a multitude of quaternary to scenery alloy compositions. The
computational framework herein established is expected to accelerate the design of MG compositions and expand their
applications by probing the complex and multi-dimensional compositional space that has never been explored before.
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INTRODUCTION
Since their discovery in 1960s1, metallic glasses (MGs) have
attracted tremendous research interest because of their promising
structural and functional properties, such as superb strength2,3,
high wear/abrasion resistance4, remarkable magnetic permeabil-
ity4, excellent corrosion resistance4, and superior electrochemical
catalytic ability5. However, as of today, a widespread use of MGs in
various engineering applications is still rare. One of the roadblocks
against the wide deployment of MGs is their limited size, resulting
from the poor glass forming ability (GFA) of MGs relative to that of
other glassy systems, such as oxide glasses6. To date, the design of
MGs with a targeted GFA is still challenging.
While quantifying GFA of MGs is the enduring research effort in

the MG literature7–9, the search of MGs is mostly based on the
empirical rules, such as the Inoue’s rules10, which is usually an
iterative process of trial and error and hence inefficient on
chemically complex alloys11,12. To overcome this issue, combina-
torial experimental techniques, such as multi-target physical vapor
deposition13, were adopted, which enabled the synthesis of
hundreds of alloy compositions in one experimental run and
hence greatly improved the efficiency in compositional screening.
In addition, one emerging tool that can further accelerate the
search of chemically complex MGs is the use of machine learning
(ML) to guide high-throughput experiments14–16. In principle, ML
is a data-driven approach and able to solve multi-variable (or
multi-dimensional) complex problems by establishing a direct
input–output correlation without specific programming17,18 that
requires a thorough understanding of the underlying physics. In
practice, the success of a ML-based approach depends on the size
of database. The general trend is that the more are the valid data
the more reliable are the ML-generated predictions18.
Owing to the versatility of the ML-based approach, it becomes

increasingly popular as a tool in the recent development of

MGs14,16,19–21. However, as discussed in ref. 18, one of the
challenges with the application of ML in materials science is the
relatively small size of the dataset available for use. By tradition,
people tend to report only successful results (or positive data)
while discard those unsuccessful (negative data) in the develop-
ment of materials. Therefore, over the past 60 years, people
reported about ~5000 MG compositions, out of which ~1000
came with measured GFAs. As seen in Fig. 1a, these MGs are
mostly based on transition metals, such as Fe, Zr, Cu, Ni, Ti, Ag, Pd,
and Co, and a few based on alkaline and rare earth metals. Despite
the substantial efforts dedicated to the development of MGs,
however, the size of the MG dataset is still small relative to others,
such as the Inorganic Crystal Structure Database that contains
~240,000 structures (https://icsd.fiz-karlsruhe.de). In principle,
people need both positive and negative data, as presentative
and diverse as possible, in training ML models to avoid modeling
bias. Thus, people built classification type ML models by including
both typical MG and non-MG compositions14,16,19,21. As a result,
the size of the dataset was extended to thousands of composi-
tions19. Although the classification type ML models are useful for
the fast screening of alloy compositions, they are incapable of
pinpointing alloy compositions with superior GFAs.
On the other hand, regression type ML models were also

developed for predicting GFA of MGs19,22. In fact, the reported
GFA values are mostly integers as they correspond to the size of
the largest mold in alloy casting, which however are usually taken
as the data output of different ML models19,22. Consequently, the
round-up error of the reported GFA values results in significant
data scattering23 (see Supplementary Fig. 1), hence compromising
the predictability of the regression type ML models. In addition,
the distribution of D is highly skewed towards the small value
range (see Supplementary Fig. 2). Because of these difficulties, it is
a challenge to develop a reliable ML model to guide the design of
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Fig. 1 The schematics for the development of our modeling-guided hybrid ML algorithm. a The comparison of different types of MGs in
terms of their proportion in the hitherto reported MGs with measured GFAs. The inset highlights the elements used in the prior development
of MGs with counts indicating the total number of times of an individual element being found in the reported MG compositions. b The
breakdown of the data descriptors we developed. c The illustration for the training/validation of our classification ML model based on
adaptive boosting (AB), support vector machine (SVM), and k-nearest neighbor (KNN). d The illustrated four types of regression ML models.
e The illustration of the predicted GFA diagrams for ternary alloys. f The development of MGs through ML predictions. The scale bar indicates
a length of 5mm.
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BMGs. According to the prior work19, if one considers all individual
and collective attributes of constituent elements, he could come
up with 186 data descriptors (a very high dimension). However,
according to Zhang et al.18, data descriptors of a low dimension,
as derived from physical modeling, are preferred for machine
learning18,24. In this work, we propose hybrid machine learning
algorithms to tackle the above problems by combining
classification-type ML modeling for initial alloy screening and
regression-type ML modeling for GFA prediction. As a result, we
build our ML models based on the dataset containing ~7000
compositions (see Supplementary Table 1 for the counts of
elements covered by these compositions) available in the
literature8,22,25–48 to date for classification and regression. In
addition, we develop the data descriptors based on the physical
models recently developed for glass formation in chemically
complex systems49–52. In theory, this can reduce the size of
dataset needed for successful ML applications18.

