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Extracting structural motifs from pair distribution function
data of nanostructures using explainable machine learning
Andy S. Anker 1, Emil T. S. Kjær 1, Mikkel Juelsholt2, Troels Lindahl Christiansen1, Susanne Linn Skjærvø1,
Mads Ry Vogel Jørgensen 3,4, Innokenty Kantor4,5, Daniel Risskov Sørensen 3,4, Simon J. L. Billinge 6,7, Raghavendra Selvan8,9 and
Kirsten M. Ø. Jensen1✉

Characterization of material structure with X-ray or neutron scattering using e.g. Pair Distribution Function (PDF) analysis most often
rely on refining a structure model against an experimental dataset. However, identifying a suitable model is often a bottleneck.
Recently, automated approaches have made it possible to test thousands of models for each dataset, but these methods are
computationally expensive and analysing the output, i.e. extracting structural information from the resulting fits in a meaningful
way, is challenging. Our Machine Learning based Motif Extractor (ML-MotEx) trains an ML algorithm on thousands of fits, and uses
SHAP (SHapley Additive exPlanation) values to identify which model features are important for the fit quality. We use the method
for 4 different chemical systems, including disordered nanomaterials and clusters. ML-MotEx opens for a type of modelling where
each feature in a model is assigned an importance value for the fit quality based on explainable ML.
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INTRODUCTION
The development of advanced, functional materials builds on an
understanding of the intricate relationship between material
structure and properties, and over the past century, crystal-
lographic methods using scattering and diffraction have thus
been essential for materials science. Crystallography allows ab
initio determination of crystal structures from diffraction data and
has provided us with the vast knowledge of crystal chemistry that
is now used in the design of functional materials. However, in the
case of nanomaterials with limited long-range order, crystal-
lographic methods are challenged, and ab initio structure
determination, or structure solution, is not currently possible.
Over the past decades, total scattering with Pair Distribution
Function (PDF) analysis has become an essential tool for the
characterization of nanomaterial structure1,2. The PDF is the
Fourier transform of normalized and corrected X-ray, neutron, or
electron scattering intensities, and is a function in real space
representing a histogram of inter-atomic distances in the sample.
Compared to crystallographic methods relying on long-range
order, PDF analysis can be applied for nanomaterials3–5, dis-
ordered1,6,7, or amorphous materials3,5,8. However, structure
solution from the PDF is not possible except in a very few simple
cases9, using either the Reverse Monte Carlo method10 or the LIGA
algorithm11,12. In the absence of broadly applicable ab initio
nanostructure determination methods, it is, therefore, necessary
to propose reasonable starting models and to then ‘refine’ the
model parameters against the data using local minimization
methods. The step of finding a starting model can be a major
challenge and is thus a bottleneck in complex material
characterization. In the case of PDF analysis of nanomaterials,
such models are often guessed at by considering related bulk
materials; however, these are often not good starting models for

very small clusters and nanoparticles, where significant structural
changes may take place3,5,13,14. A way of building plausible
starting models is thus needed, where structure models can be
built capturing local bonding topologies suggested by known
chemistries.
Recently, automated methods such as ‘structure mining’ and

‘cluster mining’ have appeared in the literature to help overcome
this challenge15–17. In a study of the structure of metallic
nanoparticles, Banerjee et al. automatically generated thousands
of discrete metal nanocluster structures and fitted PDFs from each
of them to experimental data to identify the best model in an
automated manner17. In a recent study of molybdenum oxide
nanomaterials, we introduced another approach, where we
automatically generated a large number of MoOx cluster structure
models and compared their PDFs to experimental data in order to
identify dominating structural motifs in the sample, i.e. arrange-
ments of atoms that dominate the material structure on the local
scale7. We hypothesized that the structural motifs present in
amorphous molybdenum oxides can also be found in crystalline
structures, and therefore used crystal structures of molybdenum
oxides as starting models. From these models, we cut out
thousands of different cluster structure models of different sizes
to build a ‘catalogue’ of structure candidates. These models were
all tested against our data to identify the best fitting structural
motif. We recently used a similar approach for the identification of
a bismuth oxido cluster intermediate structure in a study of cluster
growth18.
While these approaches can extend the structural space

searched when identifying models for structure refinement, new
challenges arise. Firstly, the refinement processes can be
computationally heavy, which can limit the number of catalogue
structures that are tested. For example, our brute-force approach
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for cluster identification above generates 2N− 1 structures for
starting model sizes with N atoms. Each structure must have its
PDF computed and then refined against the target measured PDF,
so that its fit quality can be evaluated. This process is
computationally costly and does not scale well with the number
of structure candidates. Furthermore, for disordered, amorphous,
and nanostructured systems, many hundred models may provide
similar fit qualities, and if only reporting a few of them, it is difficult
to assess which structural features of these models are important.
We, therefore, need effective and unbiased methods to compare
many fits to extract structural information.
Here, we introduce a method that uses an explainable Machine

