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General invariance and equilibrium conditions for lattice
dynamics in 1D, 2D, and 3D materials
Changpeng Lin 1,2✉, Samuel Poncé 1,3 and Nicola Marzari 1,2

The long-wavelength behavior of vibrational modes plays a central role in carrier transport, phonon-assisted optical properties,
superconductivity, and thermomechanical and thermoelectric properties of materials. Here, we present general invariance and
equilibrium conditions of the lattice potential; these allow to recover the quadratic dispersions of flexural phonons in low-
dimensional materials, in agreement with the phenomenological model for long-wavelength bending modes. We also prove that
for any low-dimensional material the bending modes can have a purely out-of-plane polarization in the vacuum direction and a
quadratic dispersion in the long-wavelength limit. In addition, we propose an effective approach to treat invariance conditions in
crystals with non-vanishing Born effective charges where the long-range dipole-dipole interactions induce a contribution to the
lattice potential and stress tensor. Our approach is successfully applied to the phonon dispersions of 158 two-dimensional
materials, highlighting its critical relevance in the study of phonon-mediated properties of low-dimensional materials.

npj Computational Materials           (2022) 8:236 ; https://doi.org/10.1038/s41524-022-00920-6

INTRODUCTION
The vibrations of atoms inside crystalline solids are fundamental
to many aspects of condensed matter physics and materials
science. The lattice vibrations play a crucial role in a wealth of
phenomena, including phase transitions1, phonon-mediated
superconductivity2,3, and electronic4 and thermal transport5,6.
The lattice-dynamical theory of solids was established at the
beginning of the twentieth century with seminal works from
Einstein, Born, von Kármán and Debye7–10. With advances in
density-functional theory (DFT) and density-functional perturba-
tion theory (DFPT)11,12, the parameter-free calculations of phonon
dispersions from first principles have become a routine task
implemented in many software packages13–19. However, there still
exist some controversies in the calculated phonon dispersions of
low-dimensional (LD) materials, where the long-wavelength
behavior of flexural phonons are not fully understood. First-
principles calculations performed by different groups showed
either a linear or quadratic dispersion relation for the flexural
acoustic (ZA) modes in two-dimensional (2D) materials and two
bending modes in one-dimensional (1D) materials (see the
detailed discussion in Ref. 20). It has been recently argued19–21

that the lack of rotational invariance in the harmonic lattice
Hamiltonian with non-vanishing external stress from DFT calcula-
tions is responsible for the linear dispersion of the ZA mode; it
becomes quadratic after including rotational invariance and
vanishing stress condition. Like translational invariance, there are
various reasons for the broken rotational invariance in the
interatomic force constants (IFCs) obtained from DFT and DFPT;
these include incomplete basis sets, insufficient Brillouin zone
sampling or numerical stability of algorithms. In contrast, IFCs
obtained from semi-empirical force fields or models do not
typically suffer from such issues, since they can satisfy translational
and rotational invariances by construction22–25.
Translational and rotational invariances drive the conservation

of total momentum and angular momentum in crystals26,27

(Noether’s theorem28); these are known as Born-Huang invariance
conditions10,29. In the 1960s, several works from Keating30,31, Gazis
and Wallis32 questioned the scope of such conditions and derived
additional conditions for a harmonic lattice to be rotationally
invariant. From the requirement of unchanged potential energy
under any arbitrary rotation operation, Gaizs and Wallis32 derived
additional constraints for the rotational invariance of a harmonic
lattice. In a similar way, through the potential energy expressed in
terms of the rotation parameter up to the second order,
Keating30,31 also formulated a new set of equations for harmonic
IFCs of the simple cubic lattice. However, Sarkar and Sengupta33

demonstrated that these are both equivalent to the Born-Huang
invariance conditions, which are complete. Finally, Pick, Cohen,
and Martin34 derived the connection between the microscopic
theory and the phenomenological approach, and the microscopic
acoustic sum rule for bulk crystals.
In this work, we investigate important aspects of the Born-Huang

invariance conditions as well as the so-called equilibrium conditions
(i.e. Huang conditions) in determining the phonon dispersions of
materials and their consequence for LD materials. We introduce the
polar Born-Huang invariances and polar Huang conditions for
harmonic IFCs in infrared-active solids where the existing long-
range forces from the dipole-dipole interactions need to be treated
separately. Indeed, Huang had already demonstrated this in the case
of bulk ionic crystals35,36, in which the long-range Coulomb
interactions need a special treatment. However, this condition seems
to have been omitted in recent investigations on the rotational
invariance of 2D materials19–21. The detailed implementation of
these conditions for correcting the IFCs either from real-space small
displacements or reciprocal-space DFPT calculations are then
presented. Last, based on the secular equation for the long-
wavelength vibrations, we demonstrate that the bending modes in
any LD material should have a purely out-of-plane polarization in the
vacuum direction and a quadratic dispersion in the long-wavelength
limit. We apply the present approach to silicon, triclinic calcium
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triphosphide (CaP3), graphene, 2D molybdenum disulfide (MoS2), 1D
single-wall (8,0) carbon nanotube (CNT) and (4,4) boron nitride
nanotube (BNNT), and find that the fulfillment of the rotational
invariance and vanishing stress condition is crucial in LD materials.
We also verify that these conditions have negligible effects in 3D
materials, as expected. Finally, these invariance conditions are
applied to correct the phonon dispersions of 245 candidate 2D
materials from the high-throughput database of Ref. 37. In that study,
the authors used a simple sum rule, resulting in 187 phonon
dispersions presenting soft modes or an incorrect linear dispersion of
the ZA mode. With the rotational invariance and equilibrium
conditions correctly applied, the phonon dispersions of 158 materials
become real and display a quadratic ZA branch in the long-
wavelength limit. The remaining 87 materials are either dynamically
unstable (54) or require tighter numerical convergence (33).

