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The diameters of single-walled carbon nanotubes (SWCNTs) are directly related to their electronic properties, making diameter
control highly desirable for a number of applications. Here we utilized a machine learning planner based on the Expected
Improvement decision policy that mapped regions where growth was feasible vs. not feasible and further optimized synthesis
conditions to selectively grow SWCNTs within a narrow diameter range. We maximized two ranges corresponding to Raman radial
breathing mode frequencies around 265 and 225 cm~' (SWCNT diameters around 0.92 and 1.06 nm, respectively), and our planner
found optimal synthesis conditions within a hundred experiments. Extensive post-growth characterization showed high selectivity
in the optimized growth experiments compared to the unoptimized growth experiments. Remarkably, our planner revealed
significantly different synthesis conditions for maximizing the two diameter ranges in spite of their relative closeness. Our study
shows the promise for machine learning-driven diameter optimization and paves the way towards chirality-controlled SWCNT

growth.
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INTRODUCTION

The utilization of single-walled carbon nanotubes (SWCNTs) in a
wide range of applications, including “Beyond Moore's Law”
computing', hinges on our ability to control their physical
properties>. A key property is the tube diameter, which is
intimately related to its electronic properties®, making diameter
control of SWCNTs important for semiconducting device applica-
tions®. In addition, control over SWCNT diameters is desirable for
applications such as molecular transport®>, membranes®, field
emission’, and sensing®. To date, there are many published
reports on diameter-controlled growth of SWCNTs by chemical
vapor deposition (CVD), the most popular synthesis method. As
the SWCNT diameter is defined primarily by the size of the catalyst
particle®°, most of these reports focus on synthesis from catalysts
with defined sizes or compositions'''6, Other reported alter-
natives for controlling SWCNT diameters involve careful selection
of the growth substrates'”'® and manipulation of the type and
amount of hydrocarbon feedstocks'®-%2,

A major drawback of trying to control particle shape and size
during CVD growth is the inherent difficulty in mitigating several
competing effects that occur at high growth temperatures
(typically 600-900 °C). These effects include diffusion of particles
on and into the substrate, and particle coarsening?-2>, which
result in the broadening of the particle size distributions and,
consequently, SWCNT diameters. One way to reduce these effects
is to lower the growth temperature or develop schemes to
immobilize the particles, and such methods have had limited
success, although often at the cost of a decrease in yield?®. On the
other hand, manipulation of the hydrocarbon feedstock can lead
to contrary results, owing to the wide range of feedstocks used for
growth?’. For example, higher amounts of hydrocarbon precursors
such as ethane, ethylene, and methane result in larger tube
diameters'?222, whereas others such as CO result in smaller
diameters?2, These effects are further complicated with the
inclusion of additives such as NHs;, H,O, or CO,, which can

increase or decrease the average diameter of the SWCNTSs through
etching or selective catalyst particle deactivation?®-3°,

The precursors and additives used in CVD can be classified as
catalyst reducing (e.g., hydrocarbons and CO) or catalyst oxidizing
(H,0O and CO,). The conflicting results published in the literature
suggest that the SWCNT diameter could be tuned by balancing
the ratios of reductants and oxidants, in addition to altering the
synthesis temperature. Unfortunately, the few systematic studies
reported so far have been restricted to the influence of only one
or two growth parameters?’3'. Here we considered three
synthesis parameters, namely temperature and the amounts
(partial pressures) of reductants (ethylene, acetylene, and hydro-
gen) and oxidants (CO, and system water vapor) to tune the
growth of SWCNTSs with diameters in a narrow range. We achieved
this by employing a machine learning (ML) planner to optimize
diameter-selective growth of SWCNTs from a 1 nm-thick cobalt
catalyst film.

ML algorithms are increasingly being utilized in materials
research and can optimize a variety of processes?—3%, We have
also previously used ML (random forest and Bayesian optimiza-
tion) to optimize the average growth rate and the yield of SWCNTs
using in situ Raman spectroscopy as the feedback method3°4,
Here we focused on optimization of the selective growth of small-
diameter carbon nanotubes (CNTs) through their diameter-
dependent low-frequency Raman radial breathing modes (RBMs).
An ML planner based on the Expected Improvement (El) decision
policy was used to map the growth parameter phase spaces for
maximizing the intensities of two RBMs at 225 and 265cm™,
which correspond to SWCNT diameters around 1.06 and 0.91 nm,
respectively. Analysis of the RBM distributions with four laser
excitation wavelengths showed that roughly a third of the
SWCNTs in the optimized experiments lie in the desired diameter
range. Notably, the growth parameter space for maximizing the
intensities of these two RBMs was significantly different in spite of
their closeness in diameters. Our results show that it is indeed
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possible to use ML to control SWCNT diameter and point the path
forward towards scaled and selective synthesis of diameter-
controlled CNTs.

