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Evolutionary computational platform for the automatic
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We present the EVONANO platform for the evolution of nanomedicines with application to anti-cancer treatments. Our work aims
to decrease both the time and cost required to develop nanoparticle designs. EVONANO includes a simulator to grow tumours,
extract representative scenarios, and simulate nanoparticle transport through these scenarios in order to predict nanoparticle
distribution. The nanoparticle designs are optimised using machine learning to efficiently find the most effective anti-cancer
treatments. We demonstrate EVONANO with two examples optimising the properties of nanoparticles and treatment to selectively
kill cancer cells over a range of tumour environments. Our platform shows how in silico models that capture both tumour and
tissue-scale dynamics can be combined with machine learning to optimise nanomedicine.
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INTRODUCTION

Cancer is known to be a complex and multiscale disease, where
tumour growth is caused by multifactorial effects spanning
multiple scales, such as individual cell stressors, mutations in cell
signalling pathways, changes in the local tumour microenviron-
ment, and the overall disruption of tissue homeostasis'™.
Nanoparticle-based drug vectors have the potential for improved
targeting of cancer cells when compared to free drug delivery
through the design of cell-specific binding moieties and the
encapsulation of drugs within nanoparticles that improve
bioavailability>®. Furthermore, nanoparticles can be used to create
novel treatment strategies that rely on, for example, delayed
release, local photo-thermal therapies, as well as treatments that
take advantage of the collective dynamics of the nanoparticles’>.

Novel anti-cancer nanomedicines are possible due to the
expansive range of design parameters that can be altered. These
include the four ‘S's (size, shape, stiffness and surface coating) as
well as more complicated designs, such as encapsulated
nanoparticles, self-assembling nanoparticles, and nanoparticles
that self-amplify a signal in order to increase localised distribu-
tion'® 13, However, given the vast parameter space, effective
design of nanoparticles is a considerable challenge, as each of the
chosen particle parameters impacts how they behave in the
body”'*'>, To improve nanoparticle design, in silico models have
been shown to be efficient at both the prototyping and the
hypothesis testing stage, preventing costly trial-and-error search
routines for potential test candidates'®2". For a recent review of
how in silico models have been used to further nanoparticle
design, see, for example, refs. 2224, |n addition, machine learning
and Al methods have been used to optimise nanoparticle design,
for example, by predicting the properties of nanoparticles or
reducing their overall toxicity?>=?%. However, many of these in
silico models focus on singular aspects of the nanoparticles’
journey through the body and are unable to systematically
generate virtual tumour scenarios.

In this paper, we present a platform for drug discovery,
EVONANO, that combines models at the scale of an individual
cell to the growth dynamics of a virtual tumour, while also
applying machine learning to more efficiently explore the
nanoparticle design space. The tumour growth dynamics are
simulated using PhysiCell, an open-source package for simulating
large cellular systems?®. This simulator creates a virtual tumour
using an agent-based model (ABM) which allows for a high level of
adaptability, such as the inclusion of heterogeneity in the cell
phenotypes (cancer cells, cancer stem cells, macrophages). The
virtual tumour models are then used to generate representative
scenarios for testing nanoparticles in silico.

Modelling nanoparticles over a whole tissue is computationally
expensive and limits the degree to which nanoparticle parameters
influence tumour dynamics. Instead, we systematically designate
representative sections of tissue to test nanoparticle and
treatment designs. We use in a stochastic simulator, the
STochastic Engine for Pathways Simulations (STEPS), which allows
for simulations of stochastic networks over complex spatial
domains through the discretisation of the well-mixed domain
into smaller well-mixed subunits (known as voxels)*°32, We
specifically focus on a stochastic simulator to capture the inherent
randomness that occurs within biochemical reaction networks.
Nanoparticle-cell interactions are modelled using such reaction
networks, where complicated signalling pathways can be intro-
duced using the systems biology markup language (SBML)
standard®3. Finally, the optimisation of nanoparticle design is
done using a custom-built evolutionary algorithm, similar to
previous attempts34-36,

We present two examples demonstrating the EVONANO
platform. The first designs nanoparticles that are able to
penetrate an optimum distance to cover the majority of what
is assumed to be a homogeneous tumour mass. We optimise
over the concentration, size, binding affinity, and payload of
nanoparticles. We show how an evolutionary algorithm is able to
effectively choose parameters that result in more than 90% of
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cancer cells successfully treated with low overall injected dosage.
We then give an example of optimisation of treatments targeting
a heterogeneous tumour mass, containing both cancer cells and
cancer stem cells and where cancer stem cells are a minority cell
population that are responsible for treatment resistance, meta-
static growth and tumour recurrence, providing a promising
target for nanomedicine and anti-cancer therapies®’. We increase
the complexity of the design space by introducing two
nanoparticle-drug vectors, one that is specifically lethal to
cancer cells and a second that is lethal to cancer stem cells only.
In both of these examples, we find parameters that can
preferentially kill cancer cells (and cancer stem cells) while
minimising the overall dosage.

We end with a discussion of current and future developments
for the EVONANO platform, such as integrating molecular dynamic
simulations and validation using in vitro/in vivo experiments and
clinical or patient data, before making our concluding remarks.

RESULTS
EVONANO description

The EVONANO platform uses modular design principles to
implement and explore multiscale simulations over large para-
meter spaces. The pipeline consists of three central modules:
simulation of a virtual tumour, simulation of nanoparticle-tissue
interactions, and evolutionary optimisation routines for nanopar-
ticle design. Figure 1 illustrates an abstract workflow of the
EVONANO platform.