Learning (ML) model that, after training, will predict the
agreement factor for a test cluster with a given dataset.
Furthermore, the use of explainable ML informs which features
in the model are important for the agreement factor19–24. Our
Machine Learning based Motif Extractor (ML-MotEx) model is
illustrated in Fig. 1. Firstly, it builds a large catalogue of thousands
of candidate structural motifs, which are ‘cut outs’ from a chosen
bulk structure7,18 (step 1). The PDF is then computed from each
one, and each model is fit to the target dataset (step 2). The
structures and Rwp values from each fit are handed to an ML
algorithm applying gradient boosting decision trees (GBDTs)25,
which learns to predict Rwp values for new fits based on an atomic
structure model (step 3). The ML-MotEx algorithm then outputs
quantified values of how important each atom or feature in the
starting structure is for the fit to yield a low Rwp value with the
given fitting algorithm (step 4). This is done by using SHAP
(Shapley Additive exPlanation)26,27 values, which is a known
method for explaining tree-based ML models. The amplitude of
the SHAP value reflects how important a structural feature is for
the fit quality, while the sign of the SHAP value reflects whether
the feature affects the Rwp value of the fit towards 1 (poor fit) or 0
(perfect fit), in other words why it is important.
Compared to the automated, brute-force methods previously

introduced for PDF analysis7,15–17, we can much faster screen a
larger number of structures. Our method only needs to screen a
sub-sample (~10,000) of the much larger number of motifs that

can be generated from bulk material to learn how to predict
which structures provide a good agreement with the data. The
analysis done for the examples presented below would take
~24 days for starting models with 24 atoms, ~3 × 106 years for
starting models with 48 atoms, and ~6 × 1013 years for starting
models with 72 atoms using a brute-force approach (Supplemen-
tary Notes 1), while ML-MotEx analysis is done in minutes or hours.
Furthermore, the use of explainable ML provides a way to better
analyse the output of the screening: instead of just identifying the
model that provides the lowest Rwp value, we are able to output a
measure of how important each atom or feature (e.g. size or
shape) in the starting model is for the fit to yield a low Rwp value
(step 4). This procedure is automated and can be done in quasi-
real experimental time and without human bias.
We illustrate the use of ML-MotEx using four different examples.

We first show the principles of the method using a simple model
system based on simulated X-ray PDF data from a C60 buckyball.
We further demonstrate the use of ML-MotEx on experimental
X-ray PDF data from amorphous, disordered molybdenum oxides7

and tungstate α-Keggin clusters in solution28, where it allows
identifying the main structural motifs present in the samples using
different starting models. Lastly, we extend the method to use a
‘cookie-cutter’ strategy to generate structures for the catalogue of
candidate motifs. Here, the algorithm is used to identify a bismuth
oxido cluster by using a cut-out of the β-Bi2O3 structure as starting
model. The examples illustrate that it is possible to obtain
knowledge of dominating structural motifs from PDF in an
automated manner using ML.

RESULTS
ML-MotEx algorithm
ML-MotEx consists of four steps. These four steps are shown in Fig.
1 and the simplified pseudo-code of the algorithm in Fig. 2. In the
first step, a starting structure model is used to generate a
catalogue of candidate structure motifs. As detailed in the
Methods section, the structures are generated by removing
different numbers of atoms from the original starting structure,

Fig. 1 Illustration of the ML-MotEx process. Firstly, a starting model is provided. Using this starting model, a structure catalogue is
generated, and the structures in the catalogue are fitted to the experimental data in question. An ML algorithm is then trained to predict Rwp
values and finally calculating quantified values of feature importance for the fit quality.
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which results in thousands of smaller, candidate structure motifs.
In the second step, a fitting script is used to fit the generated
candidate structures to the dataset. In the third step, the fitting
results are handed to the explainable ML algorithm, which is
optimized and trained. By using this information, SHAP values of
the atoms or structural features in the starting model are
calculated in the fourth step. The output of the algorithm is thus
the starting model along with SHAP values, indicating the
importance of each individual atom in the structure for the fit
quality, or in other words; how much each individual atom or
feature affects the Rwp value either positively or negatively. We
refer to this value as the “atom contribution value”. We
furthermore define the ratio between the atom contribution
value and its uncertainty as the “confidence factor”. Further
definitions and descriptions of the individual steps of the
algorithm are given in the Methods section.

Example 1: Proof-of-concept: identification of the C60
buckyball
We first show the use of ML-MotEx with a simple, proof-of-concept
example, using a calculated PDF from an ideal C60 buckyball (Fig.
3a). The aim is to identify the structural motif, the C60 buckyball,
from the data.
We first need a starting structure that contains the motifs we

are looking for. In this simplified example, we use a single unit cell
of the crystal structure of C6029. However, we discarded all
symmetry and generated a discrete structure model correspond-
ing to the 132 atoms in one unit cell. This model is shown in Fig.
3b, where one whole C60 structure (Fig. 3a) is seen along with
fragments of the neighbouring C60 buckyballs. The simulated PDF
of the C60 buckyball and the starting model is shown in Fig. 3c.
We can now use this starting model to generate a catalogue of