RESULTS
Modeling-guided hybrid machine learning
In principle, even some elemental metals can be vitrified (to form
glass) at the cooling rate as high as 1014 K s-1 53. However, such a high
cooling rate corresponds to a very limited sample size or a very poor
GFA. According to the prior work10, it is known that the GFA of
metallic liquids can be improved by mixing different sized elements,
enhancing the local chemical affinity between atomic pairs52 and
increasing overall compositional complexity in favor of crystallization
frustration54. In line with these three principles, we here develop
three classes of descriptors (a total of 8) (see Fig. 1b and
Supplementary Table 2) for our hybrid ML model, as described below:

(1) Descriptors derived from atomic size. In the MG literature,
the traditional models accounting for the atomic size effect
on GFA were mostly developed for binary alloys55,56. In
principle, these models were rooted in the same notion that
one could easily distinguish solvent (or base) atoms from
solute atoms in a MG. However, this notion does not apply
easily to chemically complex or baseless MGs which
apparently have no unique solvent or base elements, such
as high entropy MGs (HEMGs)57. In this case, we generalized
the geometrical model proposed by Ye et al.50 by further
considering coordination number deficiency and chemical
fluctuation around a central atom, which was not accounted
for in the original model. As a result, in our generalized
geometrical model, we derive four additional data descrip-
tors by minimizing the elastic energy storage caused by the
atomic size misfit in chemically complex alloys. Unlike the
previous works50,58, we consider the presence of coordina-
tion deficiency and chemical fluctuation during energy
minimization (see Supplementary Note 1).

(2) Descriptors derived from local chemical affinity. According to
the most recent atomistic simulations52, the GFA of multi-
component alloys is correlated with the standard deviation
(ε�) of the cohesive energies of the constituent elements and
the averaged interaction energies ε between dislike elements.
Inspired by this recent discovery52, we compute ε� and ε for
the variety of alloy compositions and include them as the two
additional data descriptors (see Supplementary Note 2).

(3) Descriptors derived from entropy. According to the confusion
principle59, one could improve the GFA of metallic liquids by
promoting different crystallization pathways in their super-
cooled state. As a result, the competition between the
different crystallization processes leads to a dynamic slow-
down and thus enhances the GFA. From a thermodynamic
viewpoint, this is equivalent to reducing the configurational
entropy of the super-cooled metallic liquid, which is in line
with the Adam–Gibbs model60. However, it is extremely

difficult to compute the configurational entropy of a
chemically complex metallic liquid without knowing its
configurational energy landscape. To circumvent this diffi-
culty, we propose to compute the correlated configurational
entropy of mixing (Scorr) as an approximation to probe the
configurational entropy of multicomponent alloys (See
Supplementary Note 3). It should be noted that Scorr was
recently developed by He et al.51 in their study of phase
selection in high entropy alloys (HEAs). According to He
et al.51, HEAs tend to form glass with a low Scorr value while
tend to form random solid solution with a high Scorr value.
This finding is consistent with the confusion principle59.
Besides, Scorr is implicitly related to chemical short-range
ordering (CSRO). In principle, a higher degree of CSRO implies
a lower value of Scorr. However, the correlation between CRSO
and atomic size misfit is not straightforward. According to the
recent work of He et al.61, atomic size misfit could act against
or in favor of CRSOs, depending on the chemistry/size of
atomic pairs. This is an interesting and important topic that
warrants future research.

