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Heterogeneous relational message passing networks for
molecular dynamics simulations
Zun Wang 1,2, Chong Wang 3✉, Sibo Zhao1, Yong Xu 1,2,4,5, Shaogang Hao 2✉, Chang Yu Hsieh2, Bing-Lin Gu1,6 and
Wenhui Duan 1,2,4,6✉

With many frameworks based on message passing neural networks proposed to predict molecular and bulk properties, machine
learning methods have tremendously shifted the paradigms of computational sciences underpinning physics, material science,
chemistry, and biology. While existing machine learning models have yielded superior performances in many occasions, most of
them model and process molecular systems in terms of homogeneous graph, which severely limits the expressive power for
representing diverse interactions. In practice, graph data with multiple node and edge types is ubiquitous and more appropriate for
molecular systems. Thus, we propose the heterogeneous relational message passing network (HermNet), an end-to-end
heterogeneous graph neural networks, to efficiently express multiple interactions in a single model with ab initio accuracy.
HermNet performs impressively against many top-performing models on both molecular and extended systems. Specifically,
HermNet outperforms other tested models in nearly 75%, 83% and 69% of tasks on revised Molecular Dynamics 17 (rMD17),
Quantum Machines 9 (QM9) and extended systems datasets, respectively. In addition, molecular dynamics simulations and material
property calculations are performed with HermNet to demonstrate its performance. Finally, we elucidate how the design of
HermNet is compatible with quantum mechanics from the perspective of the density functional theory. Besides, HermNet is a
universal framework, whose sub-networks could be replaced by other advanced models.

npj Computational Materials            (2022) 8:53 ; https://doi.org/10.1038/s41524-022-00739-1

INTRODUCTION
In the realm of physics, chemistry, material science, and biology,
multi-scale modeling1,2 helps us understand the properties of
materials in multiple scales of time and space. Molecular dynamics
(MD) simulation is an essential tool for modeling dynamical
evolution of a many-body system. The trajectories of interacting
particles are determined by solving Newton’s equations of motion
involving complex interatomic potentials. There are two main-
stream approaches for performing MD simulations, i.e., classical
MD3 and ab initio molecular dynamics (AIMD)4. The potential
energy surface in classical MD is given by parameterized force
fields of a presumed functional form, which facilitates large-scale
calculations but possesses poor transferability across tasks. On the
other hand, AIMD computes the total energy of a system using
quantum mechanics methods, such as the density functional
theory (DFT)5, that guarantees the applicability and the accuracy
under a wide variety of conditions. However, due to the cost of
rigorously treating the electronic degrees of freedom, AIMD
modeling is currently limited to physical and chemical systems of
modest scales. With the rapid development of technology for
chemical and material synthesis, the need to construct force fields
for large-scale calculations with accuracy comparable to that of
the first-principles methods has become ever more urgent.
One recent development to address the above issue is to use

machine learning methods6,7 to facilitate MD simulations. The
most important tool in machine learning is neural networks. The
first framework of neural networks for MD simulations is proposed
by Behler and Parrinello8, which is based on fully connected neural
networks. Considerable success has been achieved along this route.

Especially, Deep potential (DeePMD)9,10 has been developed as a
comprehensive software suite and has been used in simulations of
crystal nucleation11,12 and construction of phase diagram13.
Traditional neural networks, for example, fully connected neural
networks and convolutional neural networks, are most useful when
the input data are Euclidean. However, atoms are intrinsically
indistinguishable and cannot be ordered. As a result, heavy data
preprocessing have to be performed in the above-mentioned
frameworks. To alleviate such data preprocessing burden, graph
neural networks (GNNs)14,15 are introduced. The power of graph
formalism lies in its focus on relationships among entities (or nodes)
rather than the properties of individual nodes. In particular,
message passing neural networks (MPNNs)16 summarized the
recapitulative formula for GNN in the spatial domain. With atoms
represented as nodes and interactions or bonds between them
represented as edges in a graph, molecules or crystals can be
transformed to molecular graphs or crystal graphs naturally. GNN-
based frameworks for MD simulations, including DTNN17,
SchNet18,19, DimeNet20,21, PAINN22, and MDGNN23, have accurately
predicted the potential surface of small molecules and crystals.
Current GNN-based MD simulations mostly use homograph, where
the message passing network is the same regardless of the types of
the atoms. On the other hand, it is now a common practice to use
the hybrid pair style in MD simulations, which utilizes different force
fields for atom pairs of different types. The hybrid pair style is very
useful for complex material systems, such as polymers on metal
surface, polymers with nano-particles and solid-solid interface
between two different materials. This motivates us to explore the
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possibility of improved performance by using heterogeneous graph
in GNN-based MD simulations.
In this work, we propose a framework to model diverse