RESULTS AND DISCUSSION
Born-Huang invariance conditions
The vibrational properties of solids can be determined by the
nuclear Hamiltonian constructed based on the second-order IFCs.
Neglecting higher-order anharmonic contributions, a Taylor
expansion of the Born-Oppenheimer potential energy E in the
atomic displacements up to the second order gives:

E ¼ E0 þ
X
ϰα

Φϰαuϰα þ 1
2

X
ϰα;ϰ0β

Φϰα;ϰ0βuϰαuϰ0β; (1)

where E0 is the total potential energy of the chosen equilibrium
reference structure, and Φϰα= ∂E/∂uϰα and Φϰα;ϰ0β ¼
∂2E=∂uϰα∂uϰ0β are the corresponding first- and second-order IFCs,
respectively, with atomic indices ϰ and ϰ0 in the Born-von Kármán
supercell and the Cartesian directions α and β; the atom index
ϰ≡ {l, κ} denotes the atomic index κ in the unit cell l, and uϰα is the
corresponding atomic displacement from the equilibrium position.
Apart from the space group symmetry of the given crystal type
and permutation symmetry, these IFCs are also required to satisfy
both the global translational and rotational invariances due to the
conservation of total crystal and angular momenta.
The Born-Huang invariance conditions provide the acoustic sum

rules for both the translational and rotational invariances of a
harmonic lattice. These constraint equations on the first- and
second-order IFCs read27:X
ϰ

Φϰα ¼ 0; (2)

X
ϰ

Φϰατϰβ ¼
X
ϰ

Φϰβτϰα; (3)

X
ϰ0

Φϰα;ϰ0β ¼ 0; (4)

X
ϰ0

Φϰα;ϰ0βτϰ0γ þ δαγΦϰβ ¼
X
ϰ0

Φϰα;ϰ0γτϰ0β þ δαβΦϰγ; (5)

where τϰα is the equilibrium position of atom ϰ in the Cartesian
direction α and δαβ represents the Kronecker delta. In these
expressions, Equations (2) and (3) are the acoustic sum rules for
the translational and rotational invariances of the first-order IFCs,
while Equations (4) and (5) are their counterparts for the second-
order IFCs. When atoms are at their equilibrium positions, this set
of constraint equations can be derived by adding a global
translation or an infinitesimal rotation to all atoms in the system,
which results in an unchanged lattice potential and zero forces
acting on atoms. These acoustic sum rules correspond to the
conservation of total momentum and angular momentum in the
crystal. In general, the rotational sum rules link the (n+ 1)-th order
to the n-th order of the Taylor-expanded potential27. For instance,
Eq. (5) links the second-order IFCs to the first-order.

Equilibrium conditions
For an infinite crystal, the lattice sites are perfectly periodic
throughout the whole bulk region, and this requirement has two
important consequences. One is the total force on each atom
must be zero, which means that the first-order IFCs in Eq. (1)
vanish at the equilibrium. This condition gives rise to the Born-
Huang invariances imposed on the second-order IFCs as being
rotationally invariant:X
ϰ0

Φϰα;ϰ0βτϰ0γ ¼
X
ϰ0

Φϰα;ϰ0γτϰ0β: (6)

The other consequence is the vanishing of the stress tensor that
governs the equilibrium volume of the unit cell, eliminating any
surface effect as an infinite lattice. The stress tensor for a finite
lattice is given by27,33

σαβ ¼ 1
Ω

X
ϰ

Φϰατϰβ; (7)

where Ω is the volume of a finite lattice, and the first-order IFCs
Φϰα account for the surface forces and vanish in the bulk region27.
In order to derive the stress tensor for an infinite lattice, we
multiply the rotational invariance, Eq. (5), by the atomic position
τϰδ and sum over ϰ. Then, using Eq. (7) we arrive at

Tαδ;βγ � Ωσγδδαβ ¼ Tαδ;γβ � Ωσβδδαγ; (8)

where we have introduced

Tαδ;βγ �
X
ϰϰ0

Φϰαϰ0βτϰδτϰ0γ ¼ Tβγ;αδ: (9)

Since Tαδ,βγ might not be symmetric near the surface, we define

T sym
αβ;γδ �

Tαγ;βδ þ Tαδ;βγ

2
(10)

¼ 1
2

X
ϰϰ0

Φϰα;ϰ0βðτϰγτϰ0δ þ τϰδτϰ0γÞ: (11)

With the help of the translational invariance, Eq. (4), we can further
express Eq. (11) as

T sym
αβ;γδ ¼ � 1

2

P
ϰϰ0

Φϰα;ϰ0βðτϰγ � τϰ0γÞðτϰδ � τϰ0δÞ

¼ � 1
2

P
ϰϰ0

Φϰα;ϰ0βτϰϰ0γτϰϰ0δ; (12)

where τϰϰ0γ � τϰ0γ � τϰγ is the distance between two atoms along
the Cartesian direction γ. By construction, the symmetrized tensor
has the following symmetry relations

T sym
αβ;γδ ¼ T sym

βα;γδ ¼ T sym
αβ;δγ: (13)

To derive the stress tensor for an infinite crystal, we further
subtract both sides of Eq. (10) by the quantity Ωσγδδαβ to obtain

T sym
αβ;γδ � Ωσγδδαβ ¼ 1

2
Tαγ;βδ � Ωσγδδαβ þ Tαδ;βγ � Ωσδγδαβ
� �

; (14)

where the symmetry of the stress tensor σγδ= σδγ is used. From
Equations (8) and (9), it can be noted that the right-hand side of
Eq. (14) is invariant by interchanging α with δ and also β with γ.
Therefore, the left-hand side of Eq. (14) has the following
symmetry

T sym
αβ;γδ � Ωσγδδαβ ¼ T sym

γδ;αβ � Ωσαβδγδ; (15)

which is the expression of the stress tensor for infinite crystals27.
At equilibrium, the stress tensor vanishes, which gives the Huang
conditions T sym

αβ;γδ ¼ T sym
γδ;αβ :X

ϰϰ0
Φϰα;ϰ0βτϰϰ0γτϰϰ0δ ¼

X
ϰϰ0

Φϰγ;ϰ0δτϰϰ0ατϰϰ0β: (16)

In general, there are 36 Huang conditions due to the fourth-rank
tensor T symαβ;γδ, which can be reduced to 15 by exploiting the
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symmetry relations in Eq. (13). For the anisotropic components of
stress tensor, they become

σαβ ¼
T sym
ββ;βα � T sym

βα;ββ

Ω
(17)

σαα � σββ ¼
T sym
ββ;αα � T sym

αα;ββ

Ω
; (18)

for α ≠ β. We emphasize here that the Huang conditions are not
the constraints for a potential to be rotationally invariant but the
ones for a vanishing stress tensor. The set of Equations (4), (6) and
(16) constitute the complete description of invariance conditions
for the lattice dynamics of crystalline solids at the equilibrium.
Leaving the translational invariance aside, we focus on the
rotational invariance, Eq. (6), and the equilibrium conditions,
Eq. (16), which we collectively refers to as invariance conditions.