For our classification ML modeling, we consider binary labeling
of the data output. We first designate the alloy compositions that
were reported to be capable of forming MG ribbons or BMGs with
the label ‘1’ as typical MG compositions, while the rest with the
label ‘0’ as non-typical MG compositions. According to the
previous works8,9, we take lnD rather than D—the GFA value of
a MG composition—as the data output for our regression ML
model. In doing so, we obtained a distribution of the data output
close to a normal distribution, which reduced the data skewness
(Supplementary Fig. 2) and thus improved the performance of our
regression ML models (Supplementary Fig. 3).
In our database, we have ~5000 MG compositions and ~2000 non-

MG compositions. To rule out a possible modeling bias towards MG
compositions, we applied the synthetic minority over-sampling
technique (SMOTE)62 to oversample our non-MG compositions by
150%. In the literature, SMOTE has been widely used in data over-
sampling63, which can generate high-quality synthetic data after
ruling out data outliers (noise) and data redundancy. In our work, the
synthetic compositions were generated without knowing whether
they belong to MGs or non-MGs. As a result, this generated
additional ~3000 virtual non-MG compositions to keep the size
balance between the typical MG and non-MG compositions. After
that, we employed three ML algorithms for the training and
validation of the classification ML model, including adaptive boosting
(AB), support vector machine (SVM) and k-nearest neighbors (KNN)
(see Fig. 1c and Methods). According to our results, the AB model
outperforms the other two for its highest testing accuracy of 87.7%
with the area-under-curve (AUC) value of 0.95 (Supplementary Fig. 4).
It outperforms the model trained with the original data without over-
sampling, especially with respect to the prediction about non-MGs
(see Supplementary Fig. 5). Next, we developed four classes of
regression ML models, including artificial neural network (ANN),
support vector regression (SVR), Gaussian process regression (GPR),
and random forest (RF), as illustrated in Fig. 1d. Out of the four
classes, we built 11 different regression ML models with the use of
different algorithms, which led to 6 ANN-based models, 3 GPR-based
models, 1 SVR-based model, and 1 RF-based model (see Methods).
Subsequently, we tested/validated the ANN-based ML models by
hold-out validation while the others via 10-fold cross-validation (see
Methods). As a result, we found three best performing regression ML
models, i.e., the Levenberg-Marquardt backpropagation ANN
(LMANN) model, the rational quadratic kernel GPR (RQGPR) model,
and the Exponential kernel GPR (ExpGPR) model. These regression
ML models are characterized by low error and high coefficient of
determination (~0.8) (see Supplementary Fig. 6).
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Validation by experiments
To validate our ML modeling, we calculate the GFAs of three ternary
(or pseudo-ternary) alloy systems, namely, the Zr–Cu–Al, Zr–Co–Al,
and Zr–Cu–(Ag, Al), using the LMANN, RQGPR, and ExpGPR ML
model, and compare our predictions with the available experi-
mental data, as reported by Inoue et al.64, Bhatt et al.65, and Kim
et al.66. It is worth noting that the data for these systems were not
included in our original dataset for training and testing of our ML
models. As shown in Fig. 2a–c, it is evident that the RQGPR model
captures the trend of the experimental results very well, including
the cases that failed to produce BMGs (Fig. 2a, b) and the marginal
cases that nearly produced a BMG (Fig. 2b). The predictions of the
ExpGPR model are like those of the RQGPR model (Supplementary
Fig. 7); however, the predictions of the LMANN model are relatively
poor, some of which are far off the experimental results (see
Supplementary Fig. 8) even though the LMANN model appears to
show a similar coefficient of determination and relative error with
the other two models. Based on these findings, we adopted the
RQGPR model to guide our development of MGs.

Discovery of chemically complex and high entropy metallic-
glasses
Aside from the experimental validation, we demonstrate the
predictability of our hybrid ML modeling through the discovery/
development of MG compositions that have not been reported
before. For the present work, we consider 8 common metals
(Fe, Zr, Cu, Ni, Ti, Al, Co, and Hf) as the possible constituent
elements. These metals are non-toxic and easy to access, which
have economic values and hence were frequently used in the
previous design of MGs, as seen in Fig. 1a. It is worth noting that
the atomic fraction of each constituent element was varied
over a wide range during the deep search of the compositional

space for MGs. For the present work, we discovered 12 MG
compositions based on the predictions of the classification ML
model. For comparison, we developed 23 alloy compositions (see
Supplementary Table 3), including the 12 MG compositions as well
as another 11 non-MG compositions which failed to pass our
classification ML modeling. Next, the GFAs of these 12 glass-
forming alloys were predicted by the RQGPR model in terms of
lnD, as shown in Fig. 3a. Based on these computational results, we
prepared both bulk and/or ribbon samples for each of these 23
compositions by arc melting and/or melt spinning (see Methods).
As seen in Fig. 3b, the experimental results clearly show that the