interactions in a single MD simulations, termed heterogeneous
relational message passing networks (HermNet). The model shares
a similar idea of hybrid pair style in Large-scale Atomic/Molecular
Massively Parallel Simulator software24. HermNet splits the
molecular or crystal graph into several subgraphs and use
different message passing networks for different subgraphs.
Within each subgraph, we choose a modified version of
polarizable atom interaction neural network (PAINN)22 as the
sub-network. Experiments on molecular and extended systems
were performed and the results were satisfactory. HermNet
provides a general method to design heterogeneous GNN for
MD simulations.

RESULTS
Preliminary
In the graph theory25, a graph is a data structure composed of sets
of vertices and edges. Graphs could be classified either as
undirected graphs or digraphs by whether there is an explicit
designation of edges’ orientations. From the standpoint that an
undirected edge graph can be interpreted as a bidirectional link
between the pair of nodes, undirected graphs are made up of
digraphs.
Graphs can be further classified either as homogeneous or

heterogeneous, according to the types of nodes and edges. A
homogeneous graph is a special case of heterogeneous graph.
MPNN16, which is a universal spatial-domain-based GNN frame-
work, was proposed for homogeneous graphs. With hv and evw
denoting, respectively, node features and edge features in a
graph, MPNN is summarized as

mtþ1
v ¼

X
w2NðvÞ

Mtðhtv ; htw ; etvwÞ; (1)

htþ1
v ¼ Utðhtv ;mtþ1

v Þ; (2)

where the forward propagation is decomposed into two phases, a
message passing phase and a readout phase. Mt and Ut are a
message function and a update function, respectively. The hidden
states hw of all the neighbors NðvÞ of vertex v will be aggregated
and then be used to update hidden states of vertex v in the next
step. A heterogeneous graph supports sophisticated multi-type

relations and inherently enables richer semantic relations. Rela-
tional graph convolutional network (R-GCN)26 is an extension of
MPNN. G ¼ ðV; E;RÞ denotes a heterogeneous graph with nodes
(entities) vi 2 V and labeled edges (relations) ðvi ; r; vjÞ 2 E, where
r 2 R is a relation type, that covers both canonical directional and
inverse directional relations. A generalized forward process of an
entity vi in a relational graph takes the form

hðlþ1Þ
i ¼

X
r2R

UðlÞ
r hðlÞi ;

X
j2N r

i

MðlÞ
r ðhðlÞi ; hðlÞj ; eðlÞij Þ

0
@

1
A; (3)

where N r
i denotes the set of neighbor indices of vertex i of

relation r. Eq. (3) implies that a heterogeneous graph can be
decomposed into several homogeneous graphs of distinct
relations R. Typically, each homogeneous graph is a directed
graph. In other words, an R-GCN layer is made up of multiple
MPNN layers, each of which is associated with a homogeneous
graph of relation r.

Architecture
Diverse forms of force fields are manifestly responsible for the
intricate interactions, especially in systems with multiple elements.
GNNs for homogeneous graphs model interactions of different
atomic pairs with shared parameters, which limits the expressive
power for neural-network-based force fields. For example, as
shown in Fig. 1(a), there are three kinds of particles, i.e. A-, B- and
C-type atoms. The graph is constructed via linking central nodes
with their adjacent nodes within a cutoff radius. In a classical MD
simulation for this system, six different force fields can be
allocated for A–A pairs, A–B pairs, A–C pairs, etc., provided only
two-body interactions are considered. If a homogeneous GNN is
employed to model different interactions by fitting a single
function, it is expected to generate a mean force field. On the
other hand, equipped with multiple types of nodes and edges, a
heterogeneous GNN is a natural choice to model these interac-
tions with a more detailed resolution.
As shown in the following, we develop a universal framework,