RESULTS AND DISCUSSION
SWCNT growth

The SWCNT growth experiments were performed in ARES™
(Autonomous Research System), an automated high-throughput
laser-induced cold-wall CVD system coupled to a Raman spectro-
meter (experimental details in the “Methods” section)®. In the
past, ARES has provided insights into chiral angle-dependent
growth rates and defects in SWCNTs*'#2, optimal phase spaces for
CNT growth**%, new alloy catalyst compositions for SWCNT
growth?’, and into defect evolution in two-dimensional materi-
als*®>1. Here we grew SWCNTs from a 1nm Co catalyst film
deposited using ion beam sputtering onto 10 nm Al,0O3-coated Si
micropillars. We used ethylene and acetylene as the hydrocarbon
source. It is noteworthy that both ethylene and acetylene can
reduce the catalyst film, and are therefore considered reductant
species®. Along with the hydrocarbons, we used hydrogen as an
additional reductant and CO, as the oxidant. We also measured
the base water vapor pressure in the system, which was <1 p.p.m.
The growth temperatures and pressures ranged between 500 and
900°C, and between 2 and 50 Torr, respectively. Under these
conditions, we typically grow SWCNTs in the form of bundled
mats*!*3=%5, Supplementary Fig. 1 shows a representative scan-
ning electron microscope image of the SWCNTs.

Figure 1 shows a Raman spectrum in the low-frequency RBM
range, collected from one of our typical growth experiments,
which was not optimized for SWCNT diameter selectivity. This
spectrum was collected post growth in ARES, with an excitation
wavelength of 532 nm. At least four distinct RBMs at 162, 189, 225,
and 265cm™' can be identified in the spectrum. The Raman
spectrum is plotted beneath the so-called Kataura plot>, which
maps the electronic transition energies of each SWCNT as a
function of its diameter (top horizontal axis in Fig. 1, calculated
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Fig. 1 Radial breathing modes matched to SWCNT chiral indices.
Bottom: representative Raman spectrum in the low-frequency RBM
range from a typical non-optimized growth experiment in ARES
(laser excitation at 532 nm). Top: Kataura plot showing the possible
matches for SWCNTs (solid red data points) within the chosen
frequency ranges (shaded areas). There are three matches for the
RBM at 225cm~' and two for the 265cm~' peak. The dashed
horizontal lines in the Kataura plot represent the resonance window
(£ 0.1 eV) for the SWCNTs.
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according to the relation wggm = 235.9/d; + 5.5°%, where d, and

wgpw are the diameter and RBM frequency, respectively). The
Raman intensity of a SWCNT is enhanced when it is in resonance,
i.e., when the excitation laser energy (denoted in the top panel in
Fig. 1 by the solid horizontal line and is 2.33eV in our ARES
experiments) is close to one of the electronic transition energies of
the SWCNT>®, The resonance-enhanced intensity occurs over an
energy window of +0.1 eV, indicated by the two dashed horizontal
lines in Fig. 1. Thus, all nanotubes within the window can appear
in the spectrum.

By comparing the experimental Raman spectrum to the Kataura
plot, we see that the RBM at 225 cm ™' can be matched to one of
three SWCNTSs of (n,m) chiralities: (11,5), (12,3), and (9,6), which are
within a frequency range of 225 +20cm™', whereas the number
of matches for the RBM at 265 cm™"' is lower—(8,5) or (9,3). The
number of matches for the RBM at 189 cm™"' is higher—(14,4),
(13,6), (15,2), or (16,0)—and there are many possible matches for
the RBM at 162cm~'. Owing to the lower number of possible
matches, in this study we chose to maximize the growth of
SWCNTs with RBMs in the range of 265+10cm~' (diameter
0.91+0.4nm) and 225 +20cm~" (diameter 1.07 +0.11 nm), here-
after referred to as RBMs at 265 and 225 cm™', respectively.

Support vector machine-constrained El policy

The campaign’s objective was to identify optimal CNT synthesis
conditions that achieve two scientific goals, namely maximizing
the number of SWCNTs of a particular diameter and selectively
minimizing the synthesis of different-diameter SWCNTs. To
achieve this, we framed the experimental parameter search as
an optimization of a scalar objective function (OF) that considers
the two goals described above and used a constrained version of
the El policy to select experiments. The policy was additionally
constrained by a feasible set of synthesis conditions dynamically
learned using a support vector machine (SVM) classifier in an
attempt to explicitly avoid low OF values, which is an augmenta-
tion of the natural balance that El achieves.