Invariance conditions to interatomic force constants
In practice, the real-space IFCs can be obtained by fitting the DFT
forces using the small displacement method13 or a Fourier
transformation within DFPT11,12. The IFCs are then transformed
into reciprocal space on dense momentum grids, giving rise to the
dynamical matrices. This can be achieved by a Fourier interpola-
tion of the IFCs.
The small displacement method fits the IFCs in the Taylor-

expanded interatomic forces:

Fϰα ¼ �
X
ϰ0β

Φϰα;ϰ0βuϰ0β þ � � � : (19)

This can be recast in matrix form as a linear regression problem38

F ¼ A �Φ ¼ A �C � ϕ; (20)

where A is the displacement matrix, Φ is an IFC vector, and C is
null space constructed from all symmetry constraints on the IFCs.
The constraints contain those from space group symmetry,
permutation symmetry and the invariance conditions discussed
so far. Through the null space C, the IFCs Φ can be projected into
the independent IFC parameters ϕ. Then, a least-square or
compressive sensing technique38 can be applied to determine
the unknown parameters ϕ, and the IFCs Φ are further obtained
via Φ ¼ C � ϕ.
In DFPT calculations, the IFCs are corrected to make them fulfill

the invariance conditions and then Fourier interpolated. Two
approaches exist to correct the IFCs. The first one consists in
projecting the IFCs onto a subspace, spanned by the vector basis
of the invariance conditions and obtaining the solution by nearest
distance minimization39. In order to get the projection Φp of the
IFCs in such a subspace, the orthogonal basis set {gi} of the
subspace needs to be built from the constraint matrix of
invariance conditions and yields

Φp ¼
X
i

ðΦ � giÞgi; (21)

which is the nearest distance between the original and the
corrected IFCs. The corrected IFCs Φc that satisfy the invariance
conditions are obtained via Φc=Φ−Φp. We have implemented
the invariance conditions through this optimal projection of IFCs
in the QUANTUM ESPRESSO distribution15,40.
The second approach adds a correction to the IFCs and then

minimizes the correction to remain as close as possible to the
original IFCs. We define the deviation from the invariance
conditions as

d � I �C0 � ϕ; (22)

where I is the constraint matrix of the invariance conditions. The
null space C0 introduced in Eq. (22) ensures that any correction
made will not break other symmetries, such as space group

symmetry. The prime on null space indicates that C0 is evaluated
excluding the invariance conditions that we want to correct. We
apply a small correction Δϕ such that

I �C0 � ðϕþ ΔϕÞ ¼ 0; (23)

which means that I �C0 � Δϕ ¼ �d. We can solve this problem
efficiently by utilizing ridge regression41 with the help of a penalty
term μkΔϕk22 where ∥…∥2 denotes the ℓ2-norm and μ is a
hyperparameter with values usually in the range 10−2 to 10−6,
which ensures that the correction Δϕ on the IFCs is as small as
possible:

Δϕ ¼ argmin
Δϕ

kdþ I �C0 � Δϕk22 þ μkΔϕk22: (24)

A similar implementation that applies ridge regression to impose
the invariance conditions on the IFCs can be found in the HIPHIVE
software19.
In the case of crystals, the periodic-boundary conditions need to

be taken into account in order to impose the invariance
conditions properly, and this can be tackled easily by constructing
the Wigner-Seitz supercell. Thanks to the periodicity of the lattice
and translational invariance, all the interactions are considered
between the atoms in the chosen central unit cell and the other
atoms in the supercell. To construct the Wigner-Seitz supercell,
their relative distances are recalculated as the nearest periodic
image. In the case of equal distances among their periodic images,
a weight inversely proportional to its cardinality is given. As a
result, the sum of the weights is unity because all of the atom pairs
in the supercell contribute uniquely to the potential energy. This
approach is similar to the one implemented in the EPW code42,43

to improve the accuracy of the interpolated dynamical matrix,
which optimizes atomic pairs to ensure that the distance between
each two of atomic positions are within a cutoff radius.

Fourier interpolation of interatomic force constants
The dynamical matrix Dκα;κ0βðqÞ is computed via a Fourier
interpolation of the real-space IFCs as:

Dκα;κ0βðqÞ ¼
X
R

Φκα;κ0βð0;RÞe�iq�R; (25)

where q is a phonon wavevector defined on an arbitrary grid in
reciprocal space. Due to the transitional invariance, the IFCs Φϰα;ϰ0β
in crystalline solids depend only on the relative position between
the two atoms ϰ and ϰ0. Therefore, it is convenient to consider
only the IFCs Φκα;κ0βðRÞ between the atom labelled by κ within the
reference unit cell 0 and the atom labelled by κ0 within another
unit cell R.
However, in the case of infrared-active materials, the atomic

vibrations generate long-range Coulomb interactions that can
deteriorate the quality of the Fourier interpolations11,12,44. A
common strategy12 to overcome this problem is to split the
dynamical matrix into a short-range (S) and long-range (L)
component as:

Dκα;κ0βðqÞ ¼ DS
κα;κ0βðqÞ þ DL

κα;κ0βðqÞ; (26)

such that the short-range part is a smooth function of q. If we
consider only dipole-dipole interactions12,45, the long-range part
takes the following form:

DL
κα;κ0βðq ! 0Þ ¼ WcðqÞe2

Ω0
q � Z�

κ

� �
α
q � Z�

κ0
� �

β

h i
; (27)

which is non-analytic at q= 0 and induces the direction-
dependent LO-TO splitting. To deal with the q= 0 term exactly,
the Ewald summation technique11,12 is adopted in practice with a
sum over reciprocal G vectors. In this expression, e is the
elementary charge unit, Ω0 is the volume of unit cell, Z�

κ is the
Born effective charge tensor of the atom κ within the unit cell, and
Wc(q) is the screened Coulomb potential which depends on the
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dimensionality of the system as44,46,47

W3D
c ðqÞ ¼ 4π

q � ϵ � q ; (28)

W2D
c ðqÞ ¼ 2π

jqj 1þ q�reff �q
jqj2 jqj

� � ; (29)

W1D
c ðqÞ ¼ 4π

ϵ1Djqj2πt2

(
1� 2I1ðjqjtÞK1ðjqjtÞ

´ 1� 2ϵ1D
ffiffiffi
π

p jqjtI1ðjqjtÞK0ðjqjtÞ � G22
24ðjqj2t2Þ

2
ffiffiffi
π

p jqjt ϵ1DI1ðjqjtÞK0ðjqjtÞ þ I0ðjqjtÞK1ðjqjtÞ½ �

" #)
;

(30)

where ϵ is the ion-clamped dielectric tensor of 3D system, reff ≈ ϵb/
2 is the in-plane matrix of effective screening length, b is the
thickness of the 2D material, ϵ1D is the 1D dielectric constant, t is
the effective screening radius, In(x) and Kn(x) are the nth-order
modified cylindrical Bessel functions, and Gmn

pq is the Meijer
G-function48. The 1D long-range formula, Eq. (30), has been
recently derived and more details can be found in Ref. 47. The
long-range part is substracted from the dynamical matrix on the
coarse grid, the remaining short-range part is Fourier transformed
into real space to get the IFCs.
Inspired by this approach, we formulate the polar Born-Huang

invariances and polar Huang conditions by separating the total
IFCs into short-range and long-range IFCs,X
ϰ0

ΦS
ϰα;ϰ0β þ ΦL

ϰα;ϰ0β

� �
τϰ0γ ¼

X
ϰ0

ΦS
ϰα;ϰ0γ þ ΦL

ϰα;ϰ0γ

� �
τϰ0β; (31)

andX
ϰϰ0

ΦS
ϰα;ϰ0β þ ΦL

ϰα;ϰ0β

� �
τϰϰ0γτϰϰ0δ ¼

X
ϰϰ0

ΦS
ϰγ;ϰ0δ þ ΦL

ϰγ;ϰ0δ

� �
τϰϰ0ατϰϰ0β:

(32)

Since the ΦL are analytically defined, we apply the corrections due
to the invariance conditions only on ΦS . Due to the presence of
the long-range terms, we have to solve an inhomogeneous set
of linear equations which is here achieved by using a ridge
regression method41. We then Fourier interpolate the resulting
corrected short-range IFCs at arbitrary momentum points and add
back the analytic long-range part. This approach is an alternative
to applying the Born-Huang invariances, Eq. (6), and Huang
conditions, Eq. (16), on the total real-space IFCs. We have verified
in Fig. 4 that both methods give the same interpolated 2D phonon
band structures. We also reiterate that we have neglected
dynamical quadrupoles in the long-range treatments which have
been recently shown to be important in some cases43,45,46,49 and
have been left for future works.
Finally, in the case of low-symmetry infrared-active solids, we

have observed that the total dynamical matrices are not
guaranteed to be Hermitian. As observed in Ref. 50, the
dipole-dipole IFC ansatz (e.g. Eq. (4) of Ref. 51 or Eq. (70) of
Ref. 12) which is used in the analytic form of the long-range
dynamical matrix does not guarantee Hermiticity for a general
crystal. Zhou et al.50 addressed this issue by adding a real-space
short-range correction to the IFC matrix. Here, for simplicity,
we directly symmetrize the long-range part of the on-site
dynamical matrix by its conjugate transpose and Fourier
transform both the short-range and long-range parts into real
space. We then apply the invariance conditions on the total IFCs
and subsequently substract the symmetrized long-range in real
space. Last, we Fourier interpolate the short-range IFCs to
arbitrary momentum and add the long-range part symmetrized
in the same way.

Bending modes in 2D materials
The lattice dynamics of crystalline solids is governed by the
secular equation1,10

½ωνðqÞ�2eν;καðqÞ ¼
X
κ0β

Dκα;κ0βðqÞffiffiffiffiffiffiffiffiffiffiffiffiffi
mκmκ0

p eν;κ0βðqÞ; (33)

where mκ is the mass of the κ-th atom within the unit cell. The
eigenvector eν,κα(q) is obtained by diagonalizing the mass-scaled
dynamical matrix Dκα;κ0βðqÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffi

mκmκ0
p

with the corresponding
eigenfrequency ων(q) for the phonon mode ν at momentum q,
and ν ranges from 1 to 3n with n atoms in the unit cell. To analyze
the dispersion relation of bending modes in the long-wavelength
limit (q→ 0), we perform a Taylor expansion of Eq. (33) in terms
of q. The resulting long-wavelength equation for lattice vibra-
tions is10,21:X

κ

mκ ½ωð1Þ
ν ðqÞ�2uνα ¼

X
βγδ

T sym
αβ;γδqγqδ þ T intαγ;βδqγqδ

h i
uνβ; (34)

where ω
ð1Þ
ν ðqÞ � ∂ωνðqÞ

∂q jq¼0 � q. In this equation, uνα is an arbitrary
polarization vector which is introduced via the solution for the
zero-order equation of the Taylor expansion, eð0Þν;καðqÞ ¼ ffiffiffiffiffiffi

mκ
p

uνα.
The T sym

αβ;γδ defined in Eq. (12) can be rewritten in term of a sum
over primitive cells as

T sym
αβ;γδ ¼ � 1

2

X
R

X
κκ0

Φκα;κ0βðRÞτκκ0γðRÞτκκ0δðRÞ; (35)

and T int
αγ;βδ is the contribution associated with the relaxation of

internal coordinates in response to external stress fields10:

T int
αγ;βδ ¼ �P

κκ0

P
λμ

Γκλ;κ0μffiffiffiffiffiffiffiffiffiffi
mκmκ0

p

´
P
R

P
κ00

Φκλ;κ00 αðRÞτκκ00 γðRÞ
" #

´
P
R0

P
κ000

Φκ0μ;κ000 βðR0Þτκ0κ000δðR0Þ
" #

;