HermNet, to model diverse many-body interactions simulta-
neously via extracting appropriate subgraphs, which are subse-
quently processed by heterogeneous GNNs. The overview of the
entire architecture diagram of HermNet is displayed in Fig. 2(a),
which takes atomic numbers Z (and a vector of zeros) as the
node’s scalar features (and node’s vectorial features). HermNet is

Fig. 1 A schematic diagram that demonstrates how to extract subgraphs from a original heterogeneous graph. a The original graph
constructed via a certain method with multiple node types, specifically, three types A, B, and C here. b Subgraphs extracted from the original
graph according to triadic relations. The number of subgraphs is of the order of N3

e , where Ne is the number of node types. c Subgraphs
extracted from the original graph according to type of central nodes. In this case, the number of subgraphs linearly increases with respect to Ne.
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composed of several message passing layers, termed HermConv
layers, which model interactions hierarchically. The RMConv
modules (Fig. 2b) of different relations constitute the HermConv
module (Fig. 2c, d). We introduce three variants of HermNets:
heterogeneous pair networks (HPNet), heterogeneous triadic
networks (HTNet), and heterogeneous vertex networks (HVNet).
A HPNet layer for central nodes of A-type is displayed in Fig. 2c,
where all the sub-networks with A-type destination contribute to
the local environment of A-type node. A HermNet layer for HVNet
and HTNet is displayed in Fig. 2d. If the parameters of its sub-
networks [RMConv, see Fig. 3] are shared for the same kinds of
central nodes, this HermNet framework is referred to as HVNet.
When the parameters are not shared, this HermNet framework is
an HTNet. We only test and report HVNet’s performance in the
following sections, as the other two models (HPNet and HTNet)
have high complexity and will take more training time and data
points for a proper assessment.
Most machine learning frameworks for MD simulation only take

into account the interatomic distances in feature engineering,
ignoring the bond angle information, which is an important
characteristic of both molecules and crystals. In principle bond
angle can be deduced from interatomic distances. However, it is
advantageous to explicitly include bond angle information in
feature engineering to achieve better performance. Directional
message passing networks (DimeNet)20,21 innovatively introduced
three-body interactions explicitly by combining radial and angular
information from the edges of the original graph and the
corresponding line graph, respectively. PAINN22 is a rotationally

equivariant MPNN framework and the complexity of calculating
angular information was reduced. In this work, we incorporate
angular information by choosing PAINN as the sub-network in
HermNet. This specific message passing setup can be directly
implemented in HVNet, while slight modifications are required in
HTNet to distinguish the type of source nodes. We note that
HPNet cannot incorporate all angular information explicitly. For
example, the bond angle A→ B← B is lost in HPNet because A→
B and B← B are processed by different sub-networks.
As discussed above, a heterogeneous graph could be decom-

posed into several homogeneous subgraphs. To describe the
method of extracting these subgraphs, we use G, Q̂s, and Q̂d to
denote the input heterogeneous graph, the operator that returns
the subgraphs with specific source nodes, and the operator that
returns the subgraphs with specific destination nodes, respec-
tively. As indicated in Fig. 1b, c, the directed subgraphs for HVNet
could be extracted via selecting inbound edges of a given A-type
destination node, i.e. Q̂A

dG, while those for HTNet are extracted via
selecting inbound edges of a given B-type destination node firstly
and then choosing out-bound edges of its A-type and C-type
source nodes simultaneously, i.e. Q̂A∪ C

s Q̂B
dG for triadic relation

A→ B← C. We note that if the two destination nodes are
extracted sequentially for HTNet, the result is generally an
empty graph.
In the following, we report the testing of HVNet against other

prior frameworks on three well-established benchmark datasets.
As detailed below, HVNet convincingly outperforms most of the
prior methods.