The desired outcome of our experiments was diameter
selectivity and optimal yield. To measure how well this was
achieved for SWCNTs synthesized with growth conditions x, we
considered a scalar utility OF

(%) 1 A
T+ exp[-pE-a)] B-A
where A is the area under the Raman curve for a particular RBM
peak of interest (i.e., 265+ 10 or 225+20cm~") and B is the area
under the broader RBM spectrum region (100-350cm™"). The
non-dimensionalized quantity A/(B — A) measures selectivity of
peaks of interest with respect to the rest of the broader region. We
treated both A and B as functions of the synthesis parameters x. A
prefactor was incorporated with the OF to diminish the value for
cases where the signal-to-background for A was low. The
selectivity was balanced by the sigmoidal prefactor, taking values
between 0 and 1. This depended on the absolute size of the peak
A and its value was near 1 if the normalized quantity g surpassed a
predefined threshold a, which was set to 100 counts. In Eq. (1), 0
was set to the background level of the Raman spectrum, whereas
the inverse length-scale parameter 8= 1/10 (counts™") deter-
mined how fast the prefactor scaled from 0 to 1 for values g near
the threshold a (further discussion on these model hyperpara-
meters is presented in Supplementary Section 1). Although we
have selected to fix the values based on visual inspection of the
rankings the OF produced, these and other hyperparameters
could be alternatively optimized through maximum likelihood
optimization.
Five experimental inputs x were used, including the partial
pressures of the reductants (ethylene, acetylene, and hydrogen),
oxidants (water vapor and carbon dioxide), and the growth

m
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temperature. As mentioned above, water vapor was found in trace
amounts in our system (<1 p.p.m.) and was also accounted for in
our partial pressure calculations. We have previously shown that
the growth of SWCNTs is heavily mediated by a balance of two
reduced order parameters forming the input vector z, which is
derived from such experimental inputs x: (1) temperature itself
and (2) the ratio between the partial pressures of reducing and
oxidizing species (pressure ratio)®®. By combining the partial
pressures of all the active precursors into a ratio of reductants over
oxidants (hereafter called the pressure ratio), we were able to
parse the growth results in terms of a reduced two-dimensional
space (temperature vs. pressure ratio). These two features could
therefore be used to determine whether SWCNTs grew on a
catalyst nanoparticle or whether oxidation effects prevented such
growth outright. Moreover, the critical region of growth could be
delineated in this reduced-dimensional space such that the
transition from the feasible “growth” phase to the infeasible “no-
growth” phase was sharp. Throughout the campaign, we assumed
that the location of this phase boundary in the reduced-
dimensional space was unknown a priori, and that planned
experiments had to be selected and run, to learn the true feasible
region in addition to the primary goal of discovering optimal
synthesis. Typically, phase-change phenomena leading to abrupt
differences in experimental responses due to varying synthesis
conditions across phase boundaries may not be properly modeled
using Gaussian processes®’, because they often presume smooth-
ness in the functions they model. Thus, avoiding such “no-growth”
experiments and data lying on the phase boundary itself can help
train models in which such smoothness constraints are fully
satisfied by the data properly inside the “growth” region, far from
the “no-growth” region. Hence, when deciding what experiments
to run, our planner avoided suggesting synthesis conditions x that
mapped z =h(x) to the low-dimensional features z lying
in the as-predicted “no-growth” region of the reduced-
dimensional space.

To model the phase boundary in the reduced-dimensional
space, we used a kernel SVM classifier and automatically labeled
the experimental data into “growth” or “no-growth” classes using
a thresholding parameter applied to the observed OF values. That
is, given the experimental data (x,f(x)), we trained the kernel

SVM classifier on the data (h(X), X¢)>f, )+ Where Xeposr,, 1S @n
indicator function
1 if f(x) > fin,
= i 2
K>t {71 if £(%)<Frin. @

We used the squared-exponential SVM kernel and a threshold
value of fy,in = 0.01 (arbitrary units).

Given a data set of n experimental inputs x and the
corresponding observed (and presumed noisy) OF responses
f(x), we formed a Gaussian process Bayesian belief GP(u",5"),
where p"(x) is the time-n prediction of the true OF and Z"(x, x/) is
the corresponding covariance function that provided the pre-
dicted statistical relationship between the OF function values at
pairs of inputs x and x/. This Gaussian process belief was used for
the El decision-making policy (discussed in greater detail in
section Supplementary Section 2)°8, which attempted to select the
next experiment to run with the goal of balancing between
resolving uncertainties in the prediction of the OF (called
exploration) vs. focusing on promising regions of the response,
based on current beliefs (exploitation). Such a balance between
exploration and exploitation must be maintained in iterative,
closed-loop experimental campaigns due to the lack of data
available for most campaigns. Initial beliefs, which are based on a
limited set of seed data, may have inaccurate predictions.
Therefore, it would be premature to trust such predictions, in
particular optimal regions delineated by such predictions. Con-
versely, the campaign had a specific optimization objective and so
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a limited experimental budget should not be wasted in generic
learning of the response in order to build a globally accurate
surrogate model. This balance was captured by the El policy
acquisition function Acq(x), which evaluated potential experi-
ments to run next according to a predefined measure of the
explorative and exploitative value of running the experiment. The
policy selected the next experiment as the one that maximized
Acq(x), subject to the constraint that the experimental inputs
mapped to the feasible region in z-space predicted by the SVM
classifier. That is, the policy selected an experiment by solving the
constrained optimization

x* = Acq(x), (3)

where X" was the set of synthesis conditions x such that z = h(x)
was predicted to be in the “growth” region by an SVM classifier
trained on the n available data points. If the training data does not
contain examples of both growth and no-growth experiments,
which is typical early in the campaign, the feasible set is simply
defined to be the entire domain and the optimization of the
acquisition function is unconstrained. Supplementary Fig. 2 shows
the evolution of the SVM decision boundary over the first 25
experiments and demonstrates the fact that the SVM is only
trained and used to constrain the optimization after 10
experiments.