structures, which are all fitted to the data. The structures are
created by removing different numbers of atoms from the original
starting structure, which results in thousands of smaller, candidate
structure motifs. This model generation and fitting steps are
identical to our previously reported brute-force approach, where
we simply compare the Rwp values of all the fits to identify the
best structure motif. We first consider this simple approach. One
of the limitations of the brute-force method is that the possible
candidate structures are exponential in N, the number of atoms in
the model. Since each atom in the starting model can be present
or absent, the number of possible subclusters is equal to 2N− 1.
For large models such as the C60 starting model containing 132
atoms, this is ~1040, a gigantic number, making it impossible to
investigate all candidate structures. For this example, we used
384,260 structures to train ML-MotEx, which is only a very small
fraction of the 2132− 1 possible candidate structures. Note that
the model with a single C60 buckyball was not in the generated
structure catalogue.
All these 384,260 structures were fitted to the PDF calculated

from the C60 cluster. Only a scale factor, an isotropic expansion/
contraction factor, and isotropic Atomic Displacement Parameters
(ADPs) were refined, as detailed in Supplementary Table 2. We

note that refinement of the atom positions can be added to the
fitting procedure to expand the chemical space that is investi-
gated. However, this would be computationally expensive, and it
would allow deviations from the chemical topologies set up in the
starting model.
To get an overview of the results from these fits, we plot the Rwp

value versus the number of atoms in the structure. To further
investigate the results, one must visually inspect the fits of the
catalogue of candidate structure motifs and their Rwp value. Some
of the candidate structure motifs are shown as inserts in Fig. 3e,
where transparent grey atoms represent atoms deleted from the
models. The fits of these structures to the dataset are presented in
Fig. 3e, along with the Rwp values. The Rwp value appears to drop
when the ‘outer’ atoms are removed, while it increases when the
atoms that are part of the centre C60 buckyball are removed. From
investigating these few, but manually selected, structures and
their corresponding fitted Rwp value, one can hypothesize that the
structure giving the best fit should be the C60 buckyball. However,
this method can be biased by human interaction, and it is time-
consuming and difficult to go through the many fits to extract
structural information.
We, therefore, move on to the ML-MotEx method. Using the

catalogue of candidate structure motifs and the corresponding
Rwp values obtained above, we train a GBDT model on the training
set to predict the Rwp value of the candidate structure motifs.
Figure 4 shows the predicted Rwp values of the ML algorithm
versus the Rwp value of the structures when they are fitted to the
simulated C60 dataset in DiffPy-CMI30. For the structures used in
the test set, the GBDT model predicts the Rwp value with a mean
absolute error of 2.0%.
We now use explainable ML to explain Rwp values with the use

of the feature importance tool SHAP values27. As described in
detail in the Methods section, a SHAP value is calculated for each
structural feature (here, each atom and the cluster size) for each
candidate structure motif that is fitted to the PDF during the
training process. The amplitude of the SHAP value reflects how
important a structural feature is for the fit quality, while the sign of
the SHAP value reflects whether the feature affects the Rwp value
of the fit towards 100% (poor fit) or 0% (perfect fit), in other words
why it is important.
Figure 5a shows the most important results from the SHAP

value analysis. The first feature we consider is the number of
atoms, with SHAP values shown in the top part of Fig. 5a. The plot
represents SHAP values for the cluster size feature with the size
shown on a colour scale, going from small (blue) to large clusters
(red). From the large amplitude of some of the SHAP values
observed from this feature, we see that the number of atoms in
the structure motif is the most important feature for the Rwp value.
All small clusters (0–34 atoms, plotted in blue colours) show a
large positive SHAP value, which implies that the Rwp value of the
fit to the PDF data is high, i.e. the fit quality is low. All small
clusters can thereby be discarded as structural models for
satisfyingly describing the data.

Fig. 2 Pseudo-code describing the four steps of ML-MotEx. A starting model, fitting script, and dataset are given as input. Firstly, a catalogue
of candidate structure motifs is generated (step 1), which are fitted to the dataset (step 2). The output from step 1 and 2 is then given to an ML
algorithm, which learns to predict goodness-of-fit (Rwp) values based on the structure motif (step 3). Lastly, SHAP values are calculated for each
feature (step 4) which can be converted to atom contribution values.
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Next, we can investigate the SHAP values obtained for the
individual atoms in the structure. We first consider atom 13, as
labelled in the structure drawing in Fig. 5b. The SHAP values
obtained from this atom for each of the fits in the training set are
all plotted on the SHAP axis. For the models where the atom is not
present in the model, the SHAP value is shown in blue, while it is
shown in red for the atoms where it is present in the model. If first
considering the cases where the atom is kept in the model, the
atom 13 SHAP values are generally negative, which means that