Fig. 2 The schematic of the working principle of the entire architecture. a The entire architecture diagram of HermNet where {Z} is the set
of atomic numbers, which will be passed through an embedding layer. Initial vectorial node features are all-zero vectors of fixed dimension.
This layer is expected to receive a scalar node feature {s}, a vectorial node feature, and a vectorial edge feature, i.e. relative position vector r!ij ,
and then output an updated scalar and vectorial node feature as the inputs of the next layer. The final scalar node features will be passed to a
global pooling layer as feature of the graph. With the graph-level feature passing to a sequence of fully connected layers, the target to predict
is achieved. b Sub-network for processing related subgraphs, i.e., homogeneous digraphs. The layer is composed of message passing layers
hierarchically, such as radial message passing layer for two-body interactions, angular message passing layer for three-body interactions, and
so on. Related message passing layers will be truncated according to the level of interactions to be modeled. The features or/and message
passing layers with dotted line should be introduced in accordance with requirements. Several sub-networks which model different relations
compose a single heterogeneous relational message passing layer. When the interactions are truncated to two-body interactions, the entire
framework is termed HPNet. c and d are the schematic diagrams of HermConv module of HPNet and HTNet (HVNet), respectively. RMConv
modules for different relations constitute the HermConv module. c Sub-network in HPNet for A-type when the system contains only two kinds
of elements, specifically, A- and B-type. d The hidden states of A-type vertex derive from a sub-network that is truncated to three-body
interactions for corresponding relations. The colors of the networks for different three-body interactions represent the parameters. If these
colors are the same, which means the parameters are shared in all these three networks, the HermNet is termed HVNet. If not, then the
HermNet is termed HTNet.
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Benchmarks on MD17 dataset
The MD17 dataset17,27,28 provides non-equilibrium structures
sampled (at a time resolution of 0.5 fs) from AIMD trajectories
for eight small molecules with a background temperature of 500
K. The potential energy and force labels are computed with PBE+
vdW− TS method. Christensen and von Lilienfeld29 found that the
energies in original MD17 dataset are contaminated with
substantial numerical noises and published a revised version of
the MD17 dataset. Distinct HVNet models were trained on this
revised dataset, and an a 1000-frame training set and a 1000-
frame validation set are randomly selected. The learning rate was
initially set at 3 × 10−4 and adaptively reduced when the loss on
the validation set reached a plateaus. The truncated radius was set
at 5 Å for the construction of molecular graphs. Additional details
can be found in the Supplementary Methods. Table 1 presents the
comparisons of mean absolute errors (MAEs) of three bench-
marked models and HVNet. It should be noted that the results of
PAINN and HVNet were trained on revised MD17 dataset, while
SchNet and DimeNet were trained on the original MD17 dataset.
HVNet outperforms other models with a comfortable margin on
three-quarters of the predictive tasks, and its results of the
remaining tasks are comparable to the best results among all four
frameworks. We also attempted to train an HTNet on the MD17
dataset; however, the parameter space of the HTNet is simply too
large, and obvious overfitting was immediately observed after just
several training epochs. Then we trained the HTNet model on the
HfO2 dataset, which was proposed to fit Gaussian approximation
potential models30–35, and found that when more than 1500 data
points were used for training, no obvious overfitting was observed
(detailed discussion with respect to training HTNet model is

Fig. 3 The overview of the sub-networks in HVNet and HTNet. a is the architecture of the sub-network, termed relational message passing
convolutional (RMConv) layer. Such a RMConv layer is a simplified and modified PAINN22 invoked for a specific type of interaction, and is
constituted by (b) radial message layer, c radial update layer, d angular message layer, and e or f angular update layer. {s} is the set of scalar

node features and initially set as the atomic numbers, which will be passed through an embedding layer. Initial vectorial node feature v!ð0Þ
is

an all-zero vector with a fixed dimension. sin nπ
rcut

k r!ijk
� �

=k r!ijk with 1 ≤ n ≤ 30 are selected as radial basis functions (RBF)20 and a cosine cutoff

fcut59 is also adopted in the filter. The original message layer in PAINN22 (i.e., a MPNN layer) is decomposed into (b) and (c) (i.e., radial message
layer and radial update layer). A modified and simplified update layer is decomposed into (d) and (e) for HVNet or (f) for HTNet. These layers
model three-body interactions via expressing angular information explicitly.

Table 1. Comparison of the MAEs between several benchmarked
models and HVNet trained on MD17 dataset using 1000 training
samples (energies in meV and forces in meV Å−1).