Maximization of the 265 and 225 cm~' RBMs

Our first target was to maximize the growth of SWCNTs with RBMs
around 265 cm~". Three initial seed growth experiments were
conducted in ARES, with growth conditions selected such that
they corresponded to our typical experiments as published
previously®°. Including the three seed experiments, we performed
a total of 74 growth experiments. Most of the experiments
selected by the planner used the El policy (learning mode).
Exploitation experiments were selected every four to five
experiments (exploitation mode) to track the evolution of the
estimated best growth conditions. Following each growth
experiment, a Raman spectrum was collected at room tempera-
ture with a minimal laser power of 0.2 W and 30 s acquisition time.
The low-frequency RBM regions between 100 and 350cm™" in
these post-growth spectra were fitted with Lorentzian peaks (an
example of a fitted spectrum in the RBM range is shown in
Supplementary Fig. 3), enabling the calculation of the quantities A
and B, and the OF as described above.

The results of all the growth experiments maximizing the area
of the 265 cm™" RBM peak are plotted in Fig. 2a, which shows a
heat map of the OF against the growth temperature and the
pressure ratio (partial pressures of reductants/oxidants). It is clear
from Fig. 2a that the experimental conditions that maximized the
265 cm~' RBM peak were confined to a relatively narrow range
(indicated by the red dashed ellipse in Fig. 2a). These conditions
corresponded to an average growth temperature around 700 °C
and oxidizing conditions (pressure ratio ~0.015). Figure 2b shows
a Raman spectrum collected post growth from a growth
experiment corresponding to the highest OF (0.33). It is interesting
to note that even for the highest OF, there are two RBMs observed
in the spectrum—at 225 and 265 cm™".

Next, we performed 41 additional experiments to maximize the
area of the RBM at 225cm™' and the result of these growth
experiments is shown in Fig. 2c. The post-growth Raman spectrum
corresponding to the highest OF is shown in Fig. 2d. Comparing
the data in Figs. 23, ¢, it is immediately apparent that the optimal
temperature and the pressure ratios were different for the two
RBMs. Unlike the case for the 265cm™' peak, the growth
conditions that maximized the 225cm™' peak were more
reducing (ratio of reductant/oxidant pressures around 1) and at
higher temperatures (average growth temperature ~800 °C). The
differences between the data presented in Fig. 2a, c are
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Fig.2 Map of the reduced dimensionality synthesis space. Temperature vs. pressure ratio for maximizing the areas of the RBM peak at a 265
and ¢ 225 cm~'. The circled areas in a and c correspond to the synthesis parameters that produced the highest objective functions (OFs). Post-
growth Raman spectra (collected in ARES with 532 nm excitation) showing the low-frequency RBMs and the G band regions for growth
experiments that exhibited the highest OF values for RBMs at b 265 and d 225 cm ™', respectively.

remarkable considering that the diameters of the SWCNTs
corresponding to these two RBMs, namely 225 and 265cm™",
are very close, ~1.06 and 0.91 nm, respectively. The observation of
totally different synthesis parameters for maximizing SWCNTs with
similar diameters highlights the power of our El decision policy
planner, which produced these results in under a hundred
experiments. Such a result would normally have taken over
several months to produce with traditional synthesis methods,
whereas the ARES growth experiments were performed over a
couple of weeks.

To map the chiral distribution of SWCNTs in the optimized
growth experiments, we performed additional characterization of
the RBMs using multi-excitation Raman spectroscopy in a
Renishaw inVia Raman system. For this, we used three other laser
excitations—514.5, 633, and 785 nm; these three laser excitations
cover the majority of SWCNTs with respect to their electronic
transition energies and are commonly used for characterizing
SWCNT populations using resonance Raman spectra®>®. Two-
dimensional Raman spectral maps were collected on a number of
ARES micropillars (11 % 11 um areas with 1 um spacing between
points) and the average spectrum from each map was obtained.
To emphasize the effectiveness of our planner, in Fig. 3a, b we
show average multi-excitation Raman spectra corresponding to
optimization of the 265cm~' RBM peak with a high (OF =0.33)
and low (OF =0.03) OF, respectively. Additional multi-excitation
Raman spectra from other experiments are shown in Supplemen-
tary Fig. 4. All spectra in the RBM region in Fig. 3a, b were
normalized with respect to the highest intensity peak within the
RBM frequency range (100-320 cm™"). The vertical dashed lines in
Fig. 3a, b correspond to the RBM range targeted in our
experiments: 255-275cm™".