(36)

with the ν × ν matrix Γκλ;κ0μ denoting the inverse of the mass-
scaled IFC matrix

P
RΦκλ;κ0μðRÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffi

mκmκ0
p

. Unfortunately, the IFC
matrix is singular because of the acoustic sum rules for
translational invariance and the Γκλ;κ0μ is thus introduced as

Γκλ;κ0μ ¼ Γ̂κλ;κ0μ κ; κ0≠1
0 otherwise

(
; (37)

where the pseudoinverse Γ̂κλ;κ0μ is calculated and satisfies the
relation10

X
μ

X
κ0¼2

Γ̂κλ;κ0μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mκ0mκ00

p
X
R

Φκ0μ;κ00 βðRÞ ¼ δλβδκκ00 : (38)

Furthermore, the tensor T int
αγ;βδ satisfies the following symmetry

relations10,36:

T int
αγ;βδ ¼ T int

γα;βδ ¼ T int
βδ;αγ; (39)

which result from the rotational invariance, Eq. (6), and the fact
that Γκλ;κ0μ ¼ Γκ0μ;κλ.
For the ZA bending modes of 2D materials in the long-

wavelength limit, if they were not purely polarized along the
vacuum direction z and coupled with the in-plane vibrations, the
leading linear term in the ZA dispersion would read:

½ωð1Þ
ZA ðqÞ�

2 ¼ 1P
κmκ

X
β

uβ
uz

X
γ;δ2fx;yg

T sym
zβ;γδ þ T int

zγ;βδ

h i
qγqδ; (40)

where the phonon band index ν≡ ZA is omitted for clarity. By
using the Huang conditions and the symmetry of T int

αγ;βδ, the
identity T sym

zβ;γδ þ T int
zγ;βδ ¼ T symγδ;zβ þ T int

γz;δβ holds. As demonstrated in
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Supplementary Note 152, we have T symγδ;zβ þ T int
γz;δβ ¼ 0 even in case

of non-purely out-of-plane modes if the rotational invariance of
the lattice potential is fullfilled and the system is free of stress,
leading to the vanishing linear dispersion term. In the long-
wavelength limit, the dispersion of ZA modes thus becomes
quadratic with a purely out-of-plane polarization. Having proven
this, we can therefore define the bending conditions as:

T sym
γδ;zβ ¼ �T int

γz;δβ; (41)

which can be imposed in case of numerical noise in the calculations
to ensure a quadratic dispersion of the flexural modes.
More generally, these conditions for recovering quadratic

flexural modes are also applicable to 1D materials, where there
are two acoustic bending modes polarizing in two vacuum
directions. In 1D materials with periodicity in the z direction, the
bending conditions thus become T sym

γδ;xβ ¼ �T intγx;δβ and T sym
γδ;yβ ¼�T intγy;δβ for polarizations in the x and y directions, respectively. We

note that if LD materials are subjected to external stress fields, the
linear term will then dominate the phonon dispersion in the long-
wavelength limit. In bulk materials, no such bending conditions
exist due to the periodicity in all three directions.

Application to bulk materials
The influence of the rotational invariance on the lattice dynamics
of bulk materials is almost unexplored. We show the phonon
dispersion of silicon in Fig. 1 and find that both the Born-Huang
invariances (red line) alone and the combination of Born-Huang
invariances and Huang conditions (blue line) have little effect,
compared with the phonon dispersion obtained from the IFCs
without the aforementioned conditions imposed (black dashed
line). This result is not surprising given that the IFCs of high-
symmetry bulk crystals with space inversion automatically fulfill
rotational invariance53.
As an example of infrared-active bulk materials, we calculate

the phonon dispersion of triclinic CaP3 shown in Fig. 2, with the
LO-TO splitting included. The crystal symmetry of CaP3 with
the space group of P1 is low: only the identity and the spatial
inversion operations. For a 2 × 2 × 2 supercell with 64 atoms,
there are 160 unique atomic pairs which means 1440 IFC
components. The total number of independent IFC parameters
in CaP3 is 1215 after considering the space group symmetry, the
permutation symmetry and the translational invariance. When
we add the Born-Huang invariances on the IFCs, the number
of independent IFCs is reduced to 1179. The number of

independent IFC parameters can further decrease to 1164 if the
Huang conditions are included as symmetry constraints. Besides,
there is a large deviation from these two invariance conditions
reflected by the Frobenius norm of d in Eq. (22); it vanishes with a
magnitude of 10−6 after the invariance conditions are enforced,
which indicates that the Born-Huang invariances and Huang
conditions are now satisfied. However, the phonon dispersions of
CaP3 in Fig. 2 are almost unchanged. There is only a small
modification of the lowest-lying transverse acoustic (TA) branch.
Hence, we conclude that the violation of the rotational invariance
does not affect the phonon dispersion of bulk materials at
equilibrium, and the corrections of the invariance conditions on
the IFCs of bulk materials are not important, even for low-
symmetry crystals. This can be rationalized from the fact that bulk
materials are periodic along all directions and thus do not have
any rigid rotation. Nonetheless, for the elastic tensor cij (in Voigt
notation) determined directly from the second-order IFCs, the
broken symmetry relation (i.e. cij ≠ cji) of low-symmetry solids can
be observed due to the violation of the rotational invariance and
equilibrium conditions53.

Application to 2D materials
As revealed by a few recent studies19–21, the violation of the
rotational invariance and vanishing stress condition are expected
to have a remarkable effect on the lattice-dynamical properties of
2D materials, which can lead to an unphysical dispersion relation
of the out-of-plane ZA branch. The influence of such two
invariance conditions on the phonon dispersions of infrared-
inactive 2D materials is illustrated in Fig. 3, where we take
graphene as a representative material. In general, the lack of these
two invariance conditions can result in a ZA mode either
displaying imaginary frequencies or a non-quadratic dispersion
relation in the long-wavelength limit. We confirm these findings
by fitting the IFCs obtained from randomly displaced configura-
tions. As can be seen in the inset of Fig. 3, the pristine phonon
dispersion (black dashed line) of graphene without the Born-
Huang invariances and Huang conditions exhibits a linear ZA
branch close to the zone center. When we add the Born-Huang
invariances to make the IFCs satisfy the global rotational
invariance, the result (blue line) remains unchanged with respect
to the pristine one. This happens because the crystal symmetry of
graphene is high and the rotational invariance of its lattice
potential is automatically satisfied. In contrast, only the red and
yellow lines, where the additional Huang conditions are fulfilled,

Fig. 1 Effects of the invariance conditions on the phonon
dispersion of bulk silicon. TI denotes the correction of translational
invariance on the IFCs, while BH and H represent the corrections by
Born-Huang rotational invariance and Huang conditions,
respectively.