SchNeta DimeNetb PAINNc HVNet

Benzene Energy 3.44 3.354 – 0.319

Force 13.33 8.041 – 1.223

Toluene Energy 5.16 4.386 4.171 1.967

Force 24.51 9.288 4.386 5.268

Malonaldehyde Energy 5.59 4.472 3.913 1.422

Force 28.38 16.469 13.717 6.215

Salicylic acid Energy 8.60 5.762 4.902 4.128

Force 36.55 16.082 8.987 10.887

Aspirin Energy 15.91 8.772 6.837 9.935

Force 58.05 21.457 15.953 11.734

Ethanol Energy 3.44 2.752 2.709 1.258

Force 16.77 9.89 9.89 6.102

Uracil Energy 6.02 4.945 4.472 1.660

Force 24.08 12.943 6.02 3.999

Naphtalene Energy 6.88 5.246 5.031 2.728

Force 24.94 9.245 3.569 4.469

The values in bold represent outperformance on the same task.
aRefs. 18,19
bRef. 20
cRef. 21
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provided in the Supplementary Notes 2). This indicates that HTNet
might be expressive once more data points are provided.

Benchmarks on QM9 dataset
The QM9 dataset36,37 consists of computed geometric, energetic,
electronic, and thermodynamic properties for 134k stable small
organic molecules made up of carbon, hydrogen, oxygen,
nitrogen, and fluorine. All properties were calculated at the
B3LYP/6-31G (2df, p) level of quantum chemistry. This dataset
provides quantum chemical insights for the relevant chemical
space of small organic molecules, and has been widely adopted as
the benchmark to calibrate, analyze and evaluate new methods in
this field. HVNet was trained on 110k molecules and validated on
another 10k molecules. The properties of the 134k molecules
include dipole moment (μ), isotropic polarizability (α), energy of
the highest occupied molecular orbital (εHOMO), energy of the
lowest unoccupied molecular orbital (εLUMO), band gap (Δε),
electronic spatial extent (R2), zero point vibrational energy (ZPVE),
internal energy at 0 K (U0), internal energy at 298.15 K (U),
enthalpy at 298.15 K (H), free energy at 298.15 K (G), and heat
capacity at 298.15 K (cv). It must be emphasized that HVNets were
trained with atomization energies rather than the original internal
energies, enthalpy energy, and free energy, i.e., the original
energies subtracting the atomic reference energies, which is the
protocol advocated in the DimeNet work of Klicpera et al. 20. These
adjusted values are more reasonable because absolute energies
are generally meaningless and relative energies essentially convey
all physical implications. Table 2 reports the MAEs of HVNet for 12
tasks in the QM9 dataset with comparison to other eight models.
HVNet outperforms all baselines on 10 out of 12 tasks. For the
other 2 tasks, R2 and ZPVE, the MAEs of HVNet are on par with
some of the baselines. Details of additional settings and the
definition of the physical quantities with respect to the models
and datasets are provided in the Supplementary Methods and
Supplementary Discussion 1.

Benchmark on extended systems
Predicting properties of extended systems is a more ambitious task
because of their intricate chemical environments. Since HermNet is
capable to handle extended systems, we conduct this more
challenging benchmark on the extended system datasets provided
in ref. 10. The datasets contain properties of 8 different systems,
among which bulk C5H5N, bulk TiO2, the system which consists of
MoS2 and Pt, and high entropy alloy (HEA) are four most difficult
tasks: the bulk C5H5N and bulk TiO2 dataset include multiple
phases; the system of MoS2 and Pt includes five different datasets.
Unfortunately, training on the MoS2+Pt dataset required too much
computational time, so we chose not to further pursue this
benchmark after some preliminary tuning (and no corresponding
results are shown). The HEA dataset is explicitly divided into two
datasets, such that the model should be trained on the first dataset
which includes 40 kinds of 5 equimolar-element CoCrFeMnNi HEA
with random occupations and then tested on the test set in the
first dataset and the entire second dataset that includes another 16
kinds of HEA with random occupations. Table 3 shows the
comparisons of root mean square errors (RMSEs) between Deep-
Pot-SE/DeePMD10 and HVNet. Since the potential energy is an
extended quantity, the RMSEs of energies were normalized with
the system size in consistency with how the DeepPot-SE and
DeePMD10 presented the results. As shown in Table 3, HVNet
achieved lower RMSEs than DeepPot-SE on all tasks except the
dataset of MoS2 and Pt, which we chose not to do due to the
excessive amount of required training time. Detail of additional
settings and specific discussions are provided in Supplementary
Methods and Supplementary Discussion 2. Besides, we calculated
the vacancy formation energy of the bulk Cu with the trained
model. An arbitrary Cu atom was removed and the configuration
was relaxed with DFT and HVNet, respectively. The chemical
potential of Cu was calculated from DFT and the vacancy formation
energies from DFT and HVNet are 1.03 eV and 1.07 eV, respectively,
which are also consistent with previous computational and
experimental results (1.14 eV and 1.17–1.28 eV, respectively)38.