A number of observations can be made from Fig. 3a. First, all
the spectra contain more than one RBM. Second, the spectrum
collected with only one of the excitations—514.5 m—contains a

predominant peak at 265cm~'. The multi-excitation Raman

spectra show that most of the RBMs lie within a relatively narrow
range of frequencies (~220—280cm™"), corresponding to a
diameter range between 0.86 and 1.1 nm. This range is slightly
wider than the range requested in the ARES optimization
experiments —0.91 £ 0.04 nm. In contrast, there is no prominent
peak at 265 cm™! for the growth experiment that exhibited a low
OF (0.03, Fig. 3b); in fact, all the RBMs appear at lower frequencies,
indicating that poor optimization (low OF values) resulted in the
growth of larger diameter SWCNTs.

To get a clearer idea of the chiral distribution of these SWCNTs,
we recast the data from Fig. 3a, b onto the Kataura plots in Fig. 3¢,
d, where the relative intensities of the peaks in Fig. 3a, b are
reflected in the size of the circular data points. We note that the
data in these Kataura plots do not show the actual abundance of
the chiral distribution, owing to the difficulty in estimating
accurate SWCNT densities from the bundled mats on the surface
of the Si micropillar. Rather, we show these plots for the purpose
of visualizing the average chiral distributions as obtained from the
multi-excitation Raman spectra. It is immediately apparent from
Fig. 3¢, d that we grew both semiconducting and metallic
SWCNTs, indicating that there is no preference for conducting
type in both populations. Moreover, a tally of all the RBMs by
conducting type results in a semiconducting to metallic SWCNT
ratio of 65:35, similar to what is commonly observed in
ensembles of CVD-grown SWCNTs>>. The highlighted rectangular
boxes in Fig. 3¢, d denote regions with the highest RBM peak
intensities and the sharp contrast between the high and low OF
can be seen clearly in the overlap (or lack thereof) between the
highlighted box and the vertical dashed lines indicating the
targeted RBM range.

The results presented in Fig. 3a-d can be compared to the
Raman spectra collected from the campaign of experiments to
maximize the 225 cm~' RBM peak. The multi-excitation spectra for
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Fig.3 Multi-excitation Raman spectra. Average Raman spectra in the RBM region from the growth experiments exhibiting high and low OFs
for optimization of the a, b 265 cm~" and e, f 225 cm ' RBM peaks, respectively. The asterisks indicate the second-order peak from the silicon
substrate. ¢, d, g, h The peak intensities of the spectra in a, b, e, f respectively, plotted on a Kataura plot and showing the average SWCNT
chiral distribution. The red circles and blue triangles in the Kataura plot indicate metallic and semiconducting SWCNTSs, respectively. The
dashed vertical lines in the graphs indicate the RBM frequency ranges targeted by the planner (i.e, 255-275 and 205-245cm~") and the
highlighted boxes in ¢, d, g, h show regions with the most intense RBMs. The good overlaps between the highlighted boxes and the dashed
vertical lines in ¢ and g show a higher degree of diameter selectivity in the experiments that exhibited a high OF.

experiments that exhibited high and low OFs are shown in Fig. 3e,
f, and the corresponding Kataura plots in Fig. 3g, h. Similar to the
case of the 265cm~' RBM, the data in Fig. 3e reveals high-
intensity RBMs close to 225 cm™’, indicating a narrow diameter
distribution. The corresponding Kataura plot in Fig. 3f shows that
the high-intensity RBMs correspond to SWCNTs with diameters
that range between 1.05 and 1.35 nm. However, the big difference
between the high and low OF growths in the case of the 225 cm™!
RBM campaign is the much wider SWCNT diameter distribution in
the growths with low OF. This can be seen clearly in the larger size
of the shaded rectangle in Fig. 3h.

By analyzing the intensities of the RBMs in the multi-excitation
Raman spectra for the two growths that exhibited high OFs (Fig.
3a, e for RBMs at 265 and 225 cm™, respectively), we found that
~31% of the total RBM intensity was in the range 265+ 10cm™". If
we expanded the range to 220-280cm™" (i.e.,, SWCNT diameters
ranging between 0.86 and 1.1 nm), the RBM intensities accounted
for ~71% of the total intensity between 100 and 350 cm™". This
trend is similar in the case of the 225 cm™' RBM: ~35% of the RBM
intensity lay between our selected range (225+20cm™") and
~63% if we expanded the range to 180-230cm™~".