Virtual tumour module

The EVONANO platform begins by generating a virtual tumour, as
shown in Fig. 2. The virtual tumour models a representative
tumour grown under certain assumptions. For example, here we
focus on two aspects of tumour growth, the vasculature of the
tumour and the inclusion of cancer stem cells. Tumour-specific
features, such as the initial size and distribution of cells, structure
of the vasculature, and the existence of resistant sub-populations,
can all be modelled in the virtual tumour module. The virtual
tumour is then used to generate biologically relevant scenarios for
testing nanoparticles. Further details of the virtual tumour module
are provided in the ‘Methods’ section.

To demonstrate the EVONANO platform, we generate two
virtual tumours, one with only cancer cells (homogeneous) and
one with both cancer cells and cancer stem cells (heterogeneous).
We assume that the tissue surrounding the cancer cells is made up
of healthy cells and that the space between cells within the
tumour represents the tumour extracellular matrix (ECM). The
cancer stem cells (CSCs) have an altered cellular behaviour so that,
in contrast to cancer cells (CCs), they cannot enter an apoptotic or
necrotic state. When in conditions of reduced oxygen concentra-
tion, they became dormant. CSCs are generated either by
dedifferentiation of CCs or by (symmetric or asymmetric) division
of CSCs. In the case of dedifferentiation, two daughter cells are
created: 1 CC and 1 CSC.

We also include a vasculature which grows with the tumour.
The growing vasculature is discrete, made up of individual vessel
points (VPs) and network-like. We assume that nanoparticles
enter into the tumour only from VPs, either through extravasa-
tion or transendothelial transport®®. Furthermore, we assume
that the extravasation rate is constant across all VPs. We
consider extensions regarding the rate of extravasation in
the 'Discussion’ section.

Virtual tissue module

To effectively capture the movement of nanoparticles through
tissue, and their interaction with cells, we have designed a virtual
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tissue module which uses stochastic reaction-diffusion simula-
tions to model nanoparticle transport through the tissue. An
example schematic of the virtual tissue module is given in Fig. 3.

In the virtual tissue module, nanoparticles interact with cell
features such as the cell membrane and receptors within a single
well-mixed domain with dimensions equal to that of a single cell.
Interactions between nanoparticles and cells are modelled using a
stochastic Michaelis-Menten reaction network'®3°, with further
details provided in the ‘Methods’ section. Nanoparticles are able to
actively target and bind to receptors on the cell membrane, as
well as be released from these receptors and be uptaken by a cell.
Furthermore, nanoparticles are able to diffuse through the tissue,
potentially binding and unbinding with several cells or diffusing
sufficiently fast to interact with cells far away from the vessel
point. The virtual tissue model allows for testing of specific
nanoparticle designs in biologically realistic scenarios and, when
combined with the machine learning module, allows for the
optimisation of nanoparticles to have higher overall bio-
distribution within the tissue.

The virtual tissue module also allows for treatment-specific
details to be included. Using considerations of the overall dosage
of nanoparticles into the body, the efficacy of the payload carried
by nanoparticle-based drug vectors, and the number of drug
molecules contained within a nanocarrier, we can calculate the
number of nanoparticles that are able to extravasate into the
tumour as well as the cytotoxicity of a nanoparticle-drug vector.
Further details are included within the ‘Methods’ section. These
calculations allow for optimisation of nanoparticle-based anti-
cancer treatments, such as treatments with lower dosage but
high efficacy.

Machine learning module

Nanoparticles are highly customisable, covering a large design
space of properties such as their size, material, shape, stiffness,
binding moieties and charge’. Simulations at the tissue scale allow
for the simulation of multiple particles as well as cell types.
Nanoparticles can be optimised with different binding properties
and diffusion coefficients, or drugs and targeting moieties
specialised for individual cell types. For example, nanoparticles
can be introduced that have specific binding to cancer cells but
with a higher internalisation rate for cancer stem cells.

This creates an extremely large parameter space to search for
the most effective treatment parameters. The computational cost
of simulation is prohibitive of unbound multiple tests and
intelligent optimisation tactics are required instead. Consequently,
the optimisation of the treatment parameters can be implemen-
ted with an amalgam of conventional, well-established algorithms,
such as genetic algorithms#, as well as more unconventional and
innovative methods, such as novelty search and metameric
representations3>-36:4041,

In this work, we optimise nanoparticle-based treatments using a
genetic algorithm, as shown in Fig. 4a, with a custom fitness
function that optimises for increased efficacy and low dosage and
where the tradeoff between efficacy and dosage is controlled by a
weighting factor. Further details are provided in the ‘Methods’
section. We use the EVONANO platform to optimise nanoparticles
that can penetrate deep into the tumour tissue, induce cell death
in all cancer cells but where the overall injected dose is low. The
EVONANO machine learning module allows for the flexible and
customisable optimisation of nanoparticle treatments. We are able
to achieve these optimum results for both homogeneous and
heterogeneous tumour cell populations, as we describe below.

Optimizing NPs in a homogeneous tumour cell population

We present results from two example scenarios, as described in
the ‘Methods’ section. We first consider a homogeneous tumour
cell population, where all nanoparticles have equal efficacy on
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Fig. 1 General overview of the EVONANO platform. The EVONANO platform begins by (A) specifying tumour and possible nanocarrier
properties which are then used as assumptions within the EVONANO simulation platform. This proceeds as follows: (i) we first grow a virtual
tumour to a sufficient size using the virtual tumour model, (ii) summary statistics, such as necessary penetration distance, are calculated from
the virtual tumour and used to generate representative treatment scenarios, (iii) we then optimise the parameter values using the tissue
module and machine learning module. The nanocarrier and treatment parameters can then be designed and tested using in vitro/in vivo

methods.

CCs. We then consider a heterogeneous tumour cell population
containing both CCs and CSCs.