Table 2. Comparison of the MAEs between several benchmark models and HVNet trained on QM9 dataset.

Units SchNeta DimeNetb DimeNet++c Cormorantd HMGNNe MXMNetf PAINNg DeepMoleNeth HVNet

μ D 0.033 0.0286 0.0297 0.038 0.0272 0.0255 0.012 0.0178 0.00352

α a30 0.235 0.0469 0.0435 0.085 0.0561 0.0447 0.045 0.0475 0.0327

ϵHOMO meV 41 27.8 24.6 34 24.78 22.8 27.6 21.9 1.385

ϵLUMO meV 34 19.7 19.5 38 20.61 18.9 20.4 18.5 3.265

Δϵ meV 63 34.8 32.6 38 33.31 30.6 45.7 32.1 3.732

R2 a20 0.073 0.331 0.331 0.961 0.416 0.088 0.066 0.115 0.369

ZPVE meV 1.70 1.29 1.21 2.03 1.18 1.15 1.28 1.22 1.949

U0 meV 14 8.02 6.32 22 5.92 5.9 5.85 6.1 4.512

U meV 19 7.89 6.28 21 6.85 5.94 5.83 6.1 5.445

H meV 14 8.11 6.53 21 6.08 6.09 5.98 6.1 5.098

G meV 14 8.98 7.56 20 7.61 7.17 7.35 7.1 6.729

cv cal mol−1 K−1 0.033 0.0249 0.0230 0.026 0.0233 0.0224 0.024 0.0241 0.01964

The values in bold represent outperformance on the same task.
aRefs. 18,19
bRef. 20
cRef. 21
dRef. 60
eRef. 51
fRef. 50
gRef. 22
hRef. 61

Z. Wang et al.

5

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022)    53 



Molecular dynamics simulation and phonon dispersion
To demonstrate the performance of HermNet, MD simulation of a
MoSe2 monolayer was performed. The dataset was generated with
Vienna ab initio Simulation Package (VASP)39 using the projector-
augmented wave40,41 pseudopotentials. The Perdew-Berke-
Ernzerhof exchange-correlation potential42 was used. The cutoff
of plane waves was 260 eV and a 2 × 2 × 1 gamma-centered k-
point mesh was adopted to sample the Brillouin zone of the 6 ×
6 × 1 supercell. The simulation was carried out under the canonical
ensemble with the temperature increasing from 100 K to 1500 K,
and 5000 frames were obtained With the time step of 1 fs. The
dataset was randomly shuffled and split into training set,
validation set, and test set in the ratio of 8:1:1. The MAEs of
energy and forces on test set were 0.09 meV per atom and 2.93
meV Å−1, respectively. The comparison of radial distribution
functions at 300 K from AIMD and i-PI43, a classical MD simulation
software, with HVNet as the force fields, is shown in Fig. 3a.
Furthermore, the phonon dispersion was calculated via interfacing
HermNet and phonopy44. Acoustic sum rule was enforced to
ensure that the three acoustic modes at Γ point must be zero. As
shown in Fig. 4b, the performance of HermNet on phonon

dispersion demonstrates that even the second order derivative of
potential energy reaches high precision.