Fig. 2 Influence of invariance conditions on the phonon disper-
sion of the infrared-active bulk CaP3. TI denotes the correction of
translational invariance on the IFCs, while BH and H represent the
corrections by Born-Huang rotational invariance and Huang condi-
tions, respectively.

C. Lin et al.

5

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022)   236 



show the expected parabolic dispersion of the ZA branch around
the Γ point. More generally, both the Born-Huang invariances and
Huang conditions must be satisfied to observe the physically
correct ZA phonons with quadratic dispersions in the long-
wavelength limit. To illustrate this, we consider an MoS2
monolayer (see Supplementary Fig. 152), which lacks the
additional inversion symmetry. We see that fulfilling the vanishing
stress condition alone is not sufficient for obtaining a parabolic ZA
branch, and that the rotational invariance is required as well. We
therefore deduce that residual stress remains after structural
optimization and that this equilibrium condition enforces strict
null stress to recover the quadratic dispersion relation of the ZA
phonons. In particular, there is still a non-negligible stress in the
vacuum direction even after a high-quality structural optimization
with a Coulomb cutoff for 2D materials44,54, owing to the existing
weak layer interactions from the periodic images. This observation
is consistent with the dispersion model of long-wavelength
bending modes in Eq. (40) which indicates that any external
stress will give rise to a non-vanishing linear dispersion term and
hence suppresses the next-leading quadratic dispersion. Overall,
both the Born-Huang rotational invariance and Huang conditions
(vanishing stress condition) are of great importance for 2D
materials to have the expected behavior of the ZA branch in the
long-wavelength limit.
Most 2D insulators and semiconductors are infrared-active with

non-vanishing Born effective charges and long-range interactions. In
such cases, the long-range Coulomb interactions provide additional
contributions to the IFCs35,36. The enforcement of the invariance
conditions for infrared-active materials should therefore be
performed with caution. We take the MoS2 monolayer as an
example to showcase this special treatment. In 2D materials, the LO-
TO splitting vanishes at the zone center, and the LO dispersions
become linear in q with a finite slope44,54. As shown in Fig. 4, the
phonon dispersions of MoS2 monolayer calculated directly from the
pristine IFCs from DFPT (black dashed line) exhibit small imaginary

frequencies in the ZA branch close to the zone center, as a
consequence of the broken invariance conditions. If we add the
corrections according to the invariance conditions from Equations
(6) and (16) on the short-range IFCs only (blue line), there still exist
some imaginary frequencies around the Γ point, belonging to the ZA
phonons. This can be understood by realizing that the long-range
IFCs indeed contribute to the stress tensor and the rotational
invariance of the lattice potential. When the long-range interactions
are added back analytically, the resulting total dynamical matrices in
reciprocal space will not fulfill the Born-Huang invariances and
Huang conditions. This is further confirmed by looking the yellow
line in Fig. 4, where the non-analytic correction corresponding to the
long-range interactions are removed, and the result presents a
stable ZA branch in the parabolic shape near the Γ point (i.e. the
short-range IFCs satisfying the invariance conditions). To deal with
the invariance conditions properly in infrared-active solids, we need
to consider Eq. (31) for the polar Born-Huang invariances and Eq.
(32) for the polar Huang conditions to make the total IFCs meet the
invariance conditions (green line). The long-range IFCs contributed
from the dipole-dipole interactions are considered when imposing
the invariance conditions on the short-range IFCs only, and an
analytic long-range correction is further introduced back in
reciprocal space to recover the LO-TO splitting. As indicated by
the red line in Fig. 4, an equivalent approach is to apply the normal
invariance conditions on the total IFCs, substract the long-range part
obtained by Fourier transformation, and Fourier interpolate the
resulting short-range IFCs with an analytic long-range contribution
added back. Both approaches yield the correct ZA branch and the
2D LO-TO splitting shown in the inset of Fig. 4. Apart from the
effects on the LO-TO splitting of optical phonons, we observe that
the long-range dipole-dipole interactions also modify the ZA modes
by lowering their energies when comparing the results in yellow and

Fig. 3 Invariance conditions applied on the phonon dispersion of
graphene. TI denotes the correction of translational invariance on
the IFCs, while BH and H represent the corrections by Born-Huang
rotational invariance and Huang conditions, respectively. The inset
shows a zoom-in result around the Γ point. The yellow line coincides
with the red one as the rotational invariance is automatically
satisfied in graphene.

Fig. 4 Comparison between the phonon dispersions of an
infrared-active 2D MoS2 with the corrections of Born-Huang
(BH) rotational invariance and Huang (H) conditions on the short-
range (SR) IFCs and on the total IFCs. The polar Born-Huang (PBH)
rotational invariance and polar Huang (PH) conditions are also
considered. The TI denotes the correction of translational invariance.
When correcting the total IFCs, the contributions from the long-
range (LR) IFCs are further removed in real space and an analytic
long-range correction (LRC) is then added back in reciprocal space
to recover the LO-TO splitting. The inset show zoom-in results
around the Γ point and the LO-TO splitting at the E0 mode.
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red lines. In the rest of the manuscript, we always use the last
approach (red line) in infrared-active materials.