12 predicted glass-forming alloys can form glass in either bulk or
ribbon (or both) while those 11 predicted as bad glass-formers or
non-MGs cannot (see Supplementary Fig. 9). Furthermore, we
discovered that the 6 glass-forming alloys with high GFAs could
form glass in bulk (see Fig. 3b, c). By comparison, 6 glass-forming
alloys with predicted low GFAs could only form glassy ribbons (see
Fig. 3b and Supplementary Fig. 10) but were crystallized in bulk
(see Supplementary Fig. 11). Here it is worth noting that any small
difference in lnD is magnified in an exponential manner when
the prediction is transformed back to D. Thus, in the linear scale,
the predicted trend is more meaningful than the exact value of
the predicted D. Based on this trend prediction, we successfully
locate the compositions of a few BMGs. We also measured the
chemical composition of the glass-forming alloys with energy
dispersive X-ray spectroscopy (EDX). The results show that the
exact composition is consistent with the predicted one within a
relative error of 9% (see Supplementary Table 4).
Before moving to the next section, it is worth noting that

the traditional empirical approach67, which is based on the atomic
size difference parameter (δ) and the heat of mixing (ΔHmix),
predicts that an alloy tends to form a metallic glass if δ > 0.065 and
ΔHmix <−12 kJ mol−1. However, as seen in Fig. 3d, this traditional

Fig. 2 Comparison of the GFAs predicted by the RQGPR model with those of ternary or quasi-ternary alloys. a Comparison of the
predicted GFAs of the Zr–Cu–Al alloys with the experimental results taken from the works of Inoue et al.64 and Bhatt et al.65, b comparison of
the predicted GFAs of the Zr–Co–Al alloys with the experimental results taken from the works of Inoue et al.64 and Kim et al.66, and
c comparison of the predicted GFAs of the Zr–Cu–(Ag, Al) alloys with the experimental results taken from the work of Inoue et al.64.
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approach is insufficient and unable to distinguish glass-forming
alloys from others because they share a similar value of δ and/or
ΔHmix. We also obtained the glass transition temperature (Tg), the
crystallization onset temperature (Tx), and the liquidus tempera-
ture (Tl) of our MGs by differential scanning calorimetry (DSC)
(see Methods and Supplementary Fig. 12) or following the
method in refs. 68,69 (see Supplementary Note 4 and Supplemen-
tary Table 5). According to the literature26, the ratio of Tg/Tl—also
termed as the ‘reduced glass transition temperature, Trg’—scales
positively with the GFA of MGs. As shown in Fig. 4, there is a clear
trend that Tg ~ 0.63Tl, within a margin of ±0.05 Tl for different

classes of MGs, our high entropy MG ribbons are clearly off this
trend because of their relatively high Tl or low Tg/Tl ratio. Based on
the DSC results, we also calculated Trg and γ ¼ Tx

TgþTg
of our MGs. As

shown in Supplementary Fig. 13, the results reaffirm that the GFA
of the high entropy MGs is low, which can be attributed to the
high thermal stability (high Tl) of their corresponding crystals.

DISCUSSION
First, we are interested in the difference between our designed
chemical complex and high entropy MGs, which may cause their

Fig. 3 ML-guided design of chemically complex metallic-glasses. a The RQGPR predicted GFA values of the 12 glass-forming alloys. b The
XRD spectra confirming the glassy structure. c Appearance of 6 BMGs. d Plot of our 23 alloy compositions in the ΔHmix-δ diagram.
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disparity in GFA. Figure 5a compares the descriptor values of the
Zr54Ni16Cu14Ti10Al6 BMG and the Zr25Hf25Al25Co25 glass ribbon in
radar charts. Apparently, their key difference is that the glass ribbon
possesses a much higher descriptor values in δc

�� �� and σδc . A similar
pattern was observed on other MGs because of their compositional
similarity (see Supplementary Fig. 14 and Supplementary Table 6).

In theory50, these two descriptors quantify the tolerance of a
crystalline structure against atomic size misfit. Therefore, the larger
these two descriptors are the more tolerant (or stable) the crystalline
structure is against amorphization. For the discovered MGs, since
their descriptor values look similar except for δc

�� �� and σδc , we can
therefore attribute the disparity in their GFAs to a structural

Z.Q. Zhou et al.
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difference that is closely linked to the excessive atomic size misfit as
indicated by the descriptor radar charts.
Inspired by the above results, we examined the amorphous

structure of Zr54Ni16Cu14Ti10Al6 and Zr25Hf25Al25Co25 across micro-,
nano-, and atomic-scale through 3D atom probe tomography (APT)
and aberration corrected transmission electron microscopy
(see Methods). As shown by the APT elemental mapping
(Fig. 6c, d) image, both Zr25Hf25Al25Co25 and Zr54Ni16Cu14Ti10Al6
show structural homogeneity at the nano scale, and structural
homogeneity is observed by the TEM and HRTEM results as well
(Fig. 6e, f, h, i). Interestingly, the STEM image (Fig. 6g) of the
Zr25Hf25Al25Co25 MG shows a clear sub-nanometer scale chemical
fluctuation which cannot be resolved by APT and TEM owing to its
limited spatial resolution (1–2 nm). According to the prior works, this
contrast can be attributed to a density fluctuation, which can result
from excessive plasticity70–72 or simply signals an unusual capacity
of a MG for plastic flows72,73. In contrast, the STEM image (Fig. 6j) of
the Zr54Ni16Cu14Ti10Al6 BMG display structural homogeneity in
atomic-scale. Evidently, these findings echo well with what the data
descriptor radar charts reveal about the probable structural
difference between these two MGs (Fig. 6g, j): namely, the
Zr25Hf25Al25Co25 MG can afford a higher degree of chemical
fluctuation than the Zr54Ni16Cu14Ti10Al6 BMG. These findings are
intriguing and warrant further research on the underlying physics.
In order to gage the relative importance of the data descriptors,

we followed the literature16,74 and removed each data descriptor,
one at a time, from the training of the classification and regression
models. We ran out all eight data descriptors and measured the
accuracy loss in terms of RMSE (see Supplementary Fig. 15).
According to our results, ε� is the most influential descriptor
seconded by σδN

N
for both models. To further probe the difference

between MGs and non-MGs, we obtained the parallel coordinate
plots (PCPs)75 from our dataset of ~7000 compositions. In the
literature, PCP is widely used for the visualization of sensitivity of

multi-dimensional data75. For descriptors σδN
N
, ε2h i12, Scorr, ε� and ε,

the PCP bands for MGs are narrower and denser than those for
non-MGs (see Supplementary Fig. 16). By contrast, the bands of

descriptors δc
�� ��, δN

N

���
���, and σδc for MGs look similar to those for non-

MGs. To reveal the difference, we plotted the distributions of the
three descriptors for MGs and non-MGs (see Supplementary Fig.
17). The averages of the three descriptors for MGs are generally
larger than those for non-MGs, which indicates the slight
difference in local packing deficiency and local chemical fluctua-
tion between MGs and non-MGs. In principle, PCP provides us a
comparative view for the distributions of multiple descriptors76,
the effectiveness of which in machine learning can be inferred by
the difference if there is any, in the band structures. Besides, we
studied the difference of BMGs and glass ribbons for different
classes of MGs with PCPs (e.g., Zr-based, Fe-based, Cu-based, and
La-based). As shown in Fig. 6a–h, it is evident that the descriptor
values are further squeezed into a much narrower band for BMGs
than for glass ribbons, which suggests a comparatively limited
compositional space that allows for the discovery of BMGs.
To sum up, we develop a hybrid ML model in this work for the

design of MGs with a targeted GFA, which is based on the largest

dataset available in the literature and has only 8 data descriptors
derived in conformity with the theoretical models. Our hybrid ML
model exhibits a high computational performance in classification
and regression, and validated by the experiments that system-
atically studied the GFAs of several ternary glass-forming systems.
We also demonstrate the predictability of the hybrid ML model
through the development of chemically complex MGs—from
quaternary to senary systems—based on the ML predictions. It is
interesting to note that the values of the data descriptors also
provide important clues to the hidden structural characteristics of
our designed MGs, which are also validated by the experiments.
These findings are important, which may pave the way towards
the computational discovery of chemically complex MGs with
unusual amorphous structures.

METHODS
ML algorithms
Our ML algorithms are implemented by Matlab R2020a with Statistics and
Machine Learning Toolbox and Deep Learning Toolbox.

Adaptive boosting (AB). AB model is trained in the Classification Learner
App from Statistics and Machine Learning Toolbox. 10-fold cross-validation
is applied. Model type is set to Boosted Trees with the maximum number of
splits set to 342, the number of learners to 143, and learning rate to 0.961.
Other parameters are set automatically to achieve the best training results.

Support vector machine (SVM). SVM model is trained in the Classification
Learner App from Statistics and Machine Learning Toolbox. 10-fold cross-
validation is applied. Model type is set to Fine Gaussian SVM with the
kernel scale set to 0.71 and the box constraint to 1. Other parameters are
set automatically to achieve the best training results.

K-nearest neighbor (KNN). KNN model is trained in the Classification
Learner App from Statistics and Machine Learning Toolbox. 10-fold cross-
validation is applied. We use Euclidean distance metric with equal weight
and the number of neighbors is set to 10. Other parameters are set
automatically to achieve the best training results.

Artificial neural network (ANN). ANN in our work consists of one
hidden layer with an activation function S aið Þ ¼ 1

1þe�ai and 20 hidden
neurons determined through pre-training (See Supplementary Fig. 18). We
use the Matlab function net=feedforwardnet(hiddenneurons, ‘training-
function’). Different training functions are applied to train the ANN-based
ML model, including Levenberg–Marquardt backpropagation (LMANN),
Broyden–Fletcher–Goldfarb–Shanno quasi-Newton backpropagation
(BFGANN), conjugate gradient backpropagation with Powell-Beale restarts
(CGBANN), conjugate gradient backpropagation with Polak–Ribiere
updates (CGPANN), gradient descent backpropagation (GDANN), and
gradient descent with adaptive learning rate backpropagation (GDAANN).
To avoid overfitting, we applied a hold-out validation method to the ANN-
based ML models and divided the dataset into three subsets with 70%
data for training, 15% for validation, and 15% for testing. The training
parameters are set as net.trainParam.Max_fail = 10; net.trainParam.goal =
0.02. The initial biases and weight matrices of input and layer are
generated randomly.

Gaussian processed regression (GPR). GPR models are trained in the
Regression Learner App from Statistics and Machine Learning Toolbox. 10-
fold cross-validation is applied. We employ three different kernels to train

Fig. 5 Structure difference of Zr25Hf25Al25Co25 glass ribbon and Zr54Ni16Cu14Ti10Al6 BMG. Radar chart of 8 descriptors in a
Zr54Ni16Cu14Ti10Al6; Radar chart of 8 descriptors in b Zr25Hf25Al25Co25.The atom probe tomography (APT) elemental mapping of c the
Zr25Hf25Al25Co25 glass ribbon and d the Zr54Ni16Cu14Ti10Al6 BMG. The scale bar indicates a length of 20 nm. e The transmission electron
microscopy (TEM) image of the Zr25Hf25Al25Co25 glass ribbon. The inset is the selected area diffraction pattern. The scale bar indicates a length
of 50 nm. f The high-resolution transmission electron microscopy (HRTEM) image of the Zr25Hf25Al25Co25 glass ribbon. The scale bar indicates
a length of 5 nm. g The bright field scanning transmission electron microscopy (STEM) image of the Zr25Hf25Al25Co25 glass ribbon. The inset
shows the HRTEM image at the same size scale. The scale bars indicate a length of 2 nm. h The TEM image of the Zr54Ni16Cu14Ti10Al6 BMG. The
inset is the selected area diffraction pattern. The scale bar indicates a length of 20 nm. i The HRTEM image of the Zr54Ni16Cu14Ti10Al6 BMG. The
scale bar indicates a length of 5 nm. j The STEM image of the Zr54Ni16Cu14Ti10Al6 BMG. The inset shows the HRTEM image at the same size
scale. The scale bars indicate a length of 2 nm.
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the GPR-based ML model, including the rational quadratic kernel (RQGPR),
the squared exponential kernel (SqExpGPR), and the Exponential
kernel (ExpGPR). For RQGPR model, the model type is set to Rational
Quadratic GPR; the kernel function is set to Rational Quadratic

k x; x0 θjð Þ ¼ σ2f 1þ x�x0j j2
2ασ2l

� ��α
; the training parameters are set as σf= 2.19,

σl= 0.89, and α= 0.16. For SqExpGPR model, the model type is set to
Squared Exponential GPR; the kernel function is set to Squared Exponential
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Fig. 6 Visualization of 8 features in different groups of compositions. Parallel coordinate plots of a Zr-based BMGs, b Zr-based glass
ribbons, c Fe-based BMGs, d Fe-based glass ribbons, e Cu-based BMGs, f Cu-based glass ribbons, g La-based BMGs, and h La-based glass
ribbons.

Z.Q. Zhou et al.

8

npj Computational Materials (2021)   138 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



k x; x0 θjð Þ ¼ σ2f exp � 1
2

x�x0j j2
σ2l

h i
; the training parameters are set as σf= 1.48,

σl= 0.70, β= 0.50, ε= 0.48; For ExpGPR model, the model type is set to
Exponential GPR; the kernel function is set to Exponential

k x; x0 θjð Þ ¼ σ2f exp � x�x0j j
σl

h i
; the parameters are set as σf= 1.86, σl= 2.79,

β= 0.53, ε= 0.28. Other parameters are set automatically to achieve the
best training results.

Support vector regression (SVR). SVR model is trained in the Regression
Learner App from Statistics and Machine Learning Toolbox. 10-fold cross-
validation is applied. The model type is set to Fine Gaussian SVM; the
kernel function is set to Gaussian k x; x0ð Þ ¼ expð� x� x0k k2Þ; the kernel
scale is set to 0.71 while the box constraint is set to 0.93 and ε= 0.093.
Other parameters are set automatically.

Random forest (RF). The RF model is trained in the Regression Learner
App from Statistics and Machine Learning Toolbox. 10-fold cross-validation
is applied. The model type is set to Boosted Trees; minimum leaf size is set
to 8; number of learning is set to 30; the learning rate is set to 0.1. Other
parameters or options are set automatically.

Arc-melting
Pure metals, including Ti, Zr, Hf, Al, Co, Ni, Fe, Cu, and Nb, with a purity level
higher than 99.95% are used to prepare rod samples. We use a lab-scale arc-
melting furnace to melt the pure metals with vacuum level as high as 8 × 10−4

Pa and a melted Ti ingot to avoid possible oxidation. Then the melted samples
are casted in copper molds with dimensions of Ф2mm, Ф3mm, and Ф5mm.

Melt spinning
We first prepare ingot samples by casting mentioned above. Then the
ingots are melted in a lab-scale induction-melting furnace with a vacuum
as high as 8 × 10−4 Pa and the ribbons are prepared by a single copper
roller melt spinning with a rotating speed of 75 r/s.

Differential scanning calorimetry (DSC)
DSC experiments are performed using both DSC3/700 and TGA DSC3+HT/
1600 (METTLER TOLEDO) with a heating rate of 20 K/min and argon flow
with a rate of 50mL/min.

Scanning transmission electron microscope (STEM)
STEM samples are prepared by PIPS II MODEL 695 (GANTAN) and the
experiments are carried out by JEM-ARM300F transmission electron
microscope equipped with double spherical aberration correctors.

Atom probe tomography (APT)
Needle-shaped APT specimens are fabricated by lift-outs and annular
milled in a FEI Scios focused ion beam/scanning electron microscope (FIB/
SEM). The APT characterizations are performed in a local electrode atom
probe (CAMEACA LEAP 5000 XR). The specimens are analyzed at 70 K in
voltage mode, at a pulse repetition rate of 200 kHz, a pulse fraction of 20%,
and an evaporation detection rate of 0.2% atom per pulse. Imago
Visualization and Analysis Software (IVAS) version 3.8 is used for creating
the 3D reconstructions and data analysis.

DATA AVAILABILITY
The exact datasets used in this study are freely available at https://citrination.com/
datasets/198590/. The source code used in this study could be downloaded from
GitHub (https://github.com/ZHOU-Ziqing/ML_Metallicglass_GFA). Additional data
related to this work is available on reasonable request.
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