DISCUSSION
The complexity of a sub-network is generally scaled as OðjN jÞ,
where jN j is typically the number of the neighbors captured
within a cutoff radius. The numbers of sub-networks for HVNet,
HPNet, and HTNet are OðNeÞ, OðN2

eÞ and OðN3
eÞ, respectively. Here,

Ne is the number of element types present in the system.
Therefore, HVNet is most useful when the number of distinct
elements is large. Further discussions on the complexity analysis
are deferred to the Supplementary Notes 2.
To construct accurate force field for classical MD simulations,

potential energy surface needs to be reproduced up to first-
principles precision. Actually, potential energy has hierarchical
structure and can be decomposed into several terms as follows,

U ¼
X
i

Ei þ
X
i<j

Eij þ
X
i<j<k

Eijk þ � � � ; (4)

Table 3. Comparison of the root mean square errors between DeepPot-SE (DeePMD) and HVNet trained on extended systems dataset, where the
root mean square errors of the energies are normalized by the number of atoms in the system (energies in meV and forces in meV Å−1).

System Sub-system DeepPot-SE1 DeepPMDa HVNet

Energy Force Energy Force Energy Force

Bulk Cu FCC solid 0.18 90 0.25 90 0.107 84.97

Bulk Ge Diamond solid 0.35 38 0.60 35 0.283 22.04

Bulk Si Diamond solid 0.24 36 0.51 31 0.142 20.86

Bulk Al2O3 Trigonal solid 0.23 49 0.48 55 0.124 33.99

Bulk C5H5N Pyridine-I 0.38 25 0.25 25 0.127 21.21

Pyridine-II 0.65 39 0.43 39 0.267 32.11

Bulk TiO2 Rutile 0.96 137 1.97 163 0.259 118.22

Anatase 1.78 181 3.37 216 0.495 176.36

Brookite 0.59 94 1.97 109 0.158 76.76

MoS2+Pt MoS2 slab 5.26 23 17.2 34 – –

bulk Pt 2.00 84 1.85 226 – –

Pt surface 6.77 105 7.12 187 – –

Pt cluster 30.6 201 25.4 255 – –

Pt on MoS2 2.62 94 5.89 127 – –

CoCrFeMnNi HEA Rand. occ. I 1.68 394 6.99 481 0.342 304.02

Rand. occ. II 5.29 410 21.7 576 0.381 337.79

The values in bold represent outperformance on the same task.
aRef. 10

Fig. 4 Comparison of material properties. The radial distribution function g(r) (a) and phonon dispersions (b) for MoSe2. The data from DFT
and HVNet are denoted by black solid and red dotted lines, respectively.
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where the first term represents the energy of a single atom and
the second term is the summation of all the pairwise interactions,
such as the energy contributed from bonds. The third term
denotes the three-body interactions, which typically entails
angular specifications. Higher-order many-body interactions can
be further included in order to build a more accurate potential
energy surface. The layers shown in Fig. 3b and (c), which are
equivalent to the message layer in the original PAINN proposal22,
could be viewed as a single MPNN layer which models two-body
interactions since they merely process radial information. The
inner products of the positional vectors presented in the modules
in Fig. 3d, e or f are responsible for modeling three-body
interactions. Thus the sub-network, i.e. concatenation of these
layers, as shown in Figs. 2b and 3a, exactly conforms to this
hierarchical rule in Eq. (4).
On the other hand, graphs are constructed with a specific cutoff

radius and only information of 1-hop neighbors is aggregated in a
single MPNN layer. The final energy prediction is obtained with a
global pool operation on all local environments. This suggests that
locality is an essential property that facilitates the learning of
potential energies. The DFT total energy could be expressed as a
summation of eigenvalues of electronic Hamiltonian and the
interaction of the nuclei with a correction to avoid double
counting45. To take advantages of a localized basis as in a graph,
we will discuss the total energy within the tight-binding frame-
work, which could provide more physical insights. When the
density is expressed as the superposition of spherical atomic
densities46, the total energy in the tight-binding representation is
written as

Etotal ¼
X
m;m0

ρm;m0Hm;m0 þ
X
I<J

f ðjRI � RJjÞ; (5)

where ρm;m0 is the density matrix. Hm;m0 is the matrix element of
the Hamiltonian between states m and m0, where m= 1,⋯ , Nbasis

denote the states in the basis. RI is the position of atom I, and J is a
neighboring site of I. The formula demonstrates that total energy
could be decomposed into pairwise contributions, which is
consistent with the layer made up of radial message passing
layer in Fig. 2(a). Generally, the terms in Eq. (5) are both short-
range interactions47–49 and could be extended to higher-order
interaction. Then the total energy could be expressed as
Etotal ¼

PN
i¼I ε

0
I , which is a summation of local contributions from

central particles. This indicates the locality of a system’s overall
energy, consistent with the idea underlying the seminal work of
Ref. 8, which is widely adopted in the many follow-up works in
this field.
In principle, the parameters of sub-networks in DeePMD10 are

not shared for different element types, which is similar to
heterogeneous GNNs. Thus the outperformance on extended
systems results from the ability the sub-networks we used in this
work. There are also other existing heterogeneous GNN frame-
work designed for MD simulations, but the design principle is very
different. MXMNet50 utilized multiplex graphs, which could be
viewed as heterogeneous graphs with individual node and two
edge types, to capture global and local geometric information
from multiplex graphs allocated with different cutoff radii.
Heterogeneous molecular GNNs51 introduced heterogeneous
graphs for molecules via grouping the original graph and a line
graph into a single heterogeneous graph with two kinds of nodes.
It processes information of nodes in original graph and line graph
with two different GNNs respectively. The heterogeneity in these
two works is equivalent to distinguishing original graphs and line
graphs, which still treats the original graphs as a homogeneous
graph.
In conclusion, we develop HermNet, a framework based on

heterogeneous GNN, to learn multiple kinds of force fields in a
single MD simulation via extracting required subgraphs. Differ-
ent from previous works, HermNet introduce heterogeneous

graphs to describe different interactions of element types rather
than to distinguish the hierarchy of the interactions. Among
three variants of HermNet, we tested HVNet on a variety of
systems, covering both molecular and extended systems, and
obtained satisfactory results. Some discussions based on
quantum mechanics and DFT have been provided to justify
our model designs. Although we primarily focus on experiments
with HVNet, in principle, HTNet is capable of modeling
sophisticated interactions once enough data is provided. HVNet
outperforms the state-of-the-art benchmark models on most of
the tasks for small molecules. For the experiments on extended
systems, HVNet also outperforms DeePMD10. These results
demonstrate the powerful representation and promising appli-
cation potential of HVNet for diverse and intricate systems such
as HEA. Finally, we emphasize that HermNet is a universal
framework, whose sub-networks could be replaced by other
advanced or specialized models. For example, unitary N-body
tensor equivariant neural network (UNiTE)52, another remarkable
framework based on the elegant group theory, was proposed
recently, which performed impressively on molecular datasets.
We believe that HermNet can deliver improved results by
replacing the current sub-networks with UNiTE52. Besides, many-
body interactions could also be truncated to higher order in sub-
networks of HermNet, such as dihedral angular information53.
HermNet can also be extended to model interactions from
higher-order contributions via extracting higher-order sub-
graphs and invoking frameworks that model higher-order
contributions properly. More information could be found in
Supplementary Discussion 3.

METHODS
Architecture implementation
HermNet is implemented with PyTorch54 and Deep Graph Library55 python
library. Neighbors of the central particle are found by Scikit-Learn56 library
and the node features are extracted by Atomic Simulation Environment57

and Pymatgen58 library. In our work, a simplified PAINN22 is implemented
as sub-network in both HVNet and HTNet. The angular formula in HVHet is
the same as that in PAINN22, while that in HTNet is a little different. The
proof that angular information could be introduced in HVNet and HTNet
with PAINN naturally is provided in Supplementary Notes 1.

DATA AVAILABILITY
The raw data of revised MD17, QM9, and bulk systems are available at https://
figshare.com/articles/dataset/Revised_MD17_dataset_rMD17_/12672038, https://
deepchemdata.s3-us-west-1.amazonaws.com/datasets/molnet_publish/qm9.zip, and
http://www.deepmd.org/database/deeppot-se-data/, respectively.

CODE AVAILABILITY
The implementations of HermNet described in the paper are available at https://
github.com/sakuraiiiii/HermNet.
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