As mentioned above and seen in Fig. 2a, ¢, the growth
conditions for the experiments that resulted in low and high OFs
were different. For the 265 cm™' RBM, temperatures for the high
and low OF experiments were 700 and 750°C, respectively,
whereas they were 820 and 830°C for the 225cm~' RBM.
Although the differences in temperatures could account for shifts
in SWCNT diameter distributions, it is likely that the results
presented in Fig. 3 were caused by the significantly different
pressure ratios between the high and low OF growth experiments.
For the growth experiments maximizing the 265 cm~' RBM, the
pressure ratios for the high and low OF experiments were 0.015
and 0.33, respectively, whereas these values were 1.08 and 0.009,
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respectively, for the 225cm~" RBM. The orders of magnitude
difference between the pressure ratios highlights the effectiveness
of tuning SWCNT diameter distributions through control over the
feed rates of the gaseous precursors.

SWCNT yield

Efforts to increase selectivity during SWCNT growth typically suffer
from a drop in the yield, owing to a variety of factors such as low
catalyst activities and difficulty in controlling the size and
morphology of a large number of particles during high-
temperature CVD growth?%. As mentioned above, in our experi-
ments we grew sparse SWCNT bundles on the ARES micropillars,
making it difficult to accurately estimate the growth yield through
counting or weight gain measurements. However, the overall
intensity of the SWCNT G band (Gnay), collected at the end of
each experiment in the post-growth Raman spectrum could be
used as a proxy for the yield. In order to see the effect of the
planner on the diameter selectivity and yield, the data in Fig. 2
were replotted by multiplying the OFs with the respective Gpay.
values (normalized by the intensity of the Si substrate peak at
520 cm™"). Figures 4a, b show the heat maps of the OF * Gax
against the growth temperatures and pressure ratios for growth
experiments maximizing RBMs at 265 and 225 cm™', respectively.
In the case of the 265 cm™' RBM, the high-yield area corresponds
to the same temperature and pressure ratios as the area that
exhibited high OFs or diameter-selective growth (Fig. 2a).
However, the highest yields for the 225cm~" RBM correspond
to different synthesis conditions compared to the regions of high
diameter selectivity. As discussed above, the 225 cm™" RBM was
maximized at a temperature of ~800°C and a pressure ratio
around 1 (Fig. 2c). When we take the SWCNT yields into account,
we see that the highest yields occur for more oxidizing conditions,
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for pressure ratios between 0.1 and 0.01. In fact, these partial
pressures are close to those for the 265cm~' RBM (~0.015, Fig.
2a). Multi-excitation Raman analysis of the RBMs showed that the
intensity of the 225c¢cm™" RBM (£20cm™") dropped down to
~26%. This result, and the differences in the pressure ratios shown
in Figs. 4b and 2c corroborate the inverse relationship between
yield and selectivity. However, importantly, our studies, enabled
by the exploration of a wide range of precursor pressures, show
that it is possible to find conditions in the synthesis phase space
leading to high diameter selectivity and high yields.

Exploration vs. exploitation analysis

To analyze the efficiency of the planner, in Fig. 5 we plot the OFs
over the course of the experimental campaigns to maximize the
265 and 225 cm™' RBMs. As mentioned previously, the first three
experiments of both campaigns were manually chosen seed
experiments and are indicated by the black data in Fig. 5.
Experiments conducted in exploration and exploitation modes are
indicated in Fig. 5 by blue and red data points, respectively.
Looking at the progression of the OF during the campaign to
maximize the RBM at 265 cm~! (bottom panel in Fig. 5), it is clear
that the highest OF was achieved in the 27th experiment in the
exploitation mode. The experiments that exhibited the highest
OFs are indicated by the arrows in Fig. 5. Other than one of the
experiments (#58), the OFs in the exploitation mode were also
consistently high, averaging 0.24+0.06 through the 74-
experiment campaign. The high OFs obtained in the exploitation
mode are not surprising considering that the planner chose the
temperature and pressure ratios such that they produced high OF
values based on the three seed experiments (average 0.16 + 0.08).
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However, it is interesting that the high OF values in both
experimental campaigns were greater than the OFs in the seed
experiments. On the other hand, not surprisingly, the experi-
mental conditions were chosen over a much wider range of
conditions in the learning mode, leading to a large variety in OF
values. Similar trends can be seen in the OF values for the other
experimental campaign to maximize the RBM at 225cm~' (top
panel in Fig. 5). Four experiments were conducted in the
exploitation mode, with an average OF around 0.88 +0.17; the
highest OF (1.12) was achieved in the tenth experiment.