For the first scenario, we use the EVONANO platform to
generate a virtual tumour. We use our sampling procedure,
described in the ‘Methods’ section, to generate scenarios that are
optimised using the machine learning module and evaluated at
the tissue scale. Using the EVONANO platform, we find parameter
values that result in 99% of all CCs killed within 95% of VPs with a
dosage of 7.8mg/kg. Optimum nanoparticle-based treatment
parameters are given in Table 1.

Overall, more effective solutions (which kill more CCs) were
found when nanoparticle treatments were tested on the worst-
case scenario representing one VP and 22 CCs. This is likely due to
the presence of multiple VPs in some scenarios, increasing the
number of nanoparticles in the system and leading to fewer
constraints on nanoparticle parameters. As a result, we focus only
on this scenario, as solutions tended to have low dosage (10 mg/
kg and below) while still killing a large number of CCs. We found
that, for the homogeneous case, the weighting factor did not
influence nanoparticle parameters in a meaningful way.

We show results from running the evolutionary optimisation
in Fig. 4b. We find that we are able to correctly identify the
combination of parameters that allow for almost all cancer cells
to be killed with low dosage. These parameters are D=1 x 10~°
cm?/s, k, = 700,000 (Ms)~! (equivalent to a nanoparticle radius
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of R=25nm and Kp=70nM), NPO=60,000 and E= 5000,
which has an overall fitness of 0.85. The nanoparticles that killed
the largest number of cells followed the same trend as that
observed in ref. '8 in which those with high diffusion and
disassociation constants were found to penetrate and kill cells
furthest from the vessel point. However, far fewer particles were
shown to be required.

Optimizing NPs in a heterogeneous tumour cell population
We next use the EVONANO platform to design nanoparticles
within a heterogeneous tumour mass. In this scenario, a virtual
tumour is generated using the virtual tumour module which
consists of 527,000 cells with 517,000 CCs, 5000 VPs and 5000
CSCs. The CSCs have altered cellular behaviour as described in
‘Methods’. We repeat the same sampling process for the
generated tumour mass, resulting in 100 scenarios. Again, we
find that the penetration distance from VPs required to cover 95%
of the tumour mass is ~22 cells deep.

We use the machine learning module to find a parameter set
that successfully kills 99% of CCs and 82% of CSCs within all
scenarios. For NP1, D=9.8x10""cm?/s, k,=217,000 (Ms)™"
(equivalent to a radius of R=25nm and Kp=22nM), NPO =
923,000 and E=400, while for NP2, D=6.4x10"7cm?%s,
k,=117,000 (Ms)~' (equivalent to a radius of R=4nm and
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green circles) and vessel points (shown as red circles) and running simulation until the tumour population is sufficiently large. All simulations
are performed using PhysiCell, where (b), (c) show example outputs of a tumour with VPs and oxygen gradients where VPs are represented by
red circles, green circles are CCs and brown circles are CC undergoing necrosis due to oxygen depletion. We use simulation output to (d)
calculate the distance required for nanoparticles to penetrate from VPs and cover 95% of the tumour as well as (e) construct treatment
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nanoparticles that diffuse from vessel points (shown in red) into well-mixed compartments (shown as green cubes) representing tumour cells
(shown as a green sphere). In (b), we show the total penetration profile of nanoparticles within a homogeneous tumour, such as the number
of nanoparticles (NP) and internalised nanoparticles (NP;) within each cellular compartment. Here the nanoparticle and treatment parameters
are able to successfully penetrate and kill all cancer cells. Each cell contains example Cell-nanoparticle dynamics such as increased number of
nanoparticle-receptor complexes (NPR), and a decrease in overall receptors over time. We also show, in (c) the two optimum solutions of a

heterogeneous cell population.

Kp=12nM), NPO= 150,000 and E=2500. This reflects a total
dosage of 9.4 mg/kg for NP1 and 9 mg/kg for NP2.

This solution was found when the weighting factor was set to 5
and where nanoparticles were tested only on the worst-case
scenario. Overall, we did not see significant differences for those
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solutions where the weighting factors were above one. On the
other hand, for those treatment designs found using weighting
factor equal to one, i.e., where the efficacy and dosage gave equal
contributions to the overall fitness, we found that solutions
failed to kill all the cancer cells and the overall dosage was low.
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module. Parameter sets with high fitness are selected for (using a tournament procedure) and these sets are used to generate a new
population of nanoparticle parameters using the crossover operator (where the information of the two parent solutions are combined to
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increase in the fitness of the parameters and effective nanoparticle treatments. We show in (b) the mean, maximum and minimum change in
fitness across generations and highlight the changes of importance in parameters as we optimise the nanoparticle treatment, where

parameter changes are shown in the table.

This highlights the importance of fine-tuning the fitness function
for the desired outcome. In the future, we will consider other
fitness functions as we increase the complexity of the optimization

problem.
For nanoparticles tested on several randomly selected scenar-

ios, we found that the solution would often fail to kill CSCs due to
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their low prevalence within the total cell population. However,
when we heavily bias the gain in fitness according to the
combined efficacy of the nanoparticle, by setting w =10 in Eq. (5),
we find a second solution that has significantly different
nanoparticle parameters but where the total dosage is high.
These parameters are, for NP1, D=9.7 x 1072 cm?/s, k, = 8300
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Table 1. Description and value of the assumed parameters for
simulation.