Application to 1D materials
Another important class of LD materials are 1D materials. The
effects of the invariance conditions on their lattice-dynamical
properties have not yet received much attention. We choose the
single-wall (8,0) CNT and (4,4) BNNT as representative infrared-
inactive and -active 1D cases, respectively. We illustrate in Fig. 5 the
corrections from the invariance conditions on the phonon
dispersion of (8,8) CNT, where we can see that the results with
only the translational invariance applied yield only three vanishing
acoustic frequencies at the Brillouin zone center. In 1D systems with
more than one atom in the unit cell, four acoustic branches are
expected and correspond to the three global translational degrees
of freedom in the three cartesian directions and one rotational
degree of freedom along the 1D axis. This is correctly recovered
when applying the Born-Huang invariances as shown with a red
line in Fig. 5. As shown previously25,39,55,56, the frequency of the
twisting acoustic mode due to the global rotation along the
nanotube axis can become finite at the Γ point (around 1.0 THz in
our case) if the Born-Huang rotational invariance is not enforced.

Also, the dispersion relation of the two acoustic branches
corresponding to the bending motions becomes parabolic in the
long-wavelength limit after adding the corrections from the Born-
Huang rotational invariance. The Huang conditions for vanishing
external stress seem to have no influence on the case of single-wall
(8,8) CNT, i.e. the blue line coinciding with the red one. The
conditions of vanishing stress have been already satisfied after a
tight structural optimization. In general, both the Born-Huang
invariances and Huang conditions should be fulfilled in order to
find the correct dispersions of two bending modes in 1D materials.
It is the case for the infrared-active (4,4) BNNT shown in Fig. 6,
where the two bending modes with quadratic dispersions are only
recovered when both invariance conditions are imposed. Further-
more, there are long-range Coulomb interactions due to the non-
vanishing Born effective charges in BNNT. The quadratic phonon
dispersions of two bending modes and the emergence of twisting
acoustic modes with vanishing frequency at the zone center can
only be observed with the polar invariance conditions introduced in
Equations (31) and (32). Overall, our proposed invariance scheme
can be applied to any material ranging from bulk to 2D and to 1D
systems to recover exact lattice-dynamical properties.

2D materials database
A recent high-throughput screening by Mounet et al.37 on
experimentally known layered compounds has identified 1825

Fig. 5 Corrections due to the invariance conditions on the
phonon dispersion of an infrared-inactive 1D single-wall (8,0)
carbon nanotube. TI denotes the correction of translational
invariance on the IFCs, while BH and H represent the corrections
by Born-Huang rotational invariance and Huang conditions,
respectively. The inset shows a zoom-in result around the Γ point,
with four acoustic branches labelled as longitudinal acoustic (LA),
twisting acoustic (TWA) and flexural acoustic (ZA, doubly degen-
erate) modes, respectively. The blue line coincides with the red one,
which indicates the Huang conditions have no effect and the
external stress is already vanishing after structural optimization.

Fig. 6 Application of the invariance conditions to the phonon
dispersion of an infrared-active 1D single-wall (4,4) boron nitride
nanotube. TI denotes the correction of translational invariance on
the IFCs, while BH and H represent the corrections by Born-Huang
rotational invariance and Huang conditions, respectively. The inset
shows a zoom-in result around the Γ point, with four acoustic
branches labelled as longitudinal acoustic (LA), twisting acoustic
(TWA) and flexural acoustic (ZA, doubly degenerate) modes,
respectively.
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materials that can be easily or potentially exfoliated. The
vibrational properties of 245 of these 2D materials were calculated
and explored, with all the data available on the Materials Cloud57.
However, a large proportion of the calculated phonon dispersions
showed imaginary frequencies, which suggests that the predicted
2D materials would be dynamically unstable. Since most of the
unstable phonon branches are ZA modes in the zone center
region, we apply here our invariance scheme to see if these can be
stabilized.
We select four representative 2D materials from the database,

namely FeO2, PrOI, InSe and BiOCl, and report their phonon
dispersions in Fig. 7. As can be seen, after the invariance
conditions are enforced, all of the four phonon dispersions
become stable with a quadratic ZA mode in the long-wavelength
limit. Besides, FeO2 and PrOI are metals, while InSe and BiOCl
are inrared-active semiconductors with non-zero Born effective
charges. The results in Fig. 7 highlight the effectiveness of the
invariance conditions described in this work. Finally, our simula-
tions shed a new light on the origin of imaginary frequencies
existing in the 2D material database and shows that in most
cases this was due to a violation of some invariance conditions.

We therefore expect that most 2D materials reported are stable
and will be synthesized in the future.
The updated database is available on the Materials Could

archive58, and the phonon dispersions for all of 245 materials can
be found in Supplementary Information52 of this study. After
investigation, there are 54 materials that are not dynamically
stable, with pronounced imaginary frequencies not located
around the Γ point in the database (see Supplementary Table
152). After these truly unstable 2D structures are excluded, we still
have 33 candidates that exhibit an unstable ZA branch with small
imaginary frequencies near the Γ point after the invariance
conditions are enforced (see the detailed information of these 2D
materials in Supplementary Table 252). There are mainly two
reasons why the correction of the invariance conditions fails to
recover a stable and quadratic ZA mode at the zone center. One of
them is the numerical accuracy of the structure optimization and
DFPT calculation, which might not be sufficient to produce
accurate real-space IFCs. The other is more subtle: one might need
to expand Eq. (1) also in terms of strain-electric field59 and include
the treatment of higher-order multipolar interactions43,45,46,49,
which we neglect here for simplicity. To reveal the first problem,
we have selected a few of cases including HfS2, NbF4, CoO2, TaS2