There is a similar balance between exploration and exploitation
that occurs during the learning and utilization of the correct
growth vs. no-growth classifier. We note here that the decision-
making policy is attempting to solely optimize the OF. In
particular, we make no attempt in selecting experiments that
balance between this optimization and the learning of an optimal
classifier in the two-dimensional feature space. There are various
heuristics and approaches in attempting to augment the decision-
making procedure to accomplish this auxiliary learning, including
performing Bayesian optimization with unknown constraints®'
and a more generic framework called the Mean Objective Cost of
Uncertainty®?. In the present setting, however, the balance is
achieved in an emergent, albeit not necessarily optimal, manner.
Specifically, the choice of experiments in the growth region leads
to potential class imbalance favoring the “growth” classes. This
imbalance in turn leads to an overestimation of the growth region,
which may lead to the selection of no-growth experiments,
mitigating such an imbalance. The optimization of this balance
could potentially increase the effectiveness of this technique.
More broadly, the use of the SVM classifier in this data-limited
setting to specify feasible regions over which we make decisions
under uncertainty represents a mixture of Bayesian and frequen-
tist methods. This mixture merits further discussion, which we
have presented in Supplementary Section 3.

Simulations

To further explore this system, we performed statistical simulations
of subsequent experimental campaigns. Taking existing data
obtained from the growth experiments on the 1 nm Co catalyst,
we fitted a Gaussian process (GP) posterior belief f(x) ~
GP(u(x), Z(x,x)u(x),Z(x,x’)) on the observed OF values from
the data. From this belief, we sampled ground truths and by doing
so we obtained a family of sampled OFs f;(x), which were consistent
with existing experimental data. For each such sample of the ground
truth OF, we simulated an experimental campaign in a manner
identical to the physical campaigns outlined above. However, in
place of running an actual, physical experiment on ARES for a
selected set of experimental conditions x, we instead sampled a
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noisy observation f;(x) + W, where W is an additive noise term
drawn from a normal distribution with mean 0 and variance o%,.
Apart from using a statistically simulated experimental observation,
such simulated campaigns proceeded identically to their physical
analog on the ARES experiments, including the belief modeling,
decision-making policies, and the use of classification models to
define nonlinear feasible sets over which to optimize acquisition
functions of the decision-making policies in a constrained manner.
In particular, after n steps of the simulated campaign, we could
predict the optimal synthesis conditions x*" based on the n
simulated experimental data points available at the time. From this,
we calculated the sampled ground truth OF value at this predicted
optimum, y*" = f;,(x*"). As a measure of improvement, we then
compared this best value to the best observed value from the
existing experimental data set, y*9%, For every simulation we ran,
we calculated this difference to report a percent increase statistic:

D(n) — 100 % (y*An _ y*,data)/y*,data %

By running several simulations, we obtained distributions of this
statistics, allowing us to make inferences about average- and
extreme-case behavior to be expected from further simulations.

Such simulations allow us to therefore study the impact of
various modeling or policy choices on the effectiveness of a
closed-loop campaign. As a first study, we ran simulated
campaigns to consider the effectiveness of the El policy compared
to a Pure Exploration policy that simply selects a feasible synthesis
condition uniformly at random, and the Maximum Variance policy,
which selects the experiment whose predicted OF has highest
uncertainty, which is often used for Active Learning campaigns.
We also considered the Upper Confidence Bound (UCB) policy,
which selects experiments that maximize an optimistic estimate of
the OF response given by an upper confidence bound®. For all
policies, we ran 100 simulated campaigns each, sampling a
different ground truth OF value for each campaign, followed by
calculation of the D(n) statistic. Figure 6a shows the median values
of D(n) vs. n for both the El and Exploration policies, calculated
over the 100 simulated campaigns. In addition, shaded regions
indicating the 25th and 75th percentiles are shown. The figure
indicates that the El policy will, on average, result in a 13%
increase of the best observed value over 20 experiments, with a
spread of between 2% and 30% increase observed over the
simulations. In contrast, pure exploration policies do not improve
over an initial 3-4% increase, with a spread between 12% increase
and a 6% decrease of the predicted best value observed over the
simulations. We observe a similar performance from the maximum
variance policy. Here, such a decrease would suggest campaigns
in which, due to noisy observations of the sampled ground truth,
an inaccurate belief of the ground truth results in a predicted best
synthesis condition x*" whose corresponding ground truth value
y*" =f;(x*") actually vyields poor performance. From these
simulations, we see that the El policy does outperform pure
exploration, i.e.,, random sampling. The UCB policy performs the
best overall. Interestingly, the UCB policy is a policy typically used
for the multi-armed bandit problem, within which we wish to
optimize the cumulative rewards (here, the sum of observed OF
values) obtained throughout a campaign. Due to this, the policy,
although attempting to balance between exploration and
exploitation, more heavily favors the former, suggesting enough
experiments are present for the campaign to transition more
heavily to exploitation, even more than the natural balance
present in the El algorithm.