Symbol Description Unit  Value
PID Percentage injected dose - 1%

T Time at which PID is measured hours 48

w Weight of murine model grams 20

P Potency of payload (IC90 of Doxorobucin) pM 10

M Molar mass of payload (Doxorobucin) g/mol 543.52
Vi Volume of the tumour mm3 125
S Characteristic length scale of cell pm 10
Ngr Number of receptors per cell - 10°

(Ms)~! (equivalent to a nanoparticle radius of R=264nm and
Kp=0.8nM), NPO =236,000 and E=7600, while for NP2, D=
5.7% 1077 cm?/s, k, =791,000 (Ms)~' (equivalent to a radius of
R=45nm and Kp=380nM), NPO=828,000 and E=1200. This
reflects a total dosage of 46.4 mg/kg for NP1 and 25.9 mg/kg for
NP2, relatively high for nanomedicine treatment. However, this
solution deviates from previous solutions in that the nanoparticles
are much larger with high binding affinity and demonstrates that
by tuning the fitness and randomly sampling from generated
scenarios, we are able to find effective nanoparticle designs.

DISCUSSION

In this paper, we have introduced the EVONANO platform for the
automatic optimisation of nanoparticle design parameters in
tumour tissue. This modular simulation tool builds on two open-
source simulation frameworks, PhysiCell and STEPS, extending
them to model tumour growth, extract representative worst-case
tumour tissue scenarios, and then model nanoparticle penetration
within these tumour tissues. Finally, we use machine learning to
optimise nanoparticle designs.

In the first example, we show that we can use machine learning
to find nanoparticle designs that are able to distribute and kill
large proportions of tumour mass, while keeping dosage low.
Overall, we find that high diffusion values (small nanoparticle
radius) and low binding affinity (high Kp) are most effective, and
that low nanoparticle concentration (tens of thousands of
nanoparticles) will suffice, provided their drug payload is in the
thousands (of molecules). This allows nanoparticles to both
penetrate the tumour, and avoid binding site barriers, as already
demonstrated in previous work'8. Alternatively, concentrations of
several million nanoparticles can also be effective, and require a
payload of only some several hundred drug molecules. The idea
that a high concentration of nanoparticles may lead to more
effective cancer treatments complements other work that
emphasises the importance of increasing nanoparticle dosage*?.

For the second example, consisting of a heterogeneous
tumour with cancer stem cells, we successfully find nanoparticle
designs that have high efficacy with low dosage. Again, we find
that the solutions tend towards designs with a high diffusion
coefficient (representing small nanoparticles), low binding
affinity (representing high disassociation constants), high nano-
particle concentration and a low number of drug molecules. This
indicates that successful nanoparticle treatments may be those
with a high concentration of nanoparticles and low drug loading,
as discussed above.

We also find an unexpected solution for the heterogeneous
tumour: relatively large nanoparticles with high binding affinity.
The diffusion coefficient and disassociation constant for these
nanoparticles are within the parameter ranges that were expected
to be unsuitable for nanoparticle designs, based on previous work
in ref. '8 Instead, this solution demonstrates that nanoparticles
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with low diffusion coefficient and high binding affinity are able to
successfully kill a high proportion of CCs, provided the total
number of nanoparticles that reach the tumour is high. This
reaffirms recent conclusions that the success of nanoparticle
treatments may be highly dose dependent*?. This strategy
requires a total dosage of 46 mg/kg for NP1, near to the assumed
upper limit of 55mg/kg, we note that this is based on the
assumption of systemic circulation and that only 1% will make it to
the tumour. For Doxil, it has been reported that the percentage
injected dose that is able to make it to the tumour can be as high
as 3.5%*3, which would reflect, using Eq. (2), a reduced dosage of
only 13 mg/kg. These findings, along with the design principles
described above, highlights that it is possible to obtain more
flexibility in nanoparticle design. Furthermore, our platform gives
specific nanoparticle parameter values which can then be tested.
Future work will look to synthesize nanoparticles that meet these
evolved parameters and test them within representative in vitro
environments.

In this paper, we present the first extension to homogeneous
cancer models through the inclusion of cancer stem cells. We note
that, both cancer de-differentiated and stem cells were assumed
to be homogeneous in both size and shape. This limitation can be
easily relaxed, with heterogeneous cells of any size, shape or type
included within the virtual tumour as input for the optimisation
routine. For example, stromal cells such as fibroblasts or cancer
cells with increased resistance can be included. The impact of
nanoparticle treatment can then be returned to the virtual tumour
to assess how treatment impacts tumour progression, based on
targeting some or all of these cell types. By adapting and
including further biological details into the virtual tumour and
nanoparticle properties, the EVONANO platform has the potential
to link to clinical data and to develop and evaluate potential
treatments before choosing a specific course of action for a
patient. Clinical data, such as histology samples or image results,
can be used to determine model parameters such as the cell
proliferation rate or tumour heterogeneity. Since all of the
processes in the virtual tumour and tissue module are based on
well-characterized physical laws, the time needed to set up the
virtual tumour simulation is not long as it amounts to setting up a
handful of pre-existing parameters from these data. The inclusion
of these data into the pipeline would be a significant step towards
the long sought-after objective of personalised (patient-specific)
medicine***,

In the future, we see several interesting avenues to extend
and apply the EVONANO platform. This includes investigating
the potential toxicity of nanocarriers and the role of the tumour
microenvironment, such as the pH. For example, recent work on
gold nanoparticles shows that gold carriers mostly remain in
fibroblast lysosomes where they slowly degrade*®. Given the
abundance of cancer-associated fibroblast (CAFs), up to 80% of
the tumour mass in pancreatic tumour?’, it is reasonable to
expect that most of the internalized gold carriers will remain
within the tumour cells. This highlights the fate of nanocarriers
within the tumour environment and the importance of
modelling the tumour stroma. Furthermore, in order to reach
clinical practice, nanocarriers need to pass rigorous regulatory
requirements, where several nanocarrier types, such as bio-
compatible PLA/PLGA (poly-lactic acid/poly-lactic-co-glycolic
acid) have been shown to be safe and non-toxic*®. Future work
will look at how these nanoparticle types can be implemented
in EVONANO and how these nanoparticles leave the tumour
and are then cleared, which is essentially the reverse problem
to the one studied here. We also intend to consider how the
acidity of the tumour microenvironment can change nanopar-
ticle dynamics of release. For example, the pH sensitivity of
drug delivery systems can be used for the rapid release of drugs
once nanocarriers extravasate out of blood vessels and
approach an acidic tumour environment. In this work, our
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Table 2. Description and values of optimum nanoparticle treatment parameters.
Symbol Description Unit Range Homogeneous Heterogeneous