the presence of this atom pushes the Rwp value towards 0%. We
interpret this as ML-MotEx wanting to keep the atom in the model.
The SHAP values obtained for the fits without the atom present
are positive, which confirms that if removing the atom, the fit
quality becomes worse. Based on the SHAP values obtained for
the atom in each fit, we calculate an atom contribution value. The
atom contribution value is defined in the Methods section and is
calculated as the difference between the average SHAP values
obtained for the atom when kept in the model, and when
removed from the model. A negative atom contribution value
means that the atom pushes the Rwp value down if kept in the
structure. The atom contribution value obtained for atom 13 is
negative, and we, therefore, colour it yellow in the structural
representation in Fig. 5b to indicate that it should be kept in the
model. We use this strategy to automatically go through all the
atoms in the starting model and colour them yellow/black based
on their impact on the Rwp value. The result can be seen in Fig. 5b
where the 60 atoms with the lowest atom contribution values are
coloured yellow. The results are also shown in Supplementary Fig.
1, where the atom contribution values are plotted using a
continuous colour bar. The results show that ML-MotEx mainly
favours the atoms comprising the central buckyball. While the
average confidence factor (as defined in the Methods section) is
1.26 for all of the atoms in the starting model, we observe that the
average confidence factor of the mislabelled atoms is 0.37,
meaning that ML-MotEx is less confident about the atom
contribution values of those.
The ML-MotEx algorithm thus provides an unbiased method to

extract important motifs from PDF data, without any inputs other
than a starting model and a fitting script. We emphasize that the
structural motifs extracted with ML-MotEx are based on the Rwp
value of the fits and are thereby not necessarily physically
reasonable. It is therefore important to still critically consider the

Fig. 3 Analysis of a simulated PDF from a C60 buckyball. a C60 buckyball, b single C60 unit cell29, treated as a discrete structure with 132
atoms and c their simulated PDFs. The simulation parameters mimic typical values of a PDF dataset and are presented in Supplementary Table
3. d Rwp values obtained in the fits using the C60 structure catalogue, plotted as a function of number of atoms in the structure motifs. Note
that the model with a single C60 buckyball is not included in the set of 384,260 structures tested. This would result in a perfect fit with
Rwp= 0%. e Examples of candidate structure motifs with their corresponding fits to the simulated C60 buckyball data. Grey, semitransparent
atoms are removed from the starting model.

Fig. 4 Predicted Rwp values versus true Rwp values. Rwp values
from the fits of the catalogue structures to the simulated C60
dataset, plotted versus the predicted Rwp values from the GBDT
model from the same structures. The mean squared error (MSE) and
the mean absolute error (MAE) are based on all 76,852 predictions in
the test set, which are structures the model has not been trained on.
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extracted motif with chemical knowledge, in the same manner as
for conventional PDF refinements. In this process, one could refine
additional parameters such as atom positions. Consequently, in
Fig. 5b, the user should identify the full C60 buckyball as the
structural motif rather than just choosing the motif of the yellow
atoms. Another approach to avoid unphysically results from ML-
MotEx would be to include e.g. density function theory (DFT)
calculations in the goodness-of-fit value.

Example 2: Identification of structural motifs in disordered
molybdenum oxides
As discussed above, we have recently used the brute-force
automated modelling method to identify structural motifs in
disordered molybdenum oxides from PDF analysis7. Here we show
that by reassessing the data with ML-MotEx, we can reproduce the
results from Christiansen et al.7 but in an automated way that
allows analysis of the resulting structure model using SHAP values.
Figure 6a shows the difference-PDF (d-PDF) obtained from
amorphous molybdenum oxide supported on γ-Al2O3 nanoparti-
cles (15 w% Mo), where the signal from the γ-Al2O3 nanoparticles
has been subtracted. The d-PDF thus only reflects the structure of
the supporting material. The aim is to develop a structural model
for the amorphous MoOx. In our previous paper, different starting
models were tested, which were all based on structures of
molybdenum-based polyoxometalates (POMs) built from [MoO4]
tetrahedra and [MoO6] octahedra. The analysis showed that the
best fitting models did not contain tetrahedral motifs. Instead, the
brute-force automated modelling approach hinted at a unit of
three edge-sharing [MoO6] octahedra, or a ‘triad’, to be present in
the structure. However, the use of the computationally expensive
brute-force method limited the number of atoms that could be
included in the starting model. This meant that a range of
different smaller starting models were used to test different
structure hypotheses. With ML-MotEx, we can instead test much
larger systems and thereby include several different structural
motifs at the same time in one starting model, as well as
quantitatively analyse the results using SHAP values. We, there-
fore, use a larger POM as starting model, namely the entire

Mo36O128 cluster cut-out of the K8(Mo36O112(H2O)16)·(H2O)37
crystal structure31, which contains a range of different chemical
topologies. Figure 6a shows the simulated data from the Mo36O128

cluster, which has some similarities to the experimental PDF, and
Fig. 6b shows the structure of the Mo36O128 cluster.
We apply ML-MotEx to the molybdenum oxide system in the

same manner as we did to the C60 buckyball. First, we used the
starting model to make a catalogue of candidate structure motifs,
as described in detail in the Methods section. These are all fit to
the experimental PDF, and the results are used to train the GBDT
model. The fits are made with the same fitting algorithm as used
in the paper from Christiansen et al.7 Figure 6c illustrates the Rwp
values of the fits, plotted as a function of the number of
molybdenum atoms present in the structural motif. The best
fitting models contain 5–7 molybdenum atoms. The model that
fits the data with the lowest Rwp value (45%) can be identified as a
Mo5O24 structure, as shown in Supplementary Fig. 2. However, it is
difficult to justify that this structural model is unique in
representing the structure in the sample, purely based on the
Rwp value.
We, therefore, use steps 3 and 4 of ML-MotEx to analyse the