For another simulation study, we considered the impact of
constraining experimental suggestions to a predicted feasible set
on the campaign performance. Specifically, recall that an SVM
classifier was trained on experimental data that was projected to
the two-dimensional space of temperature and the ratio between
oxidizers and reducers. These two quantities were used as features
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0.1) and more risk-tolerant (threshold = —0.1 and unconstrained)
campaigns. In this context, risk-tolerant campaigns performed
better than risk-averse ones.

of the classifier. Class labels were obtained by thresholding the
observed OF value here using Z-normalized data. Such normalized
data points where this value y>Vinesh surpassed a predefined
threshold were labeled with a “growth” class, whereas those that
did not surpass this threshold were labeled with a “no-growth”
class. That is, Yihresh is analogous to fi, defined above, but applied
to normalized data. Larger values oOf Vinresnh implied more
constraints in selecting experimental actions, meaning selected
experimental actions within a more constrained feasible set were
predicted to result in more substantial growth. Conversely, smaller
values implied less constraint and indicated a willingness to select
experimental conditions that may result in low growth. Thus, a
selection of Yihresh Can be considered as a specification of a risk
tolerance level: larger values imply a risk-averse campaign,
whereas smaller values imply a risk-tolerant one.

We ran simulation studies to consider the impact of such a
threshold, considering threshold values of 0.1, —0.1, and —oo, which
corresponds to risk-averse, risk-tolerant, and unconstrained selection
of synthesis conditions. For each threshold value, we ran
100 simulations and calculated the performance metric D(n), which
is shown in Fig. 6b. We observe that for the risk-averse (Vresh = 0.1)
setting, campaigns obtained a 14% improvement over the existing
data set over 20 experiments, on average. However, we observe that
both the risk-tolerant and unconstrained settings perform better,
obtaining an increase of around 19% and 20% improvement. For
future experimental runs, the simulations suggest an increased risk
tolerance would therefore be beneficial. These simulations offer a
manner to calibrate the risk tolerance of a campaign when
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determining experimental feasibility, along with other hyperpara-
meters. Moreover, such a parameter could be dynamically tuned
along with the changing beliefs of the response function itself. An
implementation of such a dynamically tuned (via simulations) risk
tolerance factor could improve the performance of closed-loop
campaigns in which such experimental feasibility plays a
significant role.

DISCUSSION

We used an ML planner based on the El policy to map the growth
parameter phase spaces for maximizing the intensities of two
RBMs at 225 and 265cm™', which correspond to SWCNT
diameters around 1.06 and 0.91 nm, respectively. As optimization
parameters, we considered the growth temperature and the
partial pressures of reductants (C;H4, C;H,, and H,) and oxidants
(water vapor and CO,). By considering the ratio of pressures of
reductants to oxidants, the reduced dimensionality allowed us to
construct growth condition maps from our results, which revealed
significantly different optimal conditions for maximizing the
intensity of RBMs around 265 vs. 225 cm™ . These differences in
growth conditions highlight the effectiveness of our planner,
which achieved results in less than a hundred experiments. Our El
decision policy also enabled us to assess the effect of
experimental risk on the rate of convergence and found that it
had a significant impact. In the future, this approach could be
extended to include thermodynamic models of catalyst reduction
and rate equations of catalytic feedstock dissociation. Although
the best diameter selectivity was around 35%, our methodology
paves the way forward for achieving the ultimate goal, namely
diameter- and chirality-controlled SWCNT growth.

METHODS

CNT growth in ARES

CNT growth was performed in our custom-built in situ system named
ARES. In ARES, a 6 W 532 nm laser (Verdi) serves as both the heat source
and Raman excitation source, and is focused on a silicon substrate
consisting of patterned micropillars on an SiO, underlayer (10 um in
diameter and height, fabricated by reactive ion etching). The substrates are
loaded into a miniature high-vacuum chamber with an optical window
whose environment can be controlled through automated pressure and
gas mass flow controllers. Heating of the thermally isolated micropillars is
achieved by varying the laser power, allowing rapid increases (within
microseconds) in temperatures up to 1200 °C. The scattered light from the
micropillars is coupled to a spectrometer through focusing optics and a
notch filter, enabling in situ Raman measurements. The micropillar
temperature is estimated from the redshifted Raman peak frequency of
the silicon micropillar. For this study, we first deposited a 10 nm alumina
barrier layer onto the silicon micropillars by atomic layer deposition.
Subsequently, 1nm Co films were sputtered on the substrates using
magnetron sputtering. The micropillar substrate was loaded into the
growth chamber and evacuated to a base pressure of 1076 Torr, followed
by backfilling with the growth gases. As described in the main text, we
used the ratio of partial pressures of reductants (ethylene, acetylene, and
hydrogen) and oxidants (water vapor and carbon dioxide), and labeled the
pressure ratio, as chosen by the planner. Before and after each growth
experiment, Raman spectra (pre- and post scans) were collected at room
temperature using a low laser power (0.2 mW) and a 30 s acquisition time.
During the course of each experiment, spectra were also collected in real
time (every 3 s), and the RBM peak fitting was performed on the post scans
following each experiment. These RBM frequencies were immediately fed
into the planner to compute the parameters (i.e, the temperature and
pressure ratios) for the next growth experiment.
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