Solution 1 Solution 1 Solution 2

NP1 NP1 NP2 NP1 NP2
D Diffusion coefficient cm?/s [10%10% 1x10°° 9.8x1077 64x1077 97x10°° 57x1077
ka Binding affinity 1/Ms [103, 10°] 700,000 217,000 117,000 8300 791,000
NPO Nanoparticle concentration Molecules  [10% 10°] 60,000 923,000 150,000 236,000 828,000
E Number of drug molecules per nanoparticle Molecules [10% 10%] 5000 400 2500 7600 1200
ID Dosage mg/kg [0.025, 55°] 7.8 9.4 9.0 46.4 259
r Nanoparticle radius nm 2.5 2.5 4.0 264 4.5
®The dosage is capped at 55 mg/kg to discount parameter values that lead to fatal treatments.

model deals only with the local tumour environment and, as
such, the pH-sensitive drug release can be indirectly modelled
via drug concentration. This is reflected in Table 2, where we
have tested a two-thousand-fold range of drug concentrations.
Finally, we note that Eq. (1) represents a simplified model of
nanoparticle—cell interactions, which ignores details such as the
exocytosis rate of nanoparticles from the cells, transendothelial
transport into the tumour, how retention rates affect nanopar-
ticle accumulation as well as how the rate of drug release from
the NPs can vary. Here, we choose this simplified model to act
as a baseline to demonstrate the EVONANO platform. Future
work will consider how to both extend and calibrate our model
to consider these effects.

One of the benefits of the modular design of the EVONANO
platform is that two powerful open-source-packages are used.
For example, STEPS is able to simulate stochastic pathways
across spatially discrete domains. These features allow for
simulating nanoparticle interactions with whole-cell models
where nanoparticle binding can be modelled at the resolution
of individual receptor types, and nanoparticle transport and
internalisation can be a function of cell cycle or the distribution
of nanoparticles within intracellular compartments, all of which
have been shown to impact nanoparticle treatment efficacy*~
51, Alternatively, extensions to the PhysiCell codebase allow for
increased complexity in tumour models. The vasculature
network added into PhysiCell allows us to more precisely
control the spatial effect of nanoparticle extravasation. This
could lead to the better parameterisation of nanoparticle
delivery to the tumour and enables simulation of the effect of
drugs that disrupt the vasculature network (such as the tumour
necrosis factor) or those that block vasculature growth factors
(for example, Bevacizumab, Cabozantinib, Pazopanib). These
aspects will be investigated in our future work. Alternatively,
nanoparticles can be introduced that, when binding together,
lead to larger particles with lower diffusion coefficients. Both of
these reflect realistic nanoparticle designs that have been
demonstrated in vitro®>°3, Finally, both PhysiCell and STEPS
supports SBML models. This means that both cell-based models,
nanoparticle signalling, and reaction networks can be devel-
oped, validated and shared between researchers to greater
increase standardisation within the field of nanomedicine>*.

By disconnecting the model of tissue-scale dynamics from
the virtual tumour (which includes the dynamics of hundreds of
thousands, if not millions, of individual cells), we decrease
computing time and allow for large parameter spaces to be
explored at the physio-chemically relevant scale for nanopar-
ticle design. In the future, we plan to use high-performance
computing to meet the computational needs of the EVONANO
platform. This will facilitate the development of personalised
treatments and will allow for the exploration of more
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computationally complex environments as well as novel and
emergent nanoparticle designs’°. Furthermore, we will
increase the level of parallelisation within each EVONANO
module to execute simulation processes simultaneously.

The richness that can be accessed through the inclusion of
nanoparticle-scale models also allows for downstream integra-
tion of molecular dynamics simulations. These simulations can,
for example, explore the influence of a drug’s chemical
properties on the NP coating, the dependency of binding
moieties on diffusion due to particle self-aggregation or the
formation of protein coronas®>™8 By including molecular
dynamics, specific rules for nanoparticle synthesis can be found
such as the number of binding ligands on the nanoparticle
surface. Furthermore, these simulations give another scale that
can be optimised, whereby machine intelligence applied at the
molecular scale learns overall impacts on tumour progression,
as mediated by the nanoparticle-cell interactions.

Finally, the EVONANO platform can be used to develop future
design principles that, when combined with high-throughput
testing, would give an integrated and calibrated tool for testing
the efficacy of proposed anti-cancer therapies. By including
data from in vitro tools, such as measuring the extravasation
properties of nanoparticles into tumour tissue, testing for
toxicity, the impact of the extracellular matrix on nanoparticle
transport dynamics, or the interactions of nanoparticles with
individual cells®*%', we can further improve nanoparticle
designs as well as perform testing for potential bottlenecks in
nanomedicine engineering.