results of the ensemble of fits. The resulting SHAP values are
shown in Fig. 7a. The plot should be interpreted in the same way
as for the C60 example: Each atom is assigned a SHAP value in
each of the fits in the training set. For the models where the atom
is not present in the model, the SHAP value is shown in blue, while
it is shown in red for the atoms where it is present in the model.
When considering the amplitudes of the SHAP values, we see that
the atoms labelled with 14, 15, 19, and 20 are marked as very
important by ML-MotEx. When these atoms are present in the
structure (red), they all have large negative SHAP values,
indicating that their presence in the model pushes the Rwp down.
When they are not present in the structure (blue), they all have
large positive SHAP values, also indicating that they should be
present in the structure to obtain a good fit. Atoms 22 and 23 are
examples of atoms that ML-MotEx do not suggest keeping in the
structure. As seen from the SHAP values, their presence pushes up
the Rwp value.

Fig. 5 Summary of the ML-MotEx analysis of C60 PDF. a Plot of the SHAP values obtained in the C60 analysis, showing if atoms in the starting
model are favourable for the fit quality. For the models where the atom is not present in the model, the SHAP value is shown in blue, while it is
shown in red for the atoms where it is present in the model. The SHAP values are plotted as a violin plot. An enlarged summary SHAP plot of
panel a is shown in Supplementary Fig. 14. b Structural visualization of kept and removed atoms. The atoms with the 60 lowest atoms
contribution values have been coloured yellow, while the rest are coloured black. Supplementary Figure 1 shows a similar representation but
where the atom contribution values are directly shown from a continuous colour bar.
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Based on the SHAP analysis, atom contribution values were
calculated. The results are visually illustrated in Fig. 7b, where the
molybdenum atoms in the structure are coloured yellow if the
atom contributed to a better fit quality, otherwise it is coloured
black. Figure 7b clearly shows a specific motif that ML-MotEx
wants to keep in the model. The yellow molybdenum atoms are all

part of a ‘triad’ structure, where three [MoO6] octahedra share
edges and all oxygen atoms that bond to 3 or 4 Mo atoms is
connected to yellow molybdenum atoms. This is further illustrated
in Supplementary Fig. 3. Specifically, the resulting structural unit
that ML-MotEx wants to keep is similar to heptamolybdate
[Mo7O24]6−, which can be described as several triads connected

Fig. 6 Analysis of experimental PDF from disordered molybdenum oxide. a Comparison of experimental PDF from a disordered
molybenum oxide7, and simulated data from Mo36O128 cluster, used as starting model. The simulation parameters mimic typical values of a
PDF dataset and can be seen in Supplementary Table 3. b Structure of the Mo36O128 cluster. c Rwp values obtained in the fits using the
Mo36O128 structure catalogue, plotted as a function of number of atoms in the structure motifs.

Fig. 7 Summary of the ML-MotEx analysis of experimental PDF from disordered molybdenum oxide. a Plot of the SHAP values obtained in
the molybdenum oxide analysis, showing if atoms in the starting model Mo36O128 are favourable for the fit quality. For the models where the
atom is not present in the model, the SHAP value is shown in blue, while it is shown in red for the atoms where it is present in the model. The
SHAP values are plotted as a violin plot. An enlarged summary SHAP plot of panel a is shown in Supplementary Fig. 15. b Structural
visualization of kept (yellow) and removed (black) atoms. Supplementary Fig. 3 shows a similar representation but where the atom
contribution values are directly shown from a continuous colour bar.
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through edge-sharing. These results indicate that a motif of
connected edge-sharing triads, as shown in Fig. 7b, is important in
order to describe the data of the disordered molybdenum oxides,
which was also found by Christiansen et al.7 We note here that
when fitting this model to the PDF itself, we cannot describe the
medium-range order present in the PDF. The ML-MotEx rather
allows identifying the main local motifs in the data.

Example 3: Identification of the ionic cluster structure from
PDFs
To investigate the reproducibility of the ML-MotEx method, we
investigate if similar results are achieved with different starting
models, all containing the correct structure motif. We here model
a PDF obtained from a solution of 0.05 M ammonium metatung-
state hydrate, (NH4)6[H2W12O40]·H2O in water, which dissolves to
form monodisperse α-Keggin clusters28. Experimental details are
provided in Supplementary Methods.
To test the ML-MotEx method, we use four different starting