Fig. 7 Corrected phonon dispersions of four representative 2D materials from the 2D material database of Ref. 57, (a) FeO2, (b) PrOI, (c)
InSe and (d) BiOCl. The inset shows a zoom-in result around the Γ point. The black dashed lines are the results computed from the DFPT
calculations with the translational invariance (TI) fulfilled, while the red lines denote the results where the Born-Huang (BH) invariances and
Huang (H) conditions have also been enforced.
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and C where the structure optimization and subsequent DFPT
were repeated with more stringent calculation parameters. The
corresponding phonon dispersions based on these new IFCs with
the invariance conditions applied become stable and display a
quadratic ZA mode in the long-wavelength limit (see the results
with the legend this work in Supplementary Note 452). In a few
cases involving magnetic 2D materials, the self-consistent solution
found might not be the lowest-energy ground state. We did not
investigate these cases further. For the second case, we observe
that black phosphorus and arsenene have a nonvanishing yz
components of the Born effective charge tensor, resulting in small
soft modes due to the neglect of electric field in calculating IFCs
and higher-order long-range electrostatic fields in the interpola-
tion of IFCs, which could be important in the presence of
piezoelectricity or flexoelectricity45,59–61.
In conclusion, we have presented a systematic study on the

invariance and equilibrium conditions in the lattice dynamics of
crystalline solids, as well as its implementation in the framework
of modern first-principles simulations. The results highlight the
importance of enforcing both the Born-Huang invariances and
Huang conditions in order to recover the quadratic dispersion
relation of the ZA phonons in LD materials around the Brillouin
zone center. This is in agreement with the theoretical model
discussed in Ref. 21 and this work for bending waves, where the
first-order dispersion vanishes as the bending conditions
regardless of the crystal type of LD solids. As expected, such
two invariance conditions are found to have negligible influence
on the lattice dynamics of bulk materials, even for low-symmetry
crystals. Besides, we have introduced polar Born-Huang invar-
iances and polar Huang conditions, which allow to separately
treat the short-range and long-range IFCs for infrared-active
solids. This scheme can work effectively in infrared-active 2D
materials where the long-range dipole-dipole interactions con-
tribute to the fulfillment of the invariance conditions. To
demonstrate the effectiveness of the method developed, we
apply this invariance scheme to over two hundred 2D material
candidates from a high-throughput database, most of which
originally displayed an unstable phonon dispersion with the
imaginary ZA modes close to the Γ point. With four types of
representative 2D materials from the database illustrated here,
we demonstrate that most of their phonon dispersions become
stable with a physically quadratic ZA branch in the long-
wavelength limit, after the invariance conditions are imposed.
We believe the proposed rotational invariance and equilibrium
conditions will have wide applications in the field of LD materials,
benefiting future lattice-dynamical studies of novel materials,
and the calculations of their mechanical, thermodynamic,
vibrational, and spectroscopic properties.

METHODS
The DFT and DFPT calculations are performed with QUANTUM
ESPRESSO15,40 and the v1.1 SSSP efficiency pseudopotentials’
library62. To describe the exchange and correlation of electrons,
we employ the Perdew, Burke, and Ernzerhof’s parametrization for
solids (PBEsol)63 of the generalized gradient approximation (GGA).
In the case of 2D materials, the Coulomb cutoff for 2D system
implemented by Sohier et al.54 is adopted to remove the long-
range interactions in the vacuum direction, which is important to
obtain the correct electronic screening and LO-TO splitting in 2D
materials44. To compute the IFCs directly in real space from the
small displacement method, we use an in-house code which is
interfaced with QUANTUM ESPRESSO. The subsequent Fourier
interpolation to reciprocal space is obtained with PHONOPY14 to
compute the phonon dispersions.

Silicon
The optimized lattice parameter is 5.43 Å, with convergence
thresholds for pressure and forces smaller than 10−2 kbar and
10−4 Ry/Bohr, respectively. The same criteria for other materials
are used unless stated. To calculate the real-space IFCs, we use a
plane-wave kinetic energy cutoff of 60 Ry with a Γ-point grid
computed on a 4 × 4 × 4 supercell and perform a random
displacement with the magnitude of 0.01 Å for all atoms. A
least-square fit of the Taylor-expanded forces to the DFT forces is
carried out to find the best solution for the IFCs.

Triclinic CaP3
The structure is relaxed with a plane-wave kinetic energy cutoff of
30 Ry and a 10 × 10 × 10 electronic grid. Similar to the case of
silicon, we build a 2 × 2 × 2 supercell, and the real-space DFT
calculations based on a 2 × 2 × 2 grid are carried out for 30
displaced structures to get the entire IFCs. In addition, a DFPT
calculation at q= 0 is performed to get the dielectric tensor and
Born effective charges.

Graphene
To simulate graphene as a 2D material, a vacuum of 20 Å is set in
the out-of-plane direction to remove the interaction between
periodic images. The structure is relaxed using a plane-wave
kinetic energy cutoff of 80 Ry and a 20 × 20 × 20 electronic grid.
The optimized lattice constant of graphene is 2.46 Å. To calculate
the phonon dispersions, the same real-space procedure is
adopted. We create a 6 × 6 × 1 supercell and the corresponding
DFT calculations for 10 displaced supercells, with an electronic
sampling of 3 × 3 × 3.

2D MoS2
We choose a vacuum of 25 Å to avoid the spurious interactions
in the out-of-plane direction. With a plane-wave kinetic energy
cutoff of 55 Ry and a 14 × 14 × 1 electronic grid, we obtain the
optimized lattice constant as 3.14 Å based on tighter relaxation
criteria for pressure (smaller than 10−3 kbar) and forces (smaller
than 10−5 Ry/Bohr). For the lattice-dynamical calculations, we
perform a DFPT calculation on a 6 × 6 × 1 phonon grid, and the
IFCs are obtained through the inverse Fourier transform of
the dynamical matrices.

1D materials
For the single-wall (8,0) CNT, the periodic direction is chosen along
the z direction with a vacuum of 20 Å in both the x and y
directions, and the lattice constant of the optimized structure is
4.26 Å based on the relaxation criteria of pressure (smaller than
10−2 kbar) and force (smaller than 10−5 Ry/Bohr). We create a
1 × 1 × 4 supercell and generated 60 displaced configurations
using the same procedure as before to obtain the real-space IFCs.
The DFT calculations for these displaced supercells are performed
with a plane-wave kinetic energy cutoff of 80 Ry and a Γ-point
electronic grid. For the infrared-active single-wall (4,4) BNNT, the
IFCs are obtained by DFPT calculations as in Ref. 47, with the
appropriate Coulomb cutoff for 1D systems.

DATA AVAILABILITY
The material structures, pseudopotentials, interatomic force constants and related
data in order to reproduce this study can be found on the Materials Cloud Archive58.

CODE AVAILABILITY
The code developed and used in this work is integrated into the Q2R.X and
MATDYN.X executables of the QUANTUM ESPRESSO distribution, which will be
released in the next version of QUANTUM ESPRESSO.
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