We have presented EVONANO, a software platform for the
design and optimisation of anti-cancer nanomedicine. Our
open-source platform combines multiscale and modular simu-
lations with machine learning techniques, testing the properties
of both nanocarriers and treatments against biologically
relevant tissue scenarios, generated from an in silico virtual
tumour. We first demonstrate our platform by finding nano-
particle treatments that lead to the successful treatment of 95%
of cancer cells within the virtual tumour while minimising
dosage. We then introduce a second cell type, cancer stem cells,
into the virtual tumour and find parameters for a combined
treatment that successfully kills 99% of cancer cells and more
than 80% of cancer stem cells within the tumour tissue. The
platform addresses a significant clinical challenge in automa-
tically designing nanocarriers with appropriate transport
properties. Future work will concentrate on combining our
simulator with details from cell biology, molecular dynamic
simulations, and the validation and calibration of in silico results
with in vitro and in vivo data.
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METHODS
Virtual tumour module

To generate the virtual tumour, we use a modified version of the open-
source PhysiCell platform, a cross-platform agent-based modelling frame-
work for 2-D and 3-D multicellular simulations®®. Agent-based models
allow for high adaptability by modelling the interactions of individual
subunits (cells) which follow some system of rules and relevant dynamics.
PhysiCell combines two modelling approaches: agent-based at the
individual cell level and reaction-diffusion calculations for modelling
diffusing substrates®2 Each cancer cell is represented as individual agent
and agents are associated with a library of sub-models for simulating cell,
fluid, and solid volume changes, cycle progression, apoptosis, necrosis,
mechanics, and motility. Since PhysiCell only supports differentiated
cancer cells (CCs), we also modified its source code to include cancer stem
cells (CSCs) and vasculature growth, modelled as vessel points (VPs).

In this work, virtual tumours are initialised in PhysiCell with a single
cancer cell (CC) and then grown until they reach the size of ~500,000 CCs
at which point the simulation is stopped. When simulating the growth of a
tumour containing CSCs, we use pre-defined probabilities of division. We
found no reliable empirical data that describes the relative ratio of normal
CC division to dedifferentiation, so we used a fixed probability of 99.5%
(normal CC division) and 0.5% (dedifferentiation). CSC division can either
be asymmetric giving a generation of 1 CC and 1 CSC, or symmetric and
generating either 2 CSCs or 2 CCs. We set the probability of asymmetric
division of CSC to 99%. The symmetric division, with probability of 1%, is
further divided into 99% probability of creating 2 CSCs, and 1% of creating
2 CCs. We find that this distribution of probabilities leads to a virtual
tumour with ~1% of CSCs, which is consistent with experimental data®.
While the probabilities used above have not been calibrated to
experimental data, they are used to obtain simulated tumours with the
same observed percentages of CSCs as in ref. 3,

To model the vascular network, we rely on a discrete approach which
allows us to produce vascular networks of desired topologies. While it is
possible to include a higher fidelity model of the interaction between
nanoparticles and vascular flow such as a combination of computational
fluid dynamics and agent-based or Brownian particles modelling, we chose
an option that will minimally increase complexity of the pipeline. Therefore,
we implemented a simplified model of vasculature directly into the PhysiCell
by creating a new type of dividing agents with the following properties: they
secrete oxygen; they are not movable and cannot enter apoptosis and
necrosis; they are connected to each other apically. When dividing,
vasculature agents can keep or change spatial direction by inserting a
branching point. At the beginning of the simulation the following
parameters are set: the initial position of vasculature agents, the maximum
number of vasculature agents, and the frequency of branching.

PhysiCell also models diffusing substrates using a multi-substrate
diffusion solver, BioFVM, that divides the simulation domain into a
collection of non-intersecting voxels. BioFVM supports diffusion, decay,
cell-based secretions/uptake, and bulk supply/uptake functions for each
individual substrate and is used here to capture the diffusion of oxygen
and nutrients across the virtual tumour.

Virtual tissue module

We wuse the open-source package STEPS for simulating the
cell-nanoparticle interactions in the virtual tissue module®**=2 For the
virtual tissue module, the length, L, of each well-mixed compartment is
10 um. This reflects the mean diameter of many carcinomas, including
breast and lung carcinomas as well as travelling tumour cells®*%5, We note
that changes to cell sizes can be implemented in a straightforward
manner. Though we refer to the diameter of the cell, we assume that the
cells are axes-symmetric in both the virtual tumour and tissue module.
We ignore the influence of spatiality as introduced by the discretisation of
the domain into sub-volume elements (voxels) and consider penetration of
the nanoparticles linearly from the vessel point. We assume that drugs
diffusing out from the tumour slice would also diffuse laterally from
the neighbouring tissue. We note that recent work has shown that these
spatial assumptions do not make significant impact for high nanoparticle
concentration®”. We model interactions between nanoparticles and cells
using a stochastic Michaelis-Menten reaction network'843,

NP + R c 5 NP, + R )

where NPg is the free nanoparticles, R is the receptors on the cell
membrane, C is nanoparticle-receptor complexes, and NP; is internalised
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nanoparticles. We assume that nanoparticles are able to actively target
and bind to the receptors on CCs with binding rate, k,, to release from
receptors with dissociation rate kg, and to internalise according to
internalisation rate k. Nanoparticles move from neighbouring well-mixed
compartments with probability D/L? where D is the diffusion coefficient of
the nanoparticles and L is the compartment length. We also assume that
nanoparticles have uniform binding to cell receptors and will explore
alternate nanoparticle designs in future work.

To calculate the number of nanoparticles that are able to extravasate
into the tumour within an idealised murine model, NPO, we use

PIDS?L Na

NPO = IDW )
Vi ME’

2

where ID is the total injected dose of nanomedicine, W is the weight of the
mouse, PID is the percentage of the injected dose that reaches the tumour,
S is the characteristic length scale of the cell, L is the total required
penetration depth, V; is the volume of the tumour, M the molecular mass
of the nanoparticle payload, E the total number of payload molecules, and
N, is Avogadro’s constant. Parameter values are given in Table 2.

We assume that the cytotoxic effect of the nanoparticle is a function on
the total payload carried by the nanoparticle, such that the threshold of
nanoparticles required to induce cell death is given by

PS*Ni

NPmax = E (3)

where the potency, P, is chosen to be the IC90 of the anti-cancer drug (the
drug concentrations that achieve 90% growth inhibition of cancer cells)
and we assume that the properties of the drug are not altered by the
nanoparticle vector. Hence, altering E changes both the total dosage as
well as the threshold of nanoparticles required to kill a cell.

For all simulations, we assume that nanoparticles circulate for 48 h, that
there is a constant release of nanoparticles from vessel points and that 1%
of the injected dose will eventually extravasate into the tumour.
Furthermore, we choose to link the potency to the IC90 of the drug
rather than the IC50 or IC75 as we require the lethal levels of nanoparticles
needed to kill a cell, and where 1C90 is very close to that lethality point.
These assumptions (circulation time, release rate, percentage injected dose
that reaches the tumour and how we define potency) are based on
previously published results on the modelling of nanoparticle dynamics'®,
and serve as a baseline to demonstrate the platform. In future work, we
intend to examine these assumptions using a combination of in vitro and
in vivo methods and pass results into the EVONANO platform to further
improve nanoparticle design. When testing nanoparticle designs, we
adjust both the number of payload molecules per nanoparticle (E), as well
as the total number of nanoparticles within the treatment dose (NPO).
Altering both of these reflects changes to the total injected dose that is
administered to the mouse model.

Machine learning module

As a first instance, we used an evolutionary algorithm which operates as
follows: A population of randomly initialised individuals is produced, where
each individual represents one solution (group of parameters) defining the
functionality of the nanoparticles. These individuals are evaluated using
the virtual tissue module described above, with an appropriate score
assigned to each individual based on the proportion of cell types killed and
the overall drug dosage. The score represents the fitness of the individual
and is described in more detail below. Given the assigned fitness, the best
individuals are then selected through a tournament procedure and the
crossover operator is applied to produce offspring individuals. These
offspring individuals are then updated with the mutation operator and
represent the next generation of individuals. This population is evaluated
again to find a new fitness and the process repeated until a predetermined
number of generations has passed.

The parameters of the evolutionary algorithm are as follows: the search
space is initially four-dimensional (having four parameters to optimise), the
population size is P=20, the tournament size for replacement and
selection procedures is T= 2, while the mutation operator is applied with
probability of p = 0.2 and it alters one parameter with random step size of
s =[—5; 5]%. During the replacement process (with tournament size T=2),
one offspring solution is compared to one parent solution and the fittest of
them is added to the next generation. Finally, the evolution of the
population of individuals lasts for 100 generations.
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Generating nanocarrier test scenarios

To develop realistic scenarios for testing nanoparticle design, we create
tissue profiles using the virtual tumour, as shown in Fig. 2b-c. We first
calculate the minimum distance to VPs for all CCs and use this to find the
distance which would account for 95% of CCs being reached, given
maximum penetration. We find this to be ~220um, or the distance
of 22 cells, for both homogeneous and heterogeneous tumour scenarios,
shown in Fig. 2d. Similar penetrations depths have been highlighted in
experimental work by Jain and Stylianopoulos®®.

Having calculated the necessary penetration distance required for
maximal nanoparticle coverage, we then create simple scenarios consist-
ing of 22 cells, generated from the PhysiCell simulations. We first randomly
choose a VP from which we assume nanoparticles will release. We measure
a distance of 220 um from this VP, where we assume each cell is 10 um.
This distance, which represents the necessary penetration distance that
nanoparticles are required to cover, is split into compartments of cubic
compartments of length 10 um. The cell type within this compartment
reflects the PhysiCell cell definition, such as VP, CC, CSC. In this work, we
specify regions without cells as extracellular matrix (ECM). These 22 cells,
spanning 220 um, constitute a test scenario for nanoparticle design which
is then passed to the tissue module of EVONANO. Examples of both cell
sampling and resulting scenarios are given in Fig. 2e, f.

Using the process described above, we generate 100 representative
tissue-scale scenarios which are used for optimising nanoparticle design.
However, in some scenarios, such as where multiple VPs are present,
nanoparticle designs can become sufficiently under-constrained such that
solutions have a misleadingly high fitness. As a result, we also choose a
single scenario that represents the ‘worst-case’ scenario. For the
homogeneous case, this is one VP and 22 CCs without any ECM or
additional VPs. For the heterogeneous case, we first run the machine
learning module on randomly selected tissue-scale scenarios before
identifying which scenarios consistently had lower fitness than other
scenarios. We specify these scenarios as the heterogeneous ‘worst-case’
scenario. We found these to be a VP with 20 CCs and 2 CSCs, where the
first CSC is 140 pm from the VP and the second CSC is 180 pm from the VP.
The fitness for this scenario was lower than other scenarios due to the high
number of CSCs and because the CSCs were located further away from the
VP than other scenarios. After finding an optimum solution using either
random sampling or the ‘worst-case’ scenario, we then evaluated the
solution on all 100 generated scenarios.

Optimising nanoparticle-based treatments

We first consider the homogeneous case, where the tumour contains only
cancer cells (CCs) and where we aim to find nanoparticle designs that
cover the largest volume of the tumour and kill the highest proportion of
CCs while keeping dosage low.