models of tungstate oxide crystals, all including the α-Keggin
cluster motif with varying complexity. Unit cells from the four
following crystal structures were used as starting models:
[Hpy]4H2[H2W12O40] (py= pyridine) [1]32, (CH3)4N)4SiW12O40 [2]33,
(((CH3)2NH2)6 (Cu(HCON(CH3)2)4)(GeW12O40)2)(HCON(CH3)2)234 [3],
and ((CH3)2NH2)3(PW12O40) [4]35. Again, we discarded all symmetry
and generated a discrete structure model corresponding to the
atoms in one single unit cell. All other atoms than tungsten and
oxygen were furthermore removed from the structures before
catalogue structures were created. Figure 8a shows the experi-
mental dataset with simulated PDFs from the four different starting
models. Figure 8b illustrates a W12O40 α-Keggin structure.
Again, we first build structure catalogues based on the starting

models (step 1) and fit them to the experimental PDF (step 2). In
this case, we extract 104 structures from each starting model,

which is just a small fraction of all possible structures that can be
made from the starting models that have 24 ([2]), 48 ([1] and [3]),
and 72 ([4]) atoms that are permuted. Again, a GBDT model was
trained to predict the Rwp values of the structures (step 3), and
SHAP values were obtained to calculate atom contribution values
(step 4). The resulting SHAP value plots can be seen in
Supplementary Figs. 4–5. While ML-MotEx takes about 100 s on
an AMD Ryzen Threadripper 3990X with 64-core 2.9/4.3 GHz using
104 fits on a structure with 48 atoms, it would take about ~3 × 106

years (Supplementary Notes 1) to make fits of all the 248− 1
possible structures using the brute-force approach. Supplemen-
tary Table 5 in the Supplementary Information shows the exact
computer time of the fits on a MacBook Pro and a Threadripper,
which clearly demonstrates the scalability of ML-MotEx.
Figure 9 shows the results of applying ML-MotEx to the 4

different starting models. For structures [1], [3], and [4], the 24
atoms most preferred by ML-MotEx were coloured yellow, while
the rest were coloured black. For structure [2], 12 atoms were
coloured yellow. In all 4 examples, the yellow atoms have a motif
of a α-Keggin cluster, however, in Fig. 9c, d, we see a few
mislabelled atoms (2 of 24 atoms in the worst case). The
mislabelled atoms are found in the starting models containing
most atoms, i.e. with the highest permutation value N. To achieve
a better prediction, we could have built larger catalogues of
candidate structure motifs and thus performed more fits. We,
therefore, conclude that the ML-MotEx method is not completely
insensitive to the starting model, but that it yields very similar
results for all the tested starting models if it contains similar
motifs. Furthermore, the example shows that ML-MotEx can be
used to investigate PDF data from clusters in solution, whose
structure also is part of known crystal structures. As seen from the
results in Supplementary Figs. 7–10, we performed an identical
analysis of a different dataset also obtained from the second
solution of 0.05 M ammonium metatungstate hydrate. This
analysis provided highly comparable results, as discussed in the
Supplementary Information. This illustrates the reproducibility of
the method. In Supplementary Discussion 1, we discuss what
happens if a poor staring model is used, and how one can identify
if the starting model does contain the right motif using the
confidence factor.
We have also used the ML-MotEx method for a larger ionic

cluster, namely [Bi38O45]. Here, we use the β-Bi2O3 structure as
starting model and used a ‘cookie-cutter’ strategy to generate
structures for the motif catalogue. This example is described in
Supplementary Discussion 2, and the ‘cookie-cutter’ approach is
shown in Supplementary Fig. 11.

DISCUSSION
In the four examples presented above, we have shown how
explainable ML can aid in identifying structural motifs in
nanostructured materials and presented an approach to structure
characterization. Traditional PDF analysis investigates how an
entire structure model agrees with an experimental PDF, rather
than identifying how different features in the model affect the fit
quality. Instead, ML-MotEx provides a quantitative measure of how
each atom or feature contributes to the fit. The use of ML
furthermore allows the screening of a large number of models in
an automated and fast manner. In the examples described here,
ML-MotEx has been used with various starting models with up to
256 metal atoms; however, the algorithm can handle larger
systems, as it is highly scalable. In comparison, a full brute-force
approach is computationally restricted to systems with up to
15–30 atoms. For the type of systems described here, it is possible
to use the method in quasi-experimental time, which could, for
example, be useful for analysis of time-resolved scattering data,
where the structural motifs present might change with time,
which would be revealed by changing SHAP values.

Fig. 8 Experimental PDF from Keggin clusters in solution.
a Comparison of experimental data from a 0.05 M ammonium
metatungstate hydrate solution, and simulated PDFs from the four
different starting models [1]–[4]. The simulation parameters mimic
typical values of a PDF dataset and can be seen in Supplementary
Table 3. b The W12O40 α-Keggin structure.
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ML-MotEx shares some similarities with the cluster build-up
algorithm LIGA11,12, which automatically builds clusters of
different sizes based on information that is contained in inter-
atomic distance lists extracted from the PDF. LIGA has shown to
be successful at automatically reconstructing clusters (up to 150
atoms) with no user input except the inter-atomic distance list,
extracted from an experimental PDF, and at a low computational
cost. However, its use has not caught on because extracting the
distance list from the data presents significant practical difficulties,
and is not unique. As with ML-MotEx it uses the error each atom in
a cluster contributes to the fit to weigh the decision about which
atom to include in the model. Presumably, part of the success of
LIGA and ML-MotEx is its use of this atom contribution for rapidly
finding good candidate motifs. Unlike LIGA, ML-MotEx requires a
starting model that contains the target structural motif, and it
leverages ML to rapidly compute the atom contributions. It can
therefore be positioned between traditional refinement (where
the complete starting model is needed) and LIGA (which is ab
initio) as it finds structural motifs from within a larger model as a
starting model for subsequent refinement. However, it has a
significant advantage over LIGA that it works directly on the
measured PDF and does not require the inter-atomic distance list
to be extracted from the PDF data, and we expect it to be of great
practical value. With this in mind, we plan to deploy ML-MotEx as
an application on the PDFitc.org web server36.
It may be considered a significant drawback that ML-MotEx

