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Solids that are also liquids: elastic tensors of superionic
materials
Giuliana Materzanini 1,2,3✉, Tommaso Chiarotti 1,2 and Nicola Marzari 1,2

Superionics are fascinating materials displaying both solid- and liquid-like characteristics: as solids, they respond elastically to shear
stress; as liquids, they display fast-ion diffusion at normal conditions. In addition to such scientific interest, superionics are
technologically relevant for energy, electronics, and sensing applications. Characterizing and understanding their elastic properties
is, e.g., urgently needed to address their feasibility as solid-state electrolytes in all-solid-state batteries. However, static approaches
to elasticity assume well-defined reference positions around which atoms vibrate, in contrast with the quasi-liquid motion of the
mobile ions in fast ionic conductors. Here, we derive the elastic tensors of superionics from ensemble fluctuations in the isobaric-
isothermal ensemble, exploiting extensive Car-Parrinello simulations. We apply this approach to paradigmatic Li-ion conductors,
and complement with a block analysis to compute statistical errors. Static approaches sampled over the trajectories often
overestimate the response, highlighting the importance of a dynamical treatment in determining elastic tensors in superionics.
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INTRODUCTION
In the search for solid-state electrolytes (SSEs) that could replace
the liquid organic electrolytes used today and improve safety in
commercial Li-ion batteries1, a significant effort is being directed
towards testing and improving ionic conductivity2–5, chemical and
electrochemical stability6,7, and fast transport at the electrodes8,9.
However, in order to address the manufacturing and the
operando feasibility of all-solid-state batteries (ASSBs), a thorough
understanding of the mechanical properties of the SSEs is also
needed, and the mechanical stability of the electrolyte is a critical
parameter for ASSBs10–12. First, the volume changes due to the
storage of Li ions in the active materials can not be accommo-
dated as in conventional liquid-electrolyte batteries, resulting in a
considerable strain of the SSE and SSE/active-material composite
during cycling10,13,14. This can easily turn out into mechanical
degradation of the electrolyte, as observed for amorphous
Li2S-P2S5 cycled with an Sn-anode15 or for β-Li3PS4 cycled with a
Ni-rich NCM cathode16. Second, an SSE with high mechanical
resistance would inhibit dendrite propagation and possibly enable
the advent of ASSB technologies with superior energy density
exploiting Li-metal anodes17.
The fracture toughness18–22, which quantifies the resilience of

an SSE to be damaged under tensile stress, has been shown to be
related to a high Young’s modulus23,24. On the other hand, the
resistance of an SSE to dendrite growth has been related to a high
shear modulus25, although quantification of this relationship is
under debate26. Knowledge of the elastic behavior (bulk, shear,
Young’s modulus, and Poisson’s ratio) of an SSE might thus be
ground to predict its mechanical stability even outside the elastic
regime. In this respect, softness has been historically regarded as a
favorable property for the design of ASSBs technologies: soft
materials, in particular sulfides, are easier to deform and thus
expected to maintain good conformal contact with the electro-
des10,27–29, allowing in addition for room-temperature pressure
sintering10. However, a low stiffness of the SSE is not necessarily

associated with good battery performance, as shown in the
above-mentioned experiments on amorphous Li2S-P2S5 and
β-Li3PS415,16 and through fracture toughness measurements on
amorphous Li2S-P2S523. A theoretical continuum study based on
non-linear kinematics models further shows that, perhaps counter-
intuitively, compliant SSEs with Young’s moduli in the range of the
sulfides (E= 15 GPa) are more prone to micro-cracking than
typically brittle materials as oxide SSEs24. Elastic constants and
conductivity are also closely related30, and enhanced vibra-
tional31,32 and rotational33–35 degrees of freedom for the host
lattice (typical of more compliant materials) have been shown to
correlate with higher conductivities. Lattice-dynamics descriptors
have been recently used to perform high-throughput screening of
Li SSEs36,37, and conductivity has proven to increase in rotationally
free SSEs, as is the case of the sulfide β-Na3PS438 or some LISICON
oxides3. The relation between lattice softness and conductivity is
nevertheless not straightforward, since the first usually lowers
both activation barriers and jump frequencies11,39,40, which in turn
have opposite effects on the latter, giving rise to the Meyer-Neldel
rule (also called compensation rule39–42). Speed-of-sound mea-
surements in halide-doped argyrodites39 and Sn-substituted
Li10GeP2S1243 show that, below a certain threshold of optimal
lattice softness (or maximum conductivity), stiffer materials are
better conductors11.
Routinely, first-principles calculations of elastic tensors and

elastic moduli of SSEs exploit static finite-strain methods28,44–48,
that fit the total energy49–52 or the stress53,54 with respect to strain,
with energies and stresses obtained from DFT static calculations at
different applied strains. Whereas these approaches are a powerful
tool for the calculation of the elastic constants of ordered
intermetallic alloys49,55, and obviously of single crystals with a
defined structure51,52, they are in principle not appropriate for
superionic materials, where the dynamical disorder plays a
significant role and the standard picture of atoms vibrating
around fixed equilibrium positions is not valid anymore56. In this
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respect, extracting the elastic tensor from the quasi-harmonic
vibrational free energy57 under finite-strain deformations58,59

would not improve the picture, as it still assumes the existence
of well-defined reference positions around which the atoms
vibrate, which is clearly not the case for SSEs56. In a seminal paper,
Parrinello and Rahman60 combined constant stress simula-
tions61,62 with the thermodynamical fluctuation theory of the
strain63 in order to estimate the elastic stiffness tensor from
molecular dynamics. This method, which in the remainder of this
paper will be referred to as the “strain-fluctuation method", builds
on the knowledge of the dynamics and on the statistical
convergence of the strain fluctuations over the simulation time64,
and presents the important advantage of considering all the
statistically relevant configurations of the atoms at a given
temperature and pressure; it is therefore particularly appealing
for superionic materials.
It is the purpose of this work to apply the strain-fluctuation

method60 to the calculation of the elastic tensors and moduli of
SSEs, choosing two benchmark systems, namely Li10GeP2S1244,65,66

and its oxide counterpart Li10GeP2O12
67–69. For this, extensive and

accurate first-principles molecular dynamics simulations are
performed in the isothermal-isobaric ensemble at T= 600 K and
P= 0, with a Nose-Hoover thermostat70 and a Parrinello-Rahman
barostat61,71 using Car-Parrinello molecular dynamics72. The elastic
tensors and moduli are extracted from the dynamical covariance
of the strain over the trajectory, and a block analysis is provided to
estimate statistical errors73. From the knowledge of the errors and
the analysis of the elastic moduli convergence over the
trajectories, we estimate the simulation length which is needed
to produce reliable results. 0K and room-temperature moduli are
extracted from NPT simulations at different temperatures using
Wachtman’s law74–76. Finally, in order to compare the strain-
fluctuation method with the static methods alluded to above, we
provide additional static calculations, in which we distort fully
relaxed snapshots sampled from the molecular dynamics trajec-
tories fitting the Murnaghan equation of state (EOS) or the stress
vs strain relation to obtain the elastic constants51.
The paper is organized as follows. In Section Results “Elastic

tensors and moduli from the strain fluctuations" we discuss the
isobaric-isothermal cell dynamics and we present the results for
the elastic tensors and moduli of Li10GeP2S12 and Li10GeP2O12

obtained from the strain-fluctuation method. For comparison, in
Section Results “Elastic tensors and moduli from static methods"
we present the results for the elastic tensors and moduli obtained
from static calculations, using fully relaxed snapshots from the
molecular dynamics simulations. The main results of this paper are
discussed and summarized in the Discussion.

RESULTS
Elastic tensors and moduli from the strain fluctuations
We simulate two superionic materials, Li10GeP2S12 (LGPS) and
Li10GeP2O12 (LGPO), each in two phases, namely the quasi-
orthorhombic69,77 and tetragonal65 phases for LGPS (that we call
o-LGPS and t-LGPS, respectively69), and the orthorhombic67,68 and
tetragonal69,78 phases for LGPO (that we call o-LGPO and t-LGPO,
respectively69). We use the supercells reported in refs. 69 and 79,
having 100 and 50 atoms for the o- and t- structures, respectively
(see Supplementary Figure 1 for a description of the structures).
We recall here that, while t-LGPS, o-LGPS, and o-LGPO are existing
compounds65,68,77, t-LGPO is a hypothetical one69,78,80, that we
include in this work following a recent first-principles investigation
highlighting its high Li-ion conductivity69. We use Car-Parrinello
(CP) molecular dynamics72, based on Kohn-Sham density-func-
tional theory (DFT)81,82 in the plane-wave pseudopotential
formalism83,84, as implemented in the cp code of the QUANTUM
ESPRESSO distribution85, in the isobaric-isothermal ensemble

(NPT) with a Nose-Hoover thermostat86 and a Parrinello-Rahman
barostat61,62. We use the Perdew-Burke-Ernzerhof (PBE)
generalized-gradient approximation (GGA) functional87 and sam-
ple the Brillouin zone at the Γ point, as in refs. 69,78 (for an
extensive review on the performance of PBE and other DFT
functionals, see, e.g., ref. 88). The NPT CP method and the
numerical details of these simulations are described in the
Supplementary Methods. We test the reliability of the k-point
sampling for the stress tensor, and show that the pressure and the
off-diagonal elements of the stress tensor remain within ~10−2

GPa when calculated with an unshifted (2, 2, 2) k-point grid89

compared to Γ-only sampling (see Supplementary Tables 7 and 8).
The above test also helps discussing possible finite-size effects in
the MD simulations90. For these, we also study (at 600 K, with NPT
CP dynamics, for ~70 ps) a 100-atom 2 × 1 × 1 supercell of t-LGPS,
also sampled at Γ, and we extract the elastic moduli: comparison
with the analogous results for the 1 × 1 × 1 cell shows that
increasing the size of the simulation cell does not alter the elastic
moduli significantly (see Supplementary Figure 10). In Supple-
mentary Figures 3 and 4, we also report results for molecular
dynamics runs with different barostat masses, showing that
changing the barostat mass in a range of values around the
standard theoretical suggestion70,85 does not change the cell
fluctuations. The choice of the thermostat’s mass is already
discussed in the Supplemental Material of ref. 69.
In Fig. 1 we report the values of the cell edges ∥a∥, ∥b∥, and ∥c∥

of the four structures during a 600 K-NPT trajectory. While for t-
LGPS, o-LGPS, and o-LGPO (Fig. 1a, b, d, respectively) these
oscillate, for t-LGPO (Fig. 1c) ∥a∥ and ∥b∥ can swap during a
fluctuation (as already reported in69). In Supplementary Figures 2
and 5 we also report the cell angles α, β, and γ from the same
simulations, and the six components of the Voigt strain vector ϵ
(see Equations (4)−(6) in the Methods Section), respectively. We
recall here that h and ϵ in Equations (4)−(6) are time-dependent
quantities. The diagonal elements of the strain-dynamical-
covariance matrix (see also Equation (10) in Methods Section)

ΔϵiΔϵj
� � ¼ ϵiϵj

� �� ϵih i ϵj
� �

(1)

are reported in Table 1. Larger fluctuations of the cell parameters
translate into larger oscillations of the strain components, and in
turn into larger values of ΔϵiΔϵih i (Table 1): an example is given by
o-LGPS vs o-LGPO.
To show the superionic character of these materials, in Fig. 2 an

isosurface of Li-ion probability density (ρ(Li)= 8 × 10−2Å−3) is
displayed for t-LGPS from the 600 K-NPT CP dynamics (we use the
implementation in https://github.com/lekah/samos, see also91). In
Supplementary Figure 6, we report analogous isodensity plots for
o-LGPS, t-LGPO, and o-LGPO.
The strain-dynamical-covariance matrix (Equation (1)) deter-

mines the stiffness and compliance elastic tensors from Equations
(9) and (10) in the Methods Section, respectively. From the tensors,
we obtain the moduli B, G, E, and ν following the Voigt-Reuss-Hill
(VRH) approximation (see Methods Section). However, being the
tensors statistical quantities, we need first to determine their
statistical uncertainties over the trajectory length, and estimate
sufficient trajectory lengths to give meaningful results from
Equations (9) and (10). We compute the statistical errors on Vh i,
ϵh i, and ϵϵh i in Equations (9) and (10) through a block analysis, i.e.,
by calculating the variance of the mean of a subset of data
(blocks) of the whole set. A careful evaluation of the correct
number of blocks is mandatory, so as to avoid error over-
estimation (too few uncorrelated data) or underestimation
(correlated data)73. For each run, we set this number by
performing a systematic partitioning of the trajectory in increasing
number of blocks up to a maximum number, and by selecting the
region where the variance of the mean is stable over the number
of blocks69,73. This procedure is illustrated for the 600 K-NPT CP
dynamics of t-LGPS in Fig. 3, where we report the relative standard
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error (square root of the variance of the elastic modulus divided
by the value of the mean) for B, G, E, and ν (obtained from error
propagation, see Methods Section) as a function of the number of
data in block chosen for the block analysis of Vh i, ϵh i and ϵϵh i. By
increasing the number of blocks (going right to left in the plot),
the variance oscillates less strongly, and reaches a region of
stability (here at ~ 2000 data in each block), after which it
decreases monotonically (correlated data). This plateau deter-
mines the proper number of data in block73 and thus the error.
Analogous plots for the evaluation of the number of blocks for o-
LGPS, t-LGPO, and o-LGPO are reported in Supplementary Figure

7. In turn, from these trajectories, we identify 47 uncorrelated
blocks for t-LGPS (each block ~4 ps), 41 uncorrelated blocks for
o-LGPS (each block ~4 ps), 16 uncorrelated blocks for t-LGPO
(each block ~10ps), and 31 uncorrelated blocks for o-LGPO (each
block ~5 ps). Next, we study the convergence of the elastic moduli
on the simulation time. For each system we perform several
calculations of the elastic moduli, each of them using only a part
of the whole trajectory simulated, corresponding to n= 2, . . N
blocks, N being the number of blocks that we have chosen for the
whole trajectory (see above), and each block having the same
length as determined from the block analysis on the whole
trajectory. Then, for each of these calculations we obtain the
standard errors of the moduli from the variance over the blocks,
since these blocks are already uncorrelated and there is no need
to repeat a block analysis for each of these calculations. The values
of the moduli as a function of the simulation time, together with
the related standard errors are reported in Fig. 4 for t-LGPS,
whereas for the remaining three structures they are reported in
Supplementary Figure 8. In Fig. 4, the errors of B, G, E, and ν
decrease, and their absolute values converge, while increasing the
simulation time. A similar behavior is shown by o-LGPS and
o-LGPO (Supplementary Figures 8a, c). For t-LGPO (Supplementary
Figure 8b) we have a totally different scenario: the moduli are

Fig. 1 Cell edges (∥a∥, ∥b∥, and ∥c∥ in the text) in the 600 K-NPT CP molecular dynamics for the four structures studied. a t-LGPS; b o-LGPS;
c t-LGPO; d o-LGPO. The cell angles and strain components are reported in Supplementary Figures 2 and 5, respectively.

Table 1. Diagonal elements of the strain-dynamical-covariance matrix
ΔϵiΔϵj
� �

.

Δϵ21
� �

Δϵ22
� �

Δϵ23
� �

Δϵ24
� �

Δϵ25
� �

Δϵ26
� �

t-LGPS 3.90e-04 4.01e-04 3.81e-04 1.59e-03 1.61e-03 9.10e-04

o-LGPS 2.40e-04 1.88e-04 2.08e-04 3.94e-04 1.02e-03 5.18e-04

t-LGPO 1.89e-03 1.66e-03 6.13e-04 1.45e-03 1.42e-03 5.19e-04

o-LGPO 1.32e-04 1.38e-04 1.46e-04 2.25e-04 3.54e-04 2.70e-04
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almost independent of the length of the trajectory, and their
relative standard errors are very large, ranging from 10%
(Poisson’s ratio) to 60% (Young modulus). In addition, the values
of the moduli for t-LGPO are significantly lower than the
respective moduli for o-LGPO (Supplementary Figures 8b and
8c). The behavior of t-LGPO is directly related to the cell dynamics
of t-LGPO reported in Fig. 1, where ∥a∥ and ∥b∥ oscillate and
swap: these fluctuations give rise to a material that would seem
more compliant, but they would disappear if larger supercells
were used. For this reason, we investigate a 4-times larger 2 x 2 x
1 supercell, already used in69, that we simulate for 100 ps: in
Supplementary Figure 9 and Supplementary Table 6 we show that
for this larger supercell the oscillations of ∥a∥ and ∥b∥ are
considerably diminished, and the moduli higher. However, the
statistical uncertainties remain high, and we conclude that for this
material, where these two alternate phases can swap, even larger
supercells should be used. For the remaining three structures (Fig.
4 and Supplementary Figures 8a, 8c), B, G, E, and ν can be
considered reasonably converged from the reported simulations
at 600 K for simulation lengths of the order of 150−200 ps.
The converged elastic tensors with errors, obtained from NPT

(T= 600 K, P= 0) CP molecular dynamics through the analysis
presented above, are reported in Table 2 for t-LGPS, o-LGPS, and
o-LGPO. The space-group features of the tensors92 can be
deduced: in particular, for both tetragonal and orthorhombic
structures, the components in the off-diagonal blocks are≃ 0,
apart from c15 in the o-LGPO tensor, suggesting a certain
monoclinic degree92 in this structure. For t-LGPS we observe

c44≃ c55, c11≃ c22 and c13≃ c23. In Table 2 we also report the
moduli (Voigt and Reuss bounds, and VRH average) with their
statistical uncertainties. We note that the statistical uncertainties
on the moduli are in general within ~2−8%.
Knowledge of the temperature dependence of the elastic

moduli can provide room-temperature predictions to be com-
pared with the experimental literature. To this end, we perform

Fig. 2 Li-ion probability density in t-LGPS from the 600 K-NPT CP
molecular dynamics trajectory (0.08Å−3 isovalues, blue isosur-
face). The equilibrium positions of sulfur, germanium, and phos-
phorus are shown as yellow, pink, and light rose spheres,
respectively, and Ge−S and P−S bonds are displayed. Analogous
Li-ion probability density isosurfaces are reported for o-LGPS, t-
LGPO, and o-LGPO in Supplementary Figure 6.

Fig. 3 Relative standard deviation (square root of the variance of
the elastic modulus divided by the value of the mean) of B, G, E,
and ν as a function of the number of data in block used to
calculate the variance of Vh i, ϵh i and ϵϵh i (see Section Results
“Elastic tensors and moduli from the strain fluctuations" and
Section Methods), from the 600 K-NPT CP molecular dynamics of
t-LGPS. Here, the first point on the right corresponds to four blocks,
and the maximum number of blocks considered is 600. Based on
this plot, we choose 47 blocks for the error block analysis of t-LGPS.
Our choice is reported in the figure by the vertical dashed line (each
block is ~4 ps long). Analogous plots for o-LGPS, t-LGPO, and
o-LGPO are reported in Supplementary Figure 7.

Fig. 4 Dependence of the elastic moduli and Poisson’s ratio on
the length of the 600 K-NPT CP molecular dynamics trajectory for
t-LGPS. Each point corresponds to a trajectory which is n-block long,
with n= 2, . . N blocks, N being the number of blocks that we have
chosen for the whole trajectory, in this case 47 (see Fig. 3), each
block containing the # data (~2000 data, ~4 ps) as determined from
Fig. 3. The error bars are the standard errors of the moduli for each
trajectory, obtained from the variance over the blocks, since these
blocks are already uncorrelated and there is no need to repeat the
block analysis in Fig. 3 for each of these calculations. Analogous
plots for o-LGPS, t-LGPO, and o-LGPO are reported in Supplementary
Figure 8.
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NPT CP molecular dynamics simulations at additional tempera-
tures for t-LGPS and o-LGPO, from which we extract the elastic
moduli, as described above for the simulations at 600 K. From
these simulations we also extract the temperature dependence of
the lattice parameters, that we report in Fig. 5, together with the
linear fits, for t-LGPS (see Supplementary Figure 11 for o-LGPO). In
Fig. 6, the values of B, G, E, and ν of t-LGPS as a function of
temperature (T= 400, 500, 600, 700, and 800 K) are reported,
together with a fit to the Wachtman’s law74–76:

MðTÞ ¼ M0 � αT exp � T0

T

� �
; (2)

where M ¼ B;G; E; νf g, M0 are the moduli at 0 K, and the meaning
of the remaining parameters α and T0 is explained in74–76. This
equation gives M=M0 at 0 K, approaching this value with a zero
slope as required by the third law of thermodynamics74–76, and a
linear dependence at high temperatures, as expð�T0=TÞ
approaches unity. Although it was originally tested74 for some
oxide compounds, it has been shown to be correct also for
nonoxide solids76. An analogous plot for o-LGPO (T= 600, 800,
1000 K) is reported in Supplementary Figure 12. In Table 3 we
report the extrapolated bulk, shear, Young’s moduli, and Poisson’s
ratio at 0 K and 300 K for t-LGPS. For a non-quantitative reference,Ta
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Fig. 5 Temperature dependence of the t-LGPS lattice parameters
(for o-LGPO see Supplementary Figure 11). The error bars are the
standard deviations over the blocks, from a block analysis
performed for each lattice parameter, as shown in Fig. 3 for the
elastic moduli.

Fig. 6 Temperature dependence of B, G, E, and ν for t-LGPS from
NPT CP molecular dynamics at 400, 500, 600, 700, and 800 K. The
error bars are the standard errors of the moduli over the trajectories,
after a block analysis as from Fig. 3. The computed data are fitted to
the Wachtman’s equation (Equation (2) and refs. 74–76). An analogous
plot for o-LGPO is reported in Supplementary Figure 12.
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we also report the experimental room-temperature moduli of
related sulfide glassy electrolytes, measured through ultrasonic
pulse echo methods93,94. For o-LGPO, we report in Table 3 the
values of the moduli at T= 300 K, that can serve as a reference for
further studies, since, to date, no experimental reports on the
elastic properties of this material are available.

Elastic tensors and moduli from static methods
As a basis of comparison with the strain-fluctuation method, we
provide here results from the static methods (outlined in the
Methods Section) aiming to quantify the relevance of the dynamic
nature of the elastic response of these materials. We focus on the
benchmark material t-LGPS, for which results from computational
static methods28,44,45 are also available in the literature, and a
relevant number of experimental works investigate the mechan-
ical properties of the class of superionics to which it
belongs23,26,93–96. All the calculations are done both on nine
uncorrelated snapshots of the 600 K-NPT CP molecular dynamics,
that are previously fully relaxed, and on a global minimum energy
structure that was obtained in ref. 78 through an electrostatic
energy criterion, that is also previously fully relaxed. In order to
compare the dynamics-based strain-fluctuation method with a
static method at the same DFT accuracy, we perform here DFT
calculations with the same supercell, pseudopotentials, DFT
functional, cutoff energy, and k-point sampling as in the 600 K-
NPT CP molecular dynamics simulations (see previous section, and
the Supplementary Methods), and we relax the internal coordi-
nates following a Broyden-Fletcher-Goldfarb-Shanno algorithm85,
with, as convergence criteria, an energy difference between two
consecutive steps below 2 × 10−4 a.u. and single components of
the forces on the ions below 2 × 10−3 a.u.
We apply a small hydrostatic strain (Equation (14) in the

Methods Section) to each given structure of t-LGPS, calculate the
energy, and fit to a Murnaghan EOS (Equation (15) in the Methods
Section85,97,98), from which we extract V0, B0, and B00. In Fig. 7 we
report the energy-volume relations together with the fits, both for
the nine snapshots and for the global minimum energy structure.
In all these calculations, all the atoms are let free to relax during
the expansion/compression, as explained above. However, in
order to quantify the influence of the internal coordinate
relaxation, we also perform the energy-volume calculations on
the global minimum energy structure by keeping the atoms fixed
at their equilibrium positions: we report the corresponding fit
from these calculations, compared to the case with internal
coordinate relaxation, in Supplementary Figure 13. The bulk
modulus from the EOS is reported in the first line of Table 4
(B*(EOS)) for the unrelaxed calculations, and in the second line
(B(EOS)) for the relaxed calculations. This comparison reveals that
the material is about twice as stiff when the internal coordinates of
the atoms are not free to relax. As for the energy-volume curves
and bulk moduli obtained from the snapshots configurations (Fig.
7 and Table 4), the nine uncorrelated snapshots from the t-LGPS
dynamics reveal a rather wide range of values (~15% of the
average value) for the t-LGPS bulk modulus from the EOS,
corresponding to rather different energy-volume curves. This

result is not unexpected, as superionic materials can have different
stable structures, mainly depending on which sites are populated
by the mobile Li ions in each of them. Since there are 32 sites for
20 Li ions in one 50-atom supercell99, the number of such
structures is huge (~108), and it would not be possible to assign a
proper statistical uncertainty to the moduli from the static
methods in Table 4 from a block analysis, as done for the strain-
fluctuation method in the previous section. However, from the
block analysis of the previous section, we know that, by
considering 9 uncorrelated snapshots (i.e., separated at least by
the length of one block, which is ~4 ps from Fig. 3), we are not
underestimating the statistical uncertainty of the static moduli in
Table 4. Thus, sampling of the snapshots from the 600 K-NPT CP
molecular dynamics is performed here as a way to generate
uncorrelated t-LGPS configurations, and not as a rigorous
statistical tool, which would be inconsistent as the energy-
volume calculations are at 0 K. Finally, we note that the bulk
modulus for the global minimum energy structure78 (last column
in Table 4) is very similar to the average value obtained from the
fully relaxed snapshots.
In order to calculate also G, E, and ν, we apply uniaxial strains to

extract the 36 stiffness coefficients of the elastic tensor (Equations
(18) and (19) in the Methods Section). For these calculations, we
tighten the convergence criteria to energy differences between
two consecutive steps below 2 × 10−5 a.u. and single components
of the forces on the ions below 2 × 10−4 a.u. In Fig. 8 we report the
components c11, c12, c13, c33, c44, and c66 of the stiffness tensor for
the nine fully relaxed snapshots considered. The resulting moduli
from Equations (20)−(22) are reported in Table 4, together with
the moduli obtained from the same stress–strain calculations on
the global minimum energy structure of ref. 78, here fully relaxed.
In Supplementary Tables 2–5 we report the full elastic tensor and

Table 3. 0 K and room-temperature extrapolations, following a Wachtman’s fit, of bulk, shear, Young’s modulus, and Poisson’s ratio from NPT CP
molecular dynamics and the strain-fluctuation method for t-LGPS and o-LGPO, together with some experimental results93,94.

B (GPa) G (GPa) E (GPa) ν B/G

t-LGPS (0 K extrapolation) 17.25 ± 2.07 7.80 ± 0.66 20.58 ± 3.15 0.29 ± 0.05 2.21 ± 0.78

t-LGPS (300 K extrapolation) 16.46 ± 1.55 7.79 ± 0.59 20.48 ± 2.71 0.29 ± 0.04 2.11 ± 0.66

75Li3PS4 ⋅ 25Li4GeS4 (298 K94) 22.8 9.1 24.0 0.325 2.5

75Li2S ⋅ 25P2S5 (298 K93) 12.5−21.3 5.9−8.7 15−23 0.30−0.32 2.54−2.64

o-LGPO (300 K extrapolation) 46.74 ± 3.02 28.12 ± 0.87 69.59 ± 6.20) 0.26 ± 0.03 1.66 ± 0.40

Fig. 7 Energy-volume relations (and fit to the Murnaghan
equation of state, Equation (15)) from isotropic compression
and expansion of nine fully relaxed snapshots from the 600 K-NPT
CP molecular dynamics of t-LGPS, and of the global minimum
energy structure reported in ref. 78, previously fully relaxed. At
each volume the energy is calculated by relaxing the atoms (see
main text).
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Voigt-Reuss bounds for each relaxed snapshot configuration, and
for the global minimum energy structure. For the snapshot
configurations, similar considerations as for the bulk modulus
from EOS can be drawn for the moduli from the stress–strain
relations: we find values of each elastic modulus distributed over a
range of about 15% of the average value. As noted for the
calculation of the bulk modulus from the EOS, the moduli
obtained from the global minimum energy structure78 (last
column in Table 4) do not give additional relevant information,
being in the range of the moduli from the fully relaxed snapshots.
This result can be understood as a demonstration that the global
minimum energy structure and the energy-minimized snapshots
are simply different energy-minimized configurations, each with a
potentially different Li occupation of the available sites.

DISCUSSION
This paper provides reference results for the elastic constants and
moduli of two benchmark oxide and sulfide SSEs from the strain-
fluctuation method60. From Tables 2 and 3, the oxide
o-LGPO67,68,100 (whose elastic properties were experimentally
and computationally unreported, to date) is predicted to be
significantly stiff (B= 44.1 GPa, G= 25.4 GPa, E= 63.9 GPa), and ~3
times stiffer than the corresponding sulfide. This result is
compatible with the available results for the garnet Li7La3Zr2O12

(B ~ 100 GPa, G ~ 60 GPa, E ~ 150 GPa47) and the NASICON
Li1.2Zr1.9Sr0.1(PO4)3 (E ~ 40 GPa101), showing a superior stiffness of

oxide SSEs as compared to sulfide SSEs (see Table 3 for Li3PS493

and LGPS94). However, these results do not univocally determine
the relative performances of oxides and sulfides in ASSBs. Even
though a large shear modulus has been historically believed to
prevent Li penetration through the electrolyte25,102, a SSE that
possesses a high G of ~60 GPa, LLZO, has recently proven to suffer
from dendrite propagation26. Similarly, despite a low Young’s
modulus is usually believed to ensure stress–strain-accommoda-
tion ability27,102, a compliant SSE with a low E of ~18 GPa, Li3PS4,
has recently appeared to be more prone to micro-cracking than
stiffer electrolytes23,24. A major goal for the scientific community
would be to determine which balance of low Young’s modulus
and high shear modulus leads to the best performance in
reducing dendritic growth and interface resistivity. To this end, our
results for o-LGPO seem to show a common trend with other
oxide superionics, such as LLZO47 and Li2O-ZnO-B2O glasses103,
where E ~ 1.5B and B ~ 1.5G (Table 3), differently from sulfide
materials, for which this trend is not reported (this work and
refs. 28,93,94), and in principle G and E might be more easily tuned
to reach such ideal balance. Moreover, from the moduli, we can
estimate the ductility, usually related to the ratio B/G104 (also
called the Pugh’s ratio105), which quantifies the ability of a material
to resist volume changes against shape changes. The B/G ratio for
o-LGPO (≃1.7, Table 3) is in line with the one of another oxide SSE,
the garnet LLZO47. The ductility of t- and o-LGPS is considerably
higher (>2, Table 3), in line with the above-mentioned experi-
ments for glassy solid-state sulfides93,94,102. A close comparison

Table 4. B, G, E (in GPa), and ν from the static methods (EOS and stress–strain) applied to nine uncorrelated snapshots, fully relaxed, from the t-LGPS
NPT-600 K CP molecular dynamics (with the standard errors of the mean), and to the global minimum energy structure78, fully relaxed.

SNAP1 SNAP2 SNAP3 SNAP4 SNAP5 SNAP6 SNAP7 SNAP8 SNAP9 SNAPAVE 0 K global minimum78

B*(EOS) 48.0

B (EOS) 20.9 21.4 21.6 20.6 20.6 23.3 21.1 21.0 22.7 21.5 ± 0.3 21.7

B (stress–strain) 21.2 20.4 21.8 20.5 21.0 21.7 21.8 22.3 23.5 21.5 ± 0.3 21.7

G (stress–strain) 11.3 12.7 13.2 12.5 11.2 13.0 13.0 12.2 11.7 12.1 ± 0.3 13.3

E (stress–strain) 28.8 31.6 32.9 31.1 28.6 32.4 32.6 30.9 30.0 30.6 ± 0.6 33.0

ν (stress–strain) 0.27 0.24 0.25 0.25 0.27 0.25 0.25 0.27 0.29 0.26 ± 0.01 0.25

Fig. 8 Stress–strain relations (Equations (18) and (19)), with linear fits providing the components c11, c12, c13, c33, c44, and c66 of the
elastic tensor from Equation (19), for the same nine fully relaxed snapshots from the 600 K-NPT CP molecular dynamics of t-LGPS as in
Fig. 7. At each value of the strain parameter x the stress is calculated by relaxing the atoms. The full elastic tensors for the nine configurations
are reported in Supplementary Tables 2–4.
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with the experimental literature (refs. 27,93,94,102 and Table 3)
shows a good agreement with ref. 94 for the values of G and E and
a fair agreement for the values of B and ν (Table 3). However, we
recall that the experimental values of ref. 94, also reported in
Table 3, refer to the elastic moduli of glassy Li2S− P2S5 and
Li3PS4− Li4GeS427,93,94, and no experimental investigations of the
elastic properties of single-crystal or polycrystalline LGPS are
available to date. In addition, ref. 93 shows that the experimental
moduli are very sensitive to the molding condition, being higher
for higher molding temperature and pressure, and covering a
wide range of values (e.g., for the composition 75−30 of
Li2S− P2S5, see Table 3, B= 12.5−21.3 GPa, G= 5.9−8.7 GPa,
and E= 15−23 GPa93). For the glassy Li3PS4− Li4GeS4, since the
hot-pressed pellets showed higher Li density and ionic conduc-
tivity106, the elastic moduli were measured only after hot
pressing94, so that ref. 94 (cf. Table 3) reports only the upper limit
of the experimental moduli for these glassy LGPS samples. Finally,
it would be interesting to clarify the connections between hot-
and cold-pressed glass structures, pure crystals, and elastic moduli.
A more theoretical purpose of this work is to compare the

strain-fluctuation method exploiting NPT molecular dynamics
trajectories (Tables 2 and 3) with static methods applied to fully
relaxed snapshots extracted from the same trajectories. We
purposely use here the same DFT machinery (DFT functional,
pseudopotentials) and choose the same accuracy (k-point
sampling, supercell size) in both methods. Moreover, we do not
aim here to establish the accuracy of the DFT functionals45,88, but
rather to compare the accuracy of static and dynamic methods.
Such a comparison, that we perform for t-LGPS (Table 4), is
expected to shed light on the role of the many statistically
accessible configurations in the determination of the elasticity in
superionic materials, and to clarify the need for a dynamical
treatment in the description of their elastic response. First, Table 4
shows that the static methods give rather different values for the
moduli, depending on the choice of the configuration to be
strained. This result confirms that the different stable structures of
superionic materials, which are dependent on the sites populated
by the mobile Li ions, give rise to statistically different elastic
properties, and is in principle not correct to use as a reference only
one of these structures44,45,107. Furthermore, we find a marked
disagreement between the average moduli from the static
calculations (Table 4) and the 0 K extrapolation of the moduli
from the strain fluctuations (Table 3), in general, the first
exceeding the latter by a considerable amount. The static
calculations performed on the global minimum structure78 are
in line with those on the fully relaxed snapshots. The over-
estimation of the moduli from the static methods with respect to
the strain-fluctuation method can be explained by the ability of
the latter to capture the elastic response of superionic materials,
where the non-mobile sublattice responds elastically as in a
proper solid, whereas the mobile sublattice behaves inelastically
as in a liquid. Conversely, the static methods assume the presence
of an elastic response from all the atoms in the material,
predicting in turn a stiffer material than it is in reality. For t-LGPS,
our results show that such overestimation amounts to ~25–50%,
so a proper statistical dynamic treatment of the elastic properties
of this material should be desirable. Overall, we show that the
elastic response of the material is systematically stiffer when going
from a dynamic method (strain-fluctuation), to a static method
(EOS or stress–strain) performed by relaxing the internal
coordinates, to a static method (EOS) performed at fixed internal
coordinates. Thus, relaxing the internal coordinates when
performing a static calculation for the elastic moduli is beneficial
for these materials (we show that otherwise the bulk modulus
would be ~100% stiffer), but is not enough when compared to the
correct dynamical treatment (since the moduli are still ~25–50%
stiffer than the dynamically obtained ones).

In summary, although superionic conductors are dynamically
disordered materials, for which a well-defined microscopic
reference configuration does not exist56, computational studies
of their elastic properties usually rely on static methods28,44–48,
where strains are applied to a chosen ionic configuration (in
general, one of the many possible fully relaxed structures starting
from molecular dynamics trajectories or educated guesses from
the experimental structures), and the resulting energies or stresses
are calculated. Such methods neglect the quasi-liquid motion of
these materials, which can instead be captured by turning to
statistical methods, based on the sampling of the whole
configuration space with molecular dynamics. First, we provide a
computational study of the elastic moduli of superionic con-
ductors with such a dynamical approach, sampling strain
fluctuations60 with first-principles molecular dynamics71,85, fol-
lowed by an accurate block analysis of the errors. Choosing two
benchmark crystalline superionic conductors, LGPS65 and LGPO68,
we show that an affordable computational effort is sufficient
(~180 ps trajectories) to obtain converged moduli and statistical
errors of reasonable size; the calculated moduli agree with the
existing experimental literature for similar glassy materials.
Second, we compare the strain-fluctuation method with standard
static methods for the benchmark t-LGPS. By applying the same
static methods to different fully relaxed structures from the
molecular dynamics, both with and without internal coordinates
relaxation, we note that: (i) static methods predict a material
unrealistically stiff when unrelaxing the internal coordinates; (ii)
static methods still overestimate the moduli with respect to the
correct dynamical treatment by ~25–50% when relaxing the
internal coordinates; (iii) static methods have an intrinsic variance
up to ~2–3%, and an overall spread of ~15% on the average value.
These results argue for the importance of dynamical sampling to
address elastic properties of superionic conductors, and provide a
computational reference for the community, given that no
experimental reports on crystalline LGPS and no experimental or
computational reports on LGPO are available to date. Given the
growing interest in the mechanical properties of superionic
conductors for all-solid-state-battery technologies, justified by
the urgency of controlling the manufacturing of these materials
and the mechanical phenomena taking place in the electro-
chemical cell upon cycling (e.g., dendrite propagation through the
electrolyte, or formation of interface strains due to volume
changes or ionic transport10,13,14,17), we believe that further
computational and experimental investigations are warranted.
Last, whilst elastic properties, like compliance vs. stiffness or
ductility vs. brittleness, are governed by the elastic moduli (bulk,
shear, Young’s modulus, and Poisson’s ratio), even mechanical
properties outside the elastic regime, such as fracture tough-
ness24,104, fragility104, shear strength108, shear viscosity104 or
hardness109, can often be predicted starting from the elastic
moduli, underscoring the importance of accurate measurements
or predictions.

METHODS
Elastic tensors from strain fluctuations, and statistical errors
We present here the formalism to calculate elastic tensors from
the molecular dynamics simulations according to the strain-
fluctuation method60, and the derivation of the statistical errors
from the dynamics. The strain-stress relation can be recast in
terms of the fluctuations of the strain in a constant stress
ensemble60:

Sαβμν ¼ ∂ϵαβ
∂σμν

� �
T

¼ Vh i
kBT

ΔϵαβΔϵμν
� �

N;σ;T : (3)

In Equation (3), Sαβμν is the αβμν component of the isothermal
compliance tensor60 (inverse of the isothermal stiffness tensor
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{Cαβμν}), where ϵαβ and σμν are the strain and stress tensors,
respectively, and the Greek indices αβμν cover the cartesian
coordinates in three dimensions. T and Vh i are the temperature
and average volume of the system in the constant stress and
constant-temperature ensemble (NσT), ::h i is an ensemble
average, and Δ is a deviation from the mean value, i.e.,
Δϵαβ ¼ ϵαβ � ϵαβ

� �
. Equation (3) can be derived from statistical

thermodynamics through the theory of fluctuations in various
ensembles63,110,111. The strain tensor in Equation (3) can be
calculated from the instantaneous and average cell matrices via
the expression60:

ϵ ¼ 1
2
ð hh iT ;�1G hh i�1 � 1Þ; (4)

where G ¼ hTh is the metric tensor (cf. Supplementary Methods)
and h the instantaneous cell matrix in the triangular superior
form112:

h ¼
kak kbk cos γ kck cos β
0 kbk sin γ ðb � c� bx � cxÞ=by
0 0 ðkck2 � c2x � c2yÞ

1
2

0
BB@

1
CCA (5)

where ∥a∥, ∥b∥, ∥c∥ and α, β, γ are the cell edges and angles,
respectively. Equations (3)−(5) can be used to calculate the
isothermal stiffness coefficients from molecular dynamics or
Monte Carlo simulations from the strain fluctuations at fixed
stress64,112–115.
In the Voigt notation92,116, thanks to symmetry, the stress and

strain tensors can be represented as one-dimensional arrays with
six components. The strain is:

ϵ1 ¼ ϵxx ; ϵ2 ¼ ϵyy ; ϵ3 ¼ ϵzz; ϵ4 ¼ 2ϵyz; ϵ5 ¼ 2ϵzx ; ϵ6 ¼ 2ϵxy ; (6)

and the stress–strain relation is simplified, with the stiffness tensor
becoming a (6 × 6) matrix117:

σi ¼ cijϵj; (7)

so that Equation (3) becomes:

cij ¼ ∂σi

∂ϵj

� �
T

¼ kBT
Vh i ΔϵΔϵh i�1

ij ; (8)

where ΔϵΔϵh i is the dynamical covariance of ϵ, and the ensemble
average is intended to be in the (NσT) ensemble. Equation (8) can
also be written as:

cij ¼ kBT
Vh i ϵϵh i � ϵh i ϵh i½ ��1

ij : (9)

In the Voigt notation, adopted throughout the remainder of this
paper, the compliance reads:

sij ¼ Vh i
kBT

ϵiϵj
� �� ϵih i ϵj

� �� �
: (10)

Next, we calculate the errors on the statistical quantities Vh i, ϵh i,
and ϵϵh i by performing a block analysis, as reported in Section
Results “Elastic tensors and moduli from the strain fluctuations".
Then, we propagate these errors (Var(V), Var(ϵ) and Var(ϵϵ)) to the
compliance of Equation (10):

VarðsijÞ ¼ Vh i
kBT

� 	2
VarðϵiϵjÞ þ ϵih iVarðϵjÞ
�

þ ϵj
� �

VarðϵiÞ
�þ sij

Vh i
� 	2

VarðVÞ
(11)

and we obtain the error on the stiffness, Var(c), by the following:

VarðcÞ ¼ Varðs�1Þ ¼ d2 s�1ð Þ ¼ s�1dss�1ð Þ2 ¼ s�1
ij dsjks�1

km

n o2

¼ s�1
ij dsjks�1

kms
�1
il dslns�1

nm

n o
¼ s�1

ij s�1
ij dsjkdsjks�1

kms
�1
km

n o
þ o dsjkdsln


 �� 

j≠l;k≠n

¼ ðs�1
ij Þ2VarðsjkÞðs�1

kmÞ2
n o

;

(12)

where, in the last passage, we exclude the term o dsjkdsln

 �� 


j≠l;k≠n as
we consider sij to be statistically decorrelated. We note that the
compliance and stiffness tensors computed with this procedure are
independent of the number of blocks chosen for the error analysis.

Elastic tensors from static approaches
We provide here a concise overview of the static methods to
evaluate elastic constants and moduli. The expression for the cell
matrix under the strain ϵ is:

a01 a02 a03ð Þ ¼ ðI þ ϵÞ a1 a2 a3ð Þ

¼
1þ ϵ1 ϵ6=2 ϵ5=2

ϵ6=2 1þ ϵ2 ϵ4=2

ϵ5=2 ϵ4=2 1þ ϵ3

0
B@

1
CA a1 a2 a3ð Þ

(13)

where a01 a02 a03ð Þ and a1 a2 a3ð Þ are the strained and
unstrained cells, respectively. Under a hydrostatic strain

ϵi ¼ x; i ¼ 1; 2; 3;

ϵi ¼ 0; i ¼ 4; 5; 6;
(14)

only the volume V of the cell is changed, and the bulk modulus (or
isothermal incompressibility, i.e., the stiffness of the material
under the effect of isotropic compression) can be calculated fitting
an EOS, such as Murnaghan’s118,119, Birch’s119,120, Keane’s97,121, or
Stacey’s122, where P and V are the variables, and volume, bulk
modulus, and bulk modulus derivatives at the minimum (V0, B0, B

0
0,

B000.) are the fitting parameters. We use here a simple Murnaghan’s
EOS, equivalent to Keane’s EOS97,98,121 with B000 ¼ 085,98, where the
energy-volume relation is:

E ¼ � B0V0

B00 � 1
þ VB0

B00

V0

V

� �B00 1
ðB00 � 1Þ þ 1

" #
(15)

and the pressure

P ¼ B0
B00

V
V0

� ��B00
� 1

" #
: (16)

While the bulk modulus can be obtained directly from the EOS
(Equations (15) and (16)), the remaining moduli (shear, Young’s
and Poisson’s ratio) can only be derived from the full elastic tensor
(Equation (7)), with 21 independent components92. Symmetry
reduces this number to, e.g., 13 for monoclinic, 9 for orthorhom-
bic, and 6 for tetragonal space groups92. The full elastic tensor can
be calculated by an “energy-strain" approach53, i.e., by expanding
the energy over the strain up to the second order50,123, or by a
“stress–strain" approach, based on the stress resulting from an
applied strain51,54. In the stress–strain approach, the elastic tensor
is calculated from the change in stress Δσ associated with the
strain ϵ applied to a reference configuration ϵ0

51:

Δσ ¼ σðϵ0 þ ϵÞ � σðϵ0Þ ¼ cðϵ0Þϵ: (17)

We recall that in Equation (17) σ and ϵ are six-dimensional
vectors and c(ϵ0) is a (6 × 6) matrix (Voigt notation116). The whole
tensor c(ϵ0) can be obtained from Equation (17) by imposing the
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6 simple uniaxial strains

ϵm ¼ fϵig;
ϵi ¼ δimx;m ¼ 1; ¼ 6:

(18)

From Equations (17) and (18), each column m of c(ϵ0) is
extracted from the differences between the stress calculated at
ϵ0+ ϵm and ϵ0

51:

Δσm ¼ σðϵ0 þ ϵmÞ � σðϵ0Þ ¼ c1m; c2m; c3m; c4m; c5m; c6mð Þx: (19)

This is a simple and general way to extract the elastic tensor
from the stress–strain relations. The 36 stiffness coefficients
can be obtained independently, although only 21 are
necessary (as c(ϵ0) is a symmetric matrix). The method holds
for the most general case of a triclinic phase51, i.e., the
independent matrix elements can be in principle all different.
Of course, c(ϵ0) should display the symmetries of the space
group to which the materials belong, which can also become a
useful checkpoint for the convergence of the calculations.

From the elastic tensors to the elastic moduli: Voigt-Reuss-Hill
approximation
The effective elastic moduli of an arbitrarily shaped isotropic
polycrystalline aggregate can be obtained from the elastic
stiffness tensor {cij} of the single crystal, by assuming homo-
geneous strain (Voigt approximation116):

9BV ¼ c11 þ c22 þ c33 þ 2ðc12 þ c23 þ c31Þ
15GV ¼ c11 þ c22 þ c33 � ðc12 þ c23 þ c31Þ

þ 3ðc44 þ c55 þ c66Þ;
(20)

or from the elastic compliance tensor {sij}, by assuming homo-
geneous stress (Reuss approximation124):

1=BR ¼ s11 þ s22 þ s33 þ 2ðs12 þ s23 þ s31Þ
15=GR ¼ 4ðs11 þ s22 þ s33Þ � 4ðs12 þ s23 þ s31Þ

þ 3ðs44 þ s55 þ s66Þ:
(21)

Equations (20) and (21) constitute the upper and lower
bounds to the expected values of the moduli, respec-
tively125,126, and their arithmetic or geometric means are
considered a reasonable estimate, which goes under the name
of Voigt-Reuss-Hill (VRH) approximation126:

B ¼ 1
2 ðBV þ BRÞ or B ¼ ffiffiffiffiffiffiffiffiffiffi

BVBR
p

;

G ¼ 1
2 ðGV þ GRÞ or G ¼ ffiffiffiffiffiffiffiffiffiffiffi

GