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Towards overcoming data scarcity in materials science:
unifying models and datasets with a mixture of experts
framework
Rees Chang 1✉, Yu-Xiong Wang2✉ and Elif Ertekin3,4✉

While machine learning has emerged in recent years as a useful tool for the rapid prediction of materials properties, generating
sufficient data to reliably train models without overfitting is often impractical. Towards overcoming this limitation, we present a
general framework for leveraging complementary information across different models and datasets for accurate prediction of data-
scarce materials properties. Our approach, based on a machine learning paradigm called mixture of experts, outperforms pairwise
transfer learning on 14 of 19 materials property regression tasks, performing comparably on four of the remaining five. The
approach is interpretable, model-agnostic, and scalable to combining an arbitrary number of pre-trained models and datasets to
any downstream property prediction task. We anticipate the performance of our framework will further improve as better model
architectures, new pre-training tasks, and larger materials datasets are developed by the community.
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INTRODUCTION
In recent years, software development of automated density
functional theory (DFT) calculation workflows has led to the
emergence of large open-source databases of materials and their
simulated properties1–3. However, due to computational restraints,
not all properties are computed for all materials in these
databases. For example, at the time of writing, the Materials
Project (MP)1 contains 144,595 inorganic materials, but only
76,240 electronic bandstructures, 14,072 elastic tensors, and 3402
piezoelectric tensors. Many studies have thus trained supervised
machine learning (ML) models on materials for which property
data is available, subsequently screening the remaining materials
orders of magnitude faster than DFT. After identifying promising
materials with ML-based screenings, these materials are studied
more rigorously with DFT and/or experiment. Example applica-
tions wherein ML-based screenings led to successful simulated or
experimental validation include photovoltaics, superhard materi-
als, batteries, hydrogen storage materials, ferroelectrics, shape
memory alloys, dielectrics, and more4.
To handle the data types encountered in materials, ML

approaches in materials science generally involve statistical
learning models using hand-crafted, application-dependent
descriptors as input5,6 or graph neural networks (GNNs) directly
using materials’ atomic structures as input7,8. While the latter
models have shown superior performance likely by more faithful
representation of atomic structures9, their large number of
trainable parameters requires on the order of 104 data examples
to sufficiently reduce overfitting relative to descriptor-based
methods6. Acquiring 104 data examples can be impractically
expensive, limiting our ability to build predictive ML models, e.g.,
for experimental data and complex systems like layered materials,
surfaces, and materials with point defects. Similarly, generating
large amounts of data is infeasible for rare materials behaviors and

phases like high-temperature superconductors or spin liquids.
Developing predictive ML models to effectively handle data
scarcity in materials science is thus a pervasive challenge with
practical significance for a range of technologies.
Several approaches have been applied in materials science to

reduce the large data requirement of neural networks. Many of
these approaches can be classified as regularizing neural networks
to perform well across multiple relevant tasks—similar to how
humans use background knowledge to learn from few examples.
One such regularization technique commonly employed in

materials science is pairwise transfer learning (TL), wherein
parameters of a model pre-trained on a data-abundant source
task (e.g., predicting formation energy) are used to initialize
training on a data-scarce, downstream task (e.g., predicting
experimental bandgaps)7,10–16. A well-known obstacle for TL is
catastrophic forgetting, which is the tendency of a model to forget
relevant information from the source task when adapting to the
data-scarce task and subsequently overfitting17,18. To avoid
catastrophic forgetting, early layers of the pre-trained model are
typically frozen while later layers are fine-tuned, i.e., updated with
a reduced learning rate15. However, TL suffers from several
limitations; its success is contingent on the existence of a source
task with many data examples and high similarity to the
downstream task. Additionally, TL only allows information to be
leveraged from a single task, and the source task from which to
transfer from is not generally known a priori19,20. TL from a source
task dissimilar to the downstream task can even lead to worse
performance than training a model on the downstream task from
scratch, a phenomenon known as negative transfer17,21. Previous
studies in materials science have thus either transferred from the
largest available source task7, transferred from lower to higher
fidelity data of the same property12–14, conducted brute-force
experiments on different source tasks11,22, or engineered new
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source tasks not directly relevant for a materials application but
serving as generalizable pre-training tasks10,23.
Other techniques, such as multitask learning (MTL), can leverage

information across many tasks. MTL has already been used to
improve model performance by jointly predicting formation
energies, bandgaps, and Fermi energies with a single model24.
However, MTL models are in general difficult to train; determining
task groupings for joint training without detriment to performance
(i.e., without negative transfer from task interference) is an open
research question25,26. Furthermore, optimal groupings are
sensitive to hyperparameters like learning rate and batch size27.
This sensitivity arises because MTL models must overcome
imbalanced task gradient magnitudes and conflicting task
gradient directions during training28–30. Also, MTL models
frequently suffer from catastrophic forgetting when adapted to
new tasks18.
In this work, to overcome the aforementioned limitations of TL

and difficulties of MTL, we propose a mixture of experts (MoE)
framework for materials property prediction. By construction, our
framework can leverage information from an arbitrary number of
source tasks and pre-trained models to any downstream task,
does not experience catastrophic forgetting or task interference
across source tasks as in MTL, and automatically learns which
source tasks and pre-trained models are the most useful for a
downstream task in a single training run. Our framework
consistently outperforms pairwise TL on a suite of data-scarce
property prediction tasks; emits interpretable relationships
between source and downstream property prediction tasks; and
provides a general, modular framework to combine complemen-
tary models and datasets for data-scarce property prediction. The
generality of our approach also makes it compatible with any new
source tasks, model architectures, or datasets which may be
developed in the future.

RESULTS AND DISCUSSION
Pairwise transfer learning
Pairwise transfer learning involves using all or a subset of
parameters from a pre-trained model to initialize training on a
data-scarce, downstream task. We know fundamental rules of
quantum chemistry generalize across materials and properties, i.e.,
the periodic table and Schrodinger’s equation are universal.
However, the final mapping from fundamental physics to a
specific property depends heavily on the property. For example,
while both formation energy and electronic band gap can be
obtained from DFT, computing formation energy requires
comparing to a relevant reference state, while computing
bandgaps requires comparing band edge positions. Thus, after
pre-training a model on a source task for TL (and MoE), we only re-
used a subset of the pre-trained model parameters to produce
generalizable features of an atomic structure. We let these pre-
trained parameters define a feature extractor, E(⋅). Specifically, the
extractor takes in an atomic structure x and outputs a feature
vector E(x) describing the structure. Predictions of a scalar
property of any atomic structure is then produced by passing
the feature vector E(x) through a property-specific head neural
network, H(⋅). Putting it together, predictions ŷ are produced as
ŷ ¼ HðEðxÞÞ.
Similar to refs. 24 and 31, we let the extractor E(⋅) be the atom

embedding and graph convolutional layers of a crystal graph
convolutional neural network (CGCNN)8. These layers produce a
representation of a crystal from its constituent atom types and
pairwise interatomic distances. Our head H(⋅) is a multilayer
perceptron. Specific hyperparameters of the architecture can be
found in Supplementary Table 1. In our pairwise TL experiments,
we found it beneficial to extract from and fine-tune the last graph
convolutional layer when transfer learning to a downstream task

(see Supplementary Figs. 2 and 3). We applied these design
choices to all TL and MoE experiments in the rest of this paper.

The mixture of experts framework
MoEs were first introduced more than three decades ago32 and
have since been studied as a general-purpose neural network
layer notably for tasks in natural language processing33. MoE
layers consist of multiple expert neural networks and a trainable
gating network which, often conditionally, routes inputs through
the experts. The output of the MoE layer is then computed by
aggregating outputs of all the activated experts. A result of the
MoE layer’s gating mechanism is that large parts of the model can
be inactive on a per-example basis, enabling massive increases in
model capacity and performance without concomitant increases
in training cost. Interestingly, in natural language processing, it
has also been shown that the experts tend to automatically
become highly specialized based on syntax and semantics33.
Formally, a MoE layer consists of m experts Eϕ1

; :::; Eϕm

parameterized by ϕ1, . . . , ϕm and a gating function G(x, θ, k) which
takes in trainable parameters θ and produces a k-sparse, m-
dimensional probability vector. In our work, since each expert is
responsible for producing a feature vector describing a material,
we refer to each expert as an extractor. For simplicity, we also
chose to make our gating function independent of the model
input (i.e., which material we are making a property prediction
for), so we have G(x, θ, k)= G(θ, k). For a given input x, we denote
the output of the ith extractor as Eϕi

ðxÞ and the ith output of
G(θ, k) as Gi(θ, k). The output f of our MoE layer is a feature vector
produced by a mixture of extractors, i.e.,

f ¼
Mm
i¼1

Giðθ; kÞEϕi
ðxÞ; (1)

where ⨁ is an aggregation function.
We experimented with letting the aggregation function be

concatenation or addition, comparing performance with end-to-
end learning of a weighted ensemble of different fine-tuned
CGCNN predictions. Table 1 reports the mean absolute error (MAE)
of each method on three data-scarce tasks: predicting piezo-
electric moduli34, 2D exfoliation energies35, and experimental
formation energies36,37. These tasks consisted of 941, 636, and
1709 data examples, respectively. A special sampling procedure
was used when partitioning test splits for the experimental
formation energy dataset (see Model training in “Methods”). None
of the aggregation methods consistently outperformed the others
on the three tasks, so we opted for addition. An advantage of this
choice is that the model’s feature dimensionality becomes
independent of the number of feature extractors. As a proof-of-
concept, our extractors fEϕi

ð�Þg are CGCNNs each pre-trained on a
different materials property dataset with at least 104 examples. All
datasets were acquired through Matminer38.
Ourgating mechanism is parameterized with θ 2 Rm and a

hyperparameter k 2 Nþ controlling sparsity, where Nþ denotes

Table 1. Benchmarking pre-trained extractor aggregation methods.

d33 Eexfol (meV/at) Expt. Ef (eV/at)

Ensemble 0.221 ± 0.034 48.8 ± 10.0 0.0951 ± 0.0054

Concatenate 0.238 ± 0.058 54.2 ± 12.9 0.108 ± 0.007

Add 0.220 ± 0.029 48.1 ± 9.0 0.0982 ± 0.0080

Average test mean absolute errors (MAE) and standard deviations over five
random seeds for different methods of aggregating pre-trained extractors.
Smaller MAEs are better. Each method was benchmarked on predicting
piezoelectric modulus (d33)34, 2D exfoliation energies (Eexfol)35, and
experimental formation energies (Expt. Ef)36,37.
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natural numbers greater than zero. Our gating function G(θ, k) is as
follows:

Gðθ; kÞ ¼ SoftmaxðKeepTopKðθ; kÞÞ; (2)

KeepTopKðθ; kÞi ¼
θi if θi is in the top k elements of θ

�1 otherwise:

�

(3)

Before applying the Softmax function, we only keep the top k
values of θ. Mathematically, this is equivalent to setting the rest of
the values to −∞, assigning the corresponding extractors a gating
value of 0 after applying the Softmax. To encourage the model to
focus on the most relevant extractors, we followed ref. 39 and
added a regularization term P to the training loss:

P ¼ λðaTa� 1Þ2: (4)

Here, a ¼ Gðθ; kÞ 2 Rðm ´ 1Þ is a vector of probability scores
assigned to each extractor, and λ is a hyperparameter weighting
the regularization term. We set λ= 0.01. Intuitively, ðaTa� 1Þ2 � 0
with equality if and only if a concentrates all probability mass on a
single extractor (wherein aTa= 1).
While we chose the extractors Eϕ1

; :::; Eϕm
to be CGCNNs, this

choice can be much more flexible. For example, extractor outputs
could be embeddings from different layers of a single CGCNN or
other graph neural networks7,8,40, hand-crafted featurizers6,
language models41, or generative models42 trained by single-task,
multitask, supervised, unsupervised, semi-supervised, or self-
supervised learning. This ability to combine different extractor
architectures is distinct from TL or MTL, where single architectures
must be used across all tasks. In addition, extractors can be trained
on any dataset which serves as generalizable pre-training data.
These might include materials properties from the Materials
Project1, the Open Quantum Materials Database43, JARVIS3, or
AFLOW2; text from scientific journal abstracts41; or data generated
for unsupervised or self-supervised learning10,23,42.
A schematic summarizing our framework is shown in Fig. 1. The

first phase of our approach is to pre-train separate models on
different source tasks. In our case, these source tasks involve
prediction of scalar properties from large datasets, where,
following ref. 6, we defined ‘large’ as consisting of more than
104 examples (Fig. 1a). A complete list of our source tasks and the
resulting pre-trained model performances are enumerated in
Supplementary Table 2. Because each extractor is pre-trained
separately, there is no possibility of task interference during pre-
training as in MTL. The second phase is to combine and adapt the
separate models to a downstream, data-scarce task (Fig. 1b). Our
adaptation process consisted of training a randomly initialized
head while fine-tuning the last layer of each extractor towards the
new task.

MoE outperforms TL from the best pre-trained model. We
examined whether transferring information from multiple pre-
trained models with the MoE framework could outperform
transferring from a single pre-trained model. Specifically, we
evaluated five different methods (visually described in Fig. 2) on
the same three downstream, data-scarce tasks as before:
predicting piezoelectric modulus34, 2D materials’ exfoliation
energies35, and experimental formation energies36,37.
The first baseline method, termed STL, was traditional single-

task learning on the data-scarce target task from a randomly
initialized model (i.e., without pre-training).
The next baseline method, termed Best TL-(3), first involved

humans selecting three source tasks for each downstream task.
These selections represented our best effort at intuitively picking
the most relevant tasks to the downstream tasks without using
ML. The rationale behind the chosen source tasks is described
below. Next, pairwise TL from each chosen source task was
conducted independently, and the best model performance is
reported.
The third method, termed MoE-(3), used the same three source

tasks as Best TL-(3), but in a single training run under the MoE
framework with hyperparameter k= 3.
The fourth method, termed MoE-(18), used all eighteen available

source tasks with hyperparameter k= 18, challenging an MoE
model to automatically learn which extractors were most useful
for the downstream task at hand. This ability to automatically
discover task relationships is critical when relationships between
source and downstream tasks are counterintuitive or unknown.
For example, we may lack or have an incorrect scientific
understanding for a particular property. Or, if source tasks are

Fig. 1 Overview of our mixture of experts framework. a First, separate machine learning models, each consisting of a feature extractor and a
classification or regression head, are trained on separate learning tasks. b Next, the pre-trained experts are adapted to a downstream learning
task along with a newly initialized head.

Fig. 2 Visualization of STL, Best TL-(n), and MoE-(n). The
experimental formation energy task is used for demonstration.
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unsupervised or self-supervised, relationships to properties may
not be justifiable with domain knowledge.
As a baseline for MoE-(18), the fifth method explored was Best

TL-(18). This method followed the same procedure as Best TL-(3)
but used all available source tasks instead of three human-chosen
ones. We emphasize that Best TL-(18) is not scalable to a large
number of source tasks since each source task requires training an
additional model.
The human-chosen source tasks for Best TL-(3) and MoE-(3)

were picked as follows. We let MP formation energies be a pre-
training task across all three downstream tasks since it is the
largest dataset available in Matminer. For predicting piezo-
electric modulus, we transferred from MP bulk moduli1,44, since
piezoelectric tensors are derived in part from elastic tensors34, and
MP bandgaps1, since a nonzero band gap is required to maintain
an electric polarization. For predicting 2D materials’ exfoliation
energies, we transferred from JARVIS formation energies, since
these are also thermodynamic quantities and come from the same
data source3, and JARVIS shear moduli, since small elastic
constants have been suggested as a signature of weak van der
Waals bonding and low exfoliation energies45. For predicting
experimental formation energies, we transferred from JARVIS3,45

and MP perovskite formation energies46.
While STL unsurprisingly performed the worst of all five

approaches, we found that MoE performed as well or better than
transferring from the best individual pre-trained model (see Table
2). Specifically, MoE-(3) consistently outperformed Best TL-(3), and
MoE-(18) performed as well or better than Best TL-(18). Of note is
that MoE-(3) and MoE-(18) did not overfit on the data-scarce tasks
despite utilizing three and eighteen times more fine-tunable
parameters than TL.

Benchmarking MoE. To evaluate our MoE framework’s ability to
handle data scarcity, we assessed the framework on nineteen
materials property regression tasks from Matminer38 with
dataset sizes ranging from 120 to 8043 examples. The task
datasets span thermodynamic, electronic, mechanical, and dielec-
tric properties; intrinsic and extrinsic properties at fixed tempera-
ture and doping concentration; as well as data generated with
various DFT exchange-correlation functionals and physical experi-
ments. We set the sparsity hyperparameter k in Eq. (3) to 18,
allowing the model to utilize all source tasks. Parameter vector θ
(Eq. (2)) was initialized to a vector of ones, corresponding to a
uniform distribution of probability scores assigned to each pre-

Table 2. Comparing MoE with the best-performing pairwise TL model.

d33 Eexfol (meV/at) Expt. Ef (eV/at)

STL 0.228 ± 0.033 62.0 ± 13.6 0.194 ± 0.027

Best TL-(3) 0.222 ± 0.022a 52.7 ± 9. 0b 0.117 ± 0.007c

Best TL-(18) 0.215 ± 0.024 51.7 ± 7.6 0.117 ± 0.007

MoE-(3) 0.220 ± 0.029 48.1 ± 9.0 0.0982 ± 0.0080

MoE-(18) 0.206 ± 0.026 52.8 ± 10.5 0.0946 ± 0.0054

aTL from MP bandgaps outperformed TL from MP formation energies and
MP bulk moduli with MAEs of 0.276 ± 0.091 and 0.229 ± 0.020, respectively.
bTL from MP formation energies outperformed TL from JARVIS formation
energies and MP shear moduli with MAEs of 53.9 ± 11.6 and 59.4 ± 12.4,
respectively.
cTL from MP formation energies outperformed TL from JARVIS and
perovskite formation energies with MAEs of 0.119 ± 0.008 and
0.289 ± 0.024, respectively.
Average test MAEs and standard deviations over five random seeds for
single-task learning, pairwise transfer learning, and mixture of experts
using three human-chosen and all 18 available pre-training tasks. Best
MAEs are bolded. See Table 3 for downstream data source references and
Supplementary Table 2 for details regarding pre-training tasks.

Table 3. Benchmarking MoE on 19 data-scarce regression tasks.

Downstream task
(dataset size)

STL TL from MP Ef MoE-(18)

Expt. Ef a (1709) 0.194 ± 0.027 0:117 ± 0:007 0.0946 ± 0.0054

Eexfolb (636) 62.0 ± 13.6 52.7 ± 9.0 52:8 ± 10:5

d33
c (941) 0:228 ± 0:033 0.276 ± 0.091 0.206 ± 0.026

PhonDOS
peakd (1265)

0.126 ± 0.014 0.0768 ± 0.0042 0:103 ± 0:009

2D Ef e (633) 0.165 ± 0.024 0:139 ± 0:011 0.105 ± 0.011

2D Eg, Optf (522) 0.693 ± 0.148 0:679 ± 0:100 0.543 ± 0.101

2D Eg,
Tbmbjg (120)

1.31 ± 0.29 0.942 ± 0.159 1:06 ± 0:12

AU
h
(1181) 3.69 ± 2.82 2.44 ± 1.49 3:08 ± 2:37

Logðϵ1Þi (1296) 0.170 ± 0.039 0.146 ± 0.032 0:147 ± 0:037

LogðϵtotalÞj (1296) 0.254 ± 0.038 0:238 ± 0:031 0.231 ± 0.029

Poisson
ratiok (1181)

0:0325 ± 0:0003 0.0340 ± 0.0019 0.0292 ± 0.0017

ϵ1poly
l (1056) 2.94 ± 0.89 2:93± 0:508 2.70 ± 0.667

ϵpolym (1056) 6:40 ± 1:54 7.02 ± 0.45 5.58 ± 1.37

2D n, Optn (522) 2:71 ± 0:55 2.98 ± 0.56 2.27 ± 0.40

2D n, Tbmbjo (120) 6:89 ± 2:24 9.47 ± 6.72 6.42 ± 1.48

3D n, PBEp (4764) 0.0860 ± 0.0131 0:0820 ± 0:0126 0.0779 ± 0.0105

Expt. Egq (2481) 0.460 ± 0.046 0:446 ± 0:074 0.376 ± 0.051

ϵavg, Tbmbjr

(8.043)
32:7 ± 2:6 182. ± 139. 28.3 ± 3.5

Eg, Tbmbjs (7348) 0.503 ± 0.018 0:448 ± 0:067 0.353 ± 0.015

aExperimental formation enthalpies (eV/atom) from Matminer’s
expt_formation_enthalpy37 and expt_formation_enthalpy_-
kingsbury datasets36. The former was preferred when duplicates arose.
bExfoliation energies (meV/atom) from Matminer’s jarvis_dft_2d
dataset35.
cPiezoelectric modulus from Matminer’s piezoelectric_tensor
dataset34.
dHighest frequency optical phonon mode peak (cm−1) from Matminer’s
matbench_phonons dataset47.
eFormation energies (eV/atom) from Matminer’s jarvis_dft_2d
dataset35.
fBand gap of 2D materials (eV) from Matminer’s jarvis_dft_2d
dataset35, calculated with the OptB88vDW DFT functional.
gBand gap of 2D materials (eV) from Matminer’s jarvis_dft_2d
dataset35, calculated with the TBMBJ DFT functional.
hElastic anisotropy index from Matminer’s elastic_tensor_2015
dataset1.
iElectronic contribution to dielectric constant from Matminer’s pho-
non_dielectric_mp dataset47.
jDielectric constant from Matminer’s phonon_dielectric_mp data-
set47.
kPoisson ratio from Matminer’s elastic_tensor_2015 dataset44.
lAverage eigenvalue of the dielectric tensor’s electronic component from
Matminer’s dielectric_constant dataset48.
mAverage dielectric tensor eigenvalue from Matminer’s dielectric_-
constant dataset48.
nDielectric constant of 2D materials, computed by the OptB88vDW
functional, from Matminer’s jarvis_dft_2d dataset35.
oDielectric constant of 2D materials, computed by the TBMBJ functional,
from Matminer’s jarvis_dft_2d dataset35.
pRefractive index from Matminer’s dielectric_constant dataset6,48.
qExperimental bandgaps (eV) from Matminer’s expt_gap_kingsbury
dataset38.
rAverage eigenvalue of dielectric tensor, calculated with the TBMBJ DFT
functional, from the jarvis_dft_3d database in Matminer45.
sBand gap (eV), calculated with the TBMBJ DFT functional, from
Matminer’s jarvis_dft_3d dataset45.
Average test MAEs and standard deviations over five random seeds on 19
data-scarce regression tasks for single-task learning, transfer learning, and
mixture of experts. The first and second-best MAEs per task are bolded and
underlined, respectively. MoE source tasks are listed in Supplementary
Table 2.
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trained model. Hyperparameters were held fixed across all tasks.
Source tasks used to pre-train the MoE extractors are described

in Supplementary Table 2. The tasks consisted of eighteen scalar
property regression tasks with dataset sizes ranging from 10,855
to 132,752 examples and included properties like formation
energies, bandgaps, average conduction band effective masses,
dielectric constants, and bulk moduli from the Materials Project
and JARVIS.
Mean absolute errors for MoE, single-task learning without pre-

training (STL), and TL are reported in Table 3. To avoid expensive,
brute-force trial and error of every source task for every
downstream task during TL, we used the common heuristic of
transferring from the largest available source task, Materials
Project (MP) formation energies1. This TL strategy has been
employed by several works suggesting TL performance for
property prediction improves when the model is pre-trained with
more data7,11,15.
Across the 19 downstream tasks, MoE achieved the best

performance in 14 of 19 target properties and comparable results
on four of the remaining five properties. Notably, TL performed
worse than single-task training from random initialization (STL) on
6 of the 19 tasks. These include predicting piezoelectric moduli,
Poisson ratios, and other dielectric properties. A possible
explanation is that representations trained on formation energies
of 3D bulk crystals do not transfer well to dissimilar properties. In
contrast, MoE outperformed STL on all 19 tasks, highlighting MoE’s
ability to avoid negative transfer without any task-specific
hyperparameter tuning.
For one task, predicting phonon mode peak positions (PhonDOS

peak), MoE strongly outperformed STL but performed worse than
TL from MP formation energies. A plausible explanation is that the
MP formation energy dataset is significantly more useful for
predicting phonon mode peak positions than any other source
task used by the MoE model. Indeed, we found that the MoE
model assigned an extremely large probability score of 0.808 to
the extractor pre-trained on MP formation energies (recall scores
for all eighteen extractors are non-negative and sum to 1). Thus,
possible avenues for future improvement include task-specific
hyperparameter tuning (e.g., decreasing k or increasing λ to
encourage focusing on the most useful task), the inclusion of more
generalizable source tasks, and/or development of ML methods
which transfer information from more relevant datasets (e.g., other
vibrational properties).
Figure 3 depicts a scatter plot of TL and MoE improvement of

MAEs over STL as a function of downstream dataset size. Unlike TL,
scatter points for MoE lie entirely above zero improvement,
highlighting MoE’s ability to yield positive transfer over the entire
range of downstream dataset sizes. Interestingly, Fig. 3 also shows
no correlation between improvement over STL and downstream
dataset size. This result is likely because improvement over STL
depends not only on downstream dataset size, but also on the
similarity between the source and downstream tasks. In addition,
the dependence on downstream dataset size is not necessarily
monotonic. Small downstream dataset sizes can lead to over-
fitting, while large downstream dataset sizes may have less to gain
from information transfer. We discuss these factors affecting
transferability next.

Understanding transferability. Negative transfer is a pervasive
phenomenon in ML wherein transferring information from a
source task(s) to a downstream task exhibits worse performance
than training on the downstream task from random initialization.
Wang et al.21 and Gong et al.47 discussed the key factors from
which negative transfer arises: divergence between the source
and downstream tasks’ joint distributions over the domain and
label spaces as well as the size of the labeled downstream task
data. Formally, we denote PS(X, Y) and PT(X, Y) as the joint
distribution of the source and downstream tasks, respectively.
Random variable X corresponds to the input (e.g., materials), and Y
is the label (e.g., corresponding values for a specific property).
Negative transfer can result from the divergence d(PS(X, Y), PT(X,
Y)), where d( ⋅ , ⋅ ) is a divergence metric over distributions. Wang
et al. also argued that the downstream dataset size has a mixed
effect on negative transfer; if the downstream task is too small,
then it becomes difficult for the learning algorithm to properly
learn the similarity between the source and target tasks. Yet, if the
downstream task is too large, then transferring from a source task
with even a slightly different joint distribution could harm
generalization and perform worse than STL.
To understand performance variations of MoE across different

downstream tasks, we examined the divergence in feature and
label space between the source and downstream tasks. In general,
atomic structures X and their associated materials properties Y are
not independent; the connection between structure and proper-
ties is central to materials science. A data-driven comparison of
two materials property prediction tasks S and T should thus
compare their full joint distributions, PS(X, Y) and PT(X, Y).
Unfortunately, computing PS(X, Y), PT ðX; YÞÞ, and subsequently
dðPSðX; YÞ; PT ðX; YÞÞÞ is difficult in practice. Instead, we decoupled
the feature and label spaces, separately measuring empirical
domain and label shifts between source and downstream tasks,
d(PS(X), PT(X)), and d(PS(Y), PT(Y)). To compute these shifts, we used
central moment discrepancy (CMD)48, a distance metric for
probability distributions on compact space. Intuitively, CMD
compares distribution means and arbitrarily high central moments
to capture differences in distribution positions and shapes. Up to
50th-order central moments were included in our experiments. To
measure domain shift, CMD was computed in the learned feature
space of the last frozen convolutional layer of each extractor. We
found that CMD computed in this feature space showed a strong
positive trend with CMD computed in the space of features
procedurally generated from local atomic structure order para-
meters49,50 (see Supplementary Fig. 1). To measure label shift,
each task’s label distribution was first normalized by subtracting
the mean and dividing by the standard deviation. Since CMD
requires each distribution to be on compact space, a sigmoid
function was applied on each dimension of the feature and
normalized label spaces to maintain compact support between
0 and 1.
For each downstream task, we plotted the average CMD in label

and feature space to the top-n source tasks (i.e., the “closest” n
source tasks) for n= 4 (Fig. 4). Other values of n were explored

Fig. 3 Benchmarking transfer learning and mixture of experts
performance versus dataset size. Percent improvement on MAE
across 19 materials property regression tasks of transfer learning
from Materials Project formation energies (TL) and our mixture of
experts approach (MoE) over single-task learning with random
initialization (STL). For clarity, the y axis above and below the break
have different scales. Examples of positive and negative transfer are
indicated by points above and below the gray dotted line,
respectively.
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without yielding ostensibly significant differences. The size of each
plotted data point indicates the size of the downstream task data,
and the color indicates MoE’s improvement over STL on that task.
Figure 4 reveals no discernable trends, highlighting the

difficulty of predicting transferability with simple proxies. Instead,
machine-learned models, like MoE, are needed to determine
which source tasks are most useful for a downstream task.
Plausible explanations for the lack of emergent patterns are (1)
uncertainty in the improvement over STL obfuscates any trends,
(2) 19 downstream tasks is too small of a sample size, (3) CMD is
not the optimal distance metric for capturing divergences in task
distributions, and (4) decoupling the domain and feature spaces X
and Y catastrophically ignores the connection between structure
and properties.

Model interpretability. A natural consequence of our MoE gating
function (Eq. (2)) is that for each downstream task, the model
automatically learns to associate a probability score to each pre-
trained extractor. By analyzing these scores, we can readily
interpret which pre-trained extractors and source tasks were most
relevant to learning each downstream task. In Fig. 5, we visualize a
heatmap of these learned scores for all downstream tasks.
Despite initializing the model with uniform probability scores

assigned to each extractor, we make two notable observations. (1)
For a given downstream task, learned scores are relatively robust
across different random seeds. (2) The model often learns scores
which are physically intuitive rather than simply assigning large
scores to extractors pre-trained with more data. For example, MP
bandgaps and dielectric constants computed with the
OptB88vDW DFT functional were assigned the highest scores for
predicting the electronic component of MP dielectric tensors
(possibly because larger bandgaps result in fewer free electrons
and lower electronic polarizability). When predicting experimental
formation energies, the model heavily concentrated probability
mass onto the JARVIS and MP formation energy extractors. MP
bandgaps were also assigned the highest score when predicting
2D materials’ bandgaps and experimental bandgaps. Such
correspondences suggest our MoE framework’s strong perfor-
mance results in part from learning physically meaningful
relationships between source and downstream tasks.
However, there were some instances of counterintuitive task

relationships being emitted by the MoE model. For example, while
the JARVIS and MP shear moduli extractors were assigned large
scores for predicting Poisson ratios as expected, the JARVIS and
MP bulk modulus extractors were not. Similarly, when predicting

piezoelectric modulus, the MoE model automatically assigned the
highest scores to electronic properties like n- and p-type
electronic conductivities, electronic thermal conductivities, and
Seebeck coefficients, as well as MP bandgaps (perhaps because a
nonzero band gap is required to maintain electronic polarizations).
However, the model did not assign large scores to any mechanical
properties. These unexpected results are perhaps better explained
by divergences in the datasets’ joint distributions in domain and
label space rather than by domain knowledge.

Scaling to an arbitrary number of extractors. We anticipate that
the number of large materials task datasets, and hence the
number of potential source tasks, will increase as growing
compute resources, new DFT functionals, high-throughput experi-
mental methods, and novel pre-training tasks emerge from the
community. To handle many source tasks, we experimented with
sparse gating by allowing the sparsity hyperparameter, k, from Eq.
(3) to be less than the number of extractors. During inference, only
k extractors would be activated, and thus gradients would only be
computed for k extractors in each training iteration. Utilizing
sparsity consequently decouples the speed per training iteration
from the number of extractors, enabling the MoE framework to
scale to an arbitrary number of extractors without concomitant
increases in computing cost. In anticipation of the community
leveraging performance boosts from model scale51, we note that
extractors can be distributed across multiple GPUs.
We compared k values of 2, 4, 6, and 10 for three downstream

tasks: predicting piezoelectric modulus, 2D exfoliation energies,
and experimental formation energies. Surprisingly, we observed
no significant detriment to performance compared to k= 18, even
when setting k as small as 2 (Table 4). This result suggests
practitioners can supply our MoE framework with as many pre-
trained extractors as desired without fear of increasing compute
cost or harming predictive performance.
In conclusion, we presented a mixture of experts framework

combining complementary materials datasets and ML models to
achieve consistent state-of-the-art performance on a suite of data-
scarce property prediction tasks. We demonstrated the interpret-
ability of our framework, which readily emits automatically learned
relationships between a downstream task and all source tasks in a
single training run. We often found these relationships to be
physically intuitive. By introducing a sparsity hyperparameter, we
also showed that MoE is scalable to an arbitrary number of source
tasks and extractors without performance detriment. The MoE
framework is general, allowing any model architecture or hand-
crafted featurizer to act as extractors and any dataset to act as a
source task. We invite the community to engineer new source
tasks to train generalizable extractors; explore mixtures of
different extractor model classes such as hand-crafted descriptors
or equivariant neural networks which predict non-scalar proper-
ties; and share materials datasets spanning diverse properties,
dataset sizes, and fidelities.

METHODS
Crystal graph convolutional neural networks
For a full treatment of CGCNNs, see ref. 8. Briefly, CGCNNs operate
on graph representations of crystals. A crystal structure with N
atoms is represented as a graph G ¼ ðfv0i gNi¼1; fuði;jÞgNi;j¼1Þ with
initial node features v0i representing atom i and edge features u(i, j)
representing bond(s) features between atoms i and j. In the
original implementation, v0i is a trainable linear transformation of
vectorized elemental features like group number and
electronegativity.
Node/atom features are sequentially updated with graph

convolutional layers, passing information from node features
and shared edges of locally neighboring atoms. CGCNN

Fig. 4 Visualizing data distribution shift and dataset size with
performance. Scatter plot of the average central moment discre-
pancy (CMD) in label and feature space for each downstream task
across the top-n (i.e., “closest” n) extractors for n= 4. Other values of
n were also explored without ostensibly different results. Marker
sizes are scaled with the downstream dataset size and colored by
MoE’s improvement on MAE over STL.
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implements their graph convolutional layer as

vðtþ1Þ
i ¼ vðtÞi þ

X
j;k

σðzðtÞði;jÞkW
ðtÞ
f þ bðtÞ

f Þ � gðzðtÞði;jÞkW
ðtÞ
s þ bðtÞ

s Þ (5)

zðtÞði;jÞk ¼ vðtÞi � vðtÞj � uði;jÞk (6)

where vðtÞi is the node feature of atom i after t graph
convolutions, σ(⋅) is a sigmoid function, g(⋅) is a softplus, k
represents the kth bond between atoms i and j,⊙ is
elementwise multiplication, ⊕ is concatenation, and WðtÞ

f , WðtÞ
s ,

bðtÞ
f , and bðtÞ

s are trainable parameters for the tth graph
convolutional layer. After T convolutional layers, all node
features are averaged to produce a feature vector vc represent-
ing the entire crystal. Finally, vc is passed as input to a
multilayer perceptron to yield a prediction.

Model training
Datasets were split into 70% training, 15% validation, and 15%
testing data for five random seeds. For each dataset, the same five
random splits were re-used across STL, TL, and MoE experiments
for consistency.
All random splits were sampled uniformly except for the

experimental formation energy dataset. The MP fits to experi-
mental formation energies to obtain energy corrections for certain
anions (O, S, F, Cl, Br, I, N, H, Se, Si, Sb, and Te) and +U corrections
for GGA+U calculations on oxides and fluorides with certain
transition metals (V, Cr, Mn, Fe, Co, Ni, W, and Mo)52,53. Thus, to
avoid information leakage from MP formation energy pre-training
data to the experimental formation energy test data, we excluded
compounds with O, S, F, Cl, Br, I, N, H, Se, Si, Sb, Te, V, Cr, Mn, Fe,
Co, Ni, W, and Mo from all experimental formation energy test
splits.
Models were trained for 1000 epochs unless validation error did

not improve for 500 epochs, in which case early stopping was
applied. Models were optimized with Adam, mean-squared error
loss, a Cosine Annealing scheduler, and a batch size of 250 (or the
entire training split - whichever was smaller) on NVIDIA Tesla V100
and A100 GPUs. Each dataset’s regression labels were normalized
by subtracting the mean and dividing by the standard deviation of
labels in the training and validation sets.
During STL and extractor training, all layers were updated with

an initial learning rate of 1e-2. During TL and MoE training, all
extractor layers were frozen except for the last convolutional layer,
which was updated with an initial learning rate of 5e-3. Head
layers were updated with an initial learning rate of 1e-2.
Batches were always sampled with uniform random sampling,

except when pre-training extractors on the n- and p-type
electronic thermal and electronic conductivity source tasks, which
had heavily skewed label distributions. For those tasks, batches
were sampled with weighted sampling. Specifically, label distribu-
tions were split into 30 bins, and the sampling weight for bin i was

Fig. 5 Heatmap of learned probability scores assigned to each feature extractor by our mixture of experts framework. Source tasks are
ordered left to right from smallest to largest dataset size. Contrary to the heuristic of transferring from the largest source task, our MoE
framework did not usually assign the largest score to the largest source task. Instead, the model often assigned scores which were physically
intuitive.

Table 4. MoE-(18) with sparse gating.

k d33
a Eexfolb Expt. Ef c

2 0.220 ± 0.029 54.0 ± 10.1 0.125 ± 0.047

4 0.217 ± 0.028 54.4 ± 11.8 0.101 ± 0.008

6 0.214 ± 0.022 55.3 ± 11.1 0.0990 ± 0.0047

10 0.208 ± 0.024 55.8 ± 10.2 0.0958 ± 0.0059

18 0.206 ± 0.026 52.8 ± 10.5 0.0946 ± 0.0054

aPiezoelectric modulus from Matminer’s piezoelectric_tensor
dataset34.
bMonolayer exfoliation energies (meV/atom) from Matminer’s jar-
vis_dft_2d dataset3,35.
cExperimental formation enthalpies (eV/atom) from Matminer’s
expt_formation_enthalpy37 and expt_formation_enthalpy_-
kingsbury36 datasets. The former was preferred when duplicates arose.
Average test MAEs and standard deviations over five random seeds for
MoE with different settings of the sparsity hyperparameter k.
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computed as

1=ðnumber of examples in bin iÞP
j2Ib1=ð number of examples in bin jÞ

where Ib represents the set of bin indices with at least one
example. Bins with no examples were reassigned a sampling
weight of 0.
While some hyperparameter tuning was conducted for pairwise

TL (see Supplementary Figs. 2 and 3), we did not do any
hyperparameter tuning for MoE, instead drawing the same
hyperparameters from TL or from literature. Thus the strong
performance of MoE is likely robust and can possibly be further
improved with hyperparameter tuning.

DATA AVAILABILITY
All data are available from Matminer (see https://hackingmaterials.lbl.gov/
matminer/)38. Downstream task datasets, training, validation, and test splits are
available at https://github.com/rees-c/MoE.

CODE AVAILABILITY
All code is openly accessible at https://github.com/rees-c/MoE.
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