requires as an input a structure fragment that contains the target
motif within it in order to work. We provide a confidence factor for
the starting model, but ML-MotEx still requires significant
chemical/structural knowledge and intuition to be of use. We first
note that such intuition is widespread in the chemistry community
and is unlikely to be a significant drawback in practice. For
example, we have recently used the method to identify the
structure of intermediates in the formation of transition metal
tungstates from polyoxometalate ions using in situ PDF data37,
and for identifying stacking fault domain sizes in manganese
oxides from PDF and PXRD38. We also note that the method is
sufficiently fast that it would be possible to combine it with
structural screening applications such as structureMining@PD-
Fitc15,36. Given chemical information about elements that are
present, structureMining searches structural databases for candi-
date structures. These are then refined to a target dataset, and a
rank-ordered list is returned to the user. If the PDF represents a
signal from a short-range ordered structural motif, we could insert
ML-MotEx between the database mining and refinement steps to
search over sets of plausible structures to look for structural sub-
motifs. It may be possible to first use structure mining to identify

starting models, which could then be used for ML-MotEx analysis.
The models could then be further evaluated using both the
resulting Rwp values and confidence factor.
The ML-MotEx method is currently limited to PDF analysis in the

fitting procedure of the algorithm (step 2), however, the rest of
ML-MotEx (step 1+ 3+ 4) is ready to use with data from other
techniques. We are confident that a similar approach, taking
advantage of explainable ML and SHAP values, can be broadly
useful for enhancing and developing how models for data analysis
are identified and constructed.

METHODS
Step 1: Creation of a catalogue of candidate structure motifs
The first step in ML-MotEx is to use a starting structure model to
generate a catalogue of candidate structure motifs, which are all
fitted to the data. The structures are generated by removing
different numbers of atoms from the original starting structure
resulting in thousands of smaller, candidate structure motifs.
This process, which we refer to as ‘structure permutation’, is

illustrated in Fig. 10. Here, the starting model contains four metal
atoms, which are each bonded to six oxygen atoms. Before
candidate structure motifs are generated, we select which atom
type should be included in the permutation process. For the
project discussed here, this selection is based on the X-ray
scattering power of the atoms (i.e. heavier atoms scatter X-rays
strongly, while lighter ones do not), and we, therefore, choose to
permute over the four metal atoms in the structure rather than
oxygen atoms. The total number of atoms that are selected for
permutation (here 4) is referred to as the permutation number, N.
Note that we do not take symmetry into account in this process.
The selected atoms are removed or kept in the model by

randomly associating them with zeros and ones, where 0 means
that we remove the atom and 1 means we keep it. This is repeated
multiple times to generate a large catalogue of candidate
structure motifs. The total number of possible motifs from the
permutations is equal to 2N− 1, but only a small fraction of these
needs to be produced for ML-MotEx to provide satisfactory results.
In Supplementary Discussion 3, we discuss how large a catalogue
of candidate structure motifs ML-MotEx needs as training data to
output reasonable results. This is likely to be highly system
dependent and especially dependent on N and structural
symmetry. For the examples presented in the paper, we use
~140–3000 structure motifs per N.
The atoms which were not chosen for permutation, in this case

oxygen, are removed if they are not within a distance threshold
from any other atom. The threshold is user-defined and can be set

Fig. 9 Summary of the ML-MotEx analysis of experimental PDFs from Keggin clusters in solution. Results from the ML-MotEx method on a
PDF from a solution of ammonium metatungstate hydrate, using four different starting models: a [Hpy]4H2[H2W12O40] (py= pyridine)32,
b (CH3)4N)4SiW12O40

33
, c (((CH3)2NH2)6 (Cu(HCON(CH3)2)4)(GeW12O40)2)(HCON(CH3)2)2

34
, d ((CH3)2NH2)3(PW12O40)

35. Atoms kept by ML-MotEx
are shown in yellow while removed atoms are shown in black. The kept atoms were chosen as the 24 atoms (model A), 12 atoms (model B), 24
atoms (model C), and 24 atoms (model D) with the lowest atom contribution values. In Supplementary Fig. 6 a similar representation is shown,
but where the atom contribution values are directly shown using a continuous colour bar.
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according to PDF peaks and/or chemically valid distances (i.e.
bond lengths) for the expected compounds.

Step 2: Fitting the catalogue of candidate structure motifs to
the data
In the next step, we fit each of the candidate structures in the
catalogue to the experimental PDF. We here use the Python-based
program DiffPy-CMI30 for PDF fitting39–41 and apply the Debye
equation for the calculation of scattering intensities and PDFs
from the structures. The fitting strategies and parameters for each
of the examples presented below are listed in Supplementary
Table 2. The output of the fit is a Rwp value reflecting the quality of
the fit:

Rwp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 Gobs rið Þ � Gcalc ri; Pð Þ½ �2

Pn
i¼1 Gobs rið Þ2

s

� 100% (1)

Here, Gobs and Gcalc are the observed and calculated PDFs, and P is
the refinement parameters in the model.

Step 3: Predicting Rwp values using Gradient Boosting
Decision Trees
Gradient Boosting Decision Trees (GBDTs)25 are a tool that can do
classification or regression using decision trees. In this work, we
are using XGBoost25 as the GBDT algorithm to do the regression
task of predicting the fit quality (step 2) based on the structural
input given as zeros or ones (step 1) and the number of atoms in
the structure. Figure 10b shows the input to the GBDT model.
The optimization is done by making trees of ‘yes’ and ‘no’

questions on whether to keep an atom in the structure or not,
based on the resulting Rwp value. A hypothetical example of a
simple tree can be seen in Fig. 1, step 3. When atom 4 is present in
the structure, the GBDT model will predict a Rwp value which is 5%
lower than if atom 4 is not present in the structure. In the same
way, it will predict an Rwp value which is 12% lower if atom 1 is
present in the structure. In the decision tree, the algorithm will
therefore say ‘yes’ to keep both atoms 1 and 4 in the structure. In
this project, the GBDT model predicts the Rwp value using a
weighted average of 100 trees.

The GBDT model performance is improved with a large amount
of training data, which in this tool is provided by creating a larger
catalogue of candidate structure motifs and fitting them to
the data.
The GBDT model is trained on 80% of the data, which is referred

to as the training set. XGBoost25 were used with default
parameters except for learning rate and max depth, which were
optimized with the use of Bayesian optimization using 50
iterations and cross-validation split on 342,43. While this procedure
automates the hyperparameter tuning, we demonstrate in
Supplementary Fig. 12 that similar results are achieved across
various hyperparameters, and in Supplementary Fig. 13 we show
that similar results are achieved across various seeds. The last 20%
of the data is used to evaluate the performance of the algorithm
and is referred to as the test set.

Step 4: Quantifying the effect of structural features using
SHAP values, assigning atomic contribution values
SHAP values are used to analyse the Rwp values resulting from the
process described above. For each fit (step 2), each atom in the
starting model is assigned a SHAP value. The amplitude of the
SHAP value reflects how important a structural feature is for the fit
quality, while the sign of the SHAP value reflects whether the
feature affects the Rwp value of the fit towards 1 (poor fit) or 0
(perfect fit), in other words why it is important. Each atom in the
starting model will thus get F number of SHAP values, where F
corresponds to the number of fits made in step 2 of the algorithm.
We divide the F number of SHAP values into two categories; firstly,
the ones where the atom was kept in the structure motif (kept
atom SHAP value list) and second, the ones where the atom was
removed to create the structure motif (removed atom SHAP value
list). From each of the two lists, an average SHAP value for the
atoms can be calculated, defined as SHAPaverage-kept and
SHAPaverage-removed. We then define an atom contribution value,
which is calculated as the difference between two average SHAP
values, i.e.:

Atom contribution value ¼ SHAPaverage-kept � SHAPaverage-removed

(2)

Fig. 10 Example of how structure motifs can be extracted from a starting model with 4 metal atoms coordinated to oxygen and used as
input to the GBDT model. a The metal atoms are permuted randomly by creating an array of zeros and ones, where 0 refers to a deleted atom
and 1 refers to an atom that is kept in the structure. Oxygen atoms are removed if they do not bond to any metal atoms within a distance
threshold that is set by the user. Note that the metal atoms (blue) are slightly distorted from the centre of the octahedra. b Example of how
the four structures from panel a and Fig. 1 are given as input to the GBDT model which predicts the Rwp value.
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We also define the uncertainty of this value as described in Eq. 3:

Atom contribution value RMS ¼ ðSHAPRMS
average�kept

2 � SHAPRMS
average�removed

2Þ0:5

(3)

We define a confidence factor for each atom that describes how
confident we can be about including/excluding that atom in a
structural motif;

Confidence factor ¼ atom contribution value=atom contribution value RMS

(4)

The results of ML-MotEx can be visually inspected as the atoms in
the starting model are coloured according to their atom contribu-
tion value, using yellow for low atom contribution value (tendency
to keep atom, pushing Rwp down) and black for high atom
contribution value (tendency to remove atom, pushing Rwp up). ML-
MotEx outputs a VESTA44 and CrystalMaker45 file where all the
atoms are coloured with regard to their atom contribution value.
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