To grade the success of nanoparticle designs, we calculate the
maximum number of nanoparticles that a cell can internalise before cell
death is triggered. This is a function of the number of drug molecules, E,
carried by the nanoparticle, given in Eq. (3). To demonstrate our methods,
we consider nanoparticles that are loaded with Doxorubicin, a well-known
and relatively common anti-cancer drug. We assume an 1C90 of
Doxorubicin to be 10 uM® and that the nanoparticles can carry between
100 and 10,000 drug molecules. This corresponds to a maximum lethal
dose, per cell, of between 600 and 60,000 nanoparticles. We include large
ranges to allow for the machine learning module to search through the
state space in order to find an optimal solution. In this work, we make
several critical simplifying assumptions, such as constant rate of
extravasation, a fixed percentage injected dose, that nanoparticles
circulate for 48 h regardless of their size or binding affinity and we link
the potency of the treatment to the IC90 of the drug (the drug
concentrations that achieve 90% growth inhibition of cancer cells). We
make many of these assumptions as they represent a worst-case scenario
for nanoparticle transport. Future work will investigate the extent to which
these assumptions can be relaxed.

Here, we look to optimise two nanoparticle-specific parameters; the
diffusion coefficient (D) and the binding affinity (k,), relating to the
respective size and, for example, a nanoparticle targeting ligand that is
agnostic to cell type. We consider the diffusion coefficient, D, to be in the
range of 1078 to 107%cm?/s. Using the Stokes-Einstein equation”® and
assuming biologically realistic values for the viscosity of the surrounding
medium, this reflects a range of 10 nm to 1 um sized nanoparticles. We
vary the binding affinity, k, of 10 to 10° (Ms)~', while keeping
disassociation rate, kg, and internalisation rate, k;, for particles fixed at
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10~* and 10~°s7", respectively. This relates to a disassociation constant,
Kp = ka/k,, of between 10~" and 10% nM.

We also consider the influence of two treatment-specific parameters,
the concentration of nanoparticles within the treatment dose as well as the
number of molecules per nanoparticle. As described above, we assume
that extravasation rates are equal across all VPs, such that scenarios with
additional VPs will have a linear increase in the total number of
nanoparticles released. The change in concentration of nanoparticles will
result in a different number of nanoparticles being released from the VPs.
We explore nanoparticle concentration within the range of 10,000 to 1
million nanoparticles, which we assume circulates for 48 h and that 1% of
the nanoparticles reach the tumour. We also assume that nanoparticles
can carry between 100 and 10,000 drug molecules, giving an upper and
lower bound for dosage of 0.025 to 250 mg/kg, calculated using Eq. (2).
However, dosages higher than 55mg/kg of Doxorubicin have been
reported to lead to toxic effects in mice”". As a result, we do not evaluate
any parameter solutions that result in dosage higher than 55 mg/kg.

Finally, given the test scenarios and parameters above, we use the
machine learning module to optimise nanoparticle design. The fitness of
each individual parameter set for each test scenario is calculated as the
proportion of cancer cells killed minus the total dosage,

. cc .

Fitness = e (dosage constraint) @
where CC is the number of killed cancer cells and NCC is the total number
of cancer cells before treatment. We normalize the dosage constraint by
dividing the dosage with the maximum possible dosage (set at 55 mg/kg
as described above). By doing so, we have an intuitive way of
understanding changes in the fitness where dosages close to the
maximum will offset a nanoparticle treatment which kills all cells.
Alternatively, a very low dosage will offer less constraint. We chose this
normalization to account for the fact that any dosage will have some cost
penalty attached to it, even at very low concentrations. Hence, a higher
fitness represents both more cancer cells killed and a lower overall dosage.
The average fitness is then calculated across all 5 scenarios. We also test
the importance of the efficacy term (CC/NCC) by introducing a weighting
factor, w, that biases the machine learning towards higher efficacy, where
w=1, 2, 5, 10. We run the optimisation routine three times for each
different weight and either by randomly selecting five scenarios and taking
the average fitness or using the single ‘worst-case’ scenario.

We have method the scenario of optimising nanoparticle transport into
a homogeneous tumour in which there is only one cancer cell type which
has shared features across the tumour. These CCs have no difference in
their differentiation and are assumed to be equally relevant targets for
nanocarriers. We next generate a heterogeneous virtual tumour which
contains both cancer cells and cancer stem cells (CSCs) and then optimise
nanoparticles that are lethal to specific cell types.

To compare optimisation across the two virtual tumours populations,
both homogeneous and heterogeneous, we keep optimisation parameters
the same. We are interested in altering the diffusion and binding
coefficient of the nanoparticles as well as the initial concentration and
drug payload for two nanoparticle types, where lethality of both
nanoparticles depends on cell type. We assume that cell death of CCs is
triggered only beyond a threshold of internalised NP1s (CC-specific
nanoparticles), while cell death of CSCs occurs only beyond a threshold of
internalised NP2s (CSC-specific nanoparticles). These CSC-specific nano-
particles are supported by work reported in, for example, ref. 72, As before,
we model both nanoparticle properties on Doxorubicin, such as the drug
molecular mass and IC90 but note that other nanoparticle-drug models
can be used.

We now optimise an 8-dimension parameter space, in which we alter
the diffusion coefficient, binding affinity, nanoparticle concentration and
number of drug molecules for each of the nanoparticles but where we do
not assume cell-specific properties other than the number of nanoparticles
required to induce cell death.

We use the same evolutionary algorithm as before, but now with
adapted fitness function,

) cc  csC .

Fitness = W(NCC + NCSC> (dosage constraint) (5)
where CSC is the number of killed cancer stem cells and NCSC is the total
number of cancer stem cells before treatment within a scenario. We again
explore the importance of drug efficacy but consider the combined
efficacy for both CCs and CSCs, (CC/NCC + CSC/NCSC). We run the
optimisation routine three times, taking the average fitness calculated

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



across 5 randomly selected scenarios within one generation, or using the
‘worst-case’ scenario, and use the same weighting factors as above, namely
w=1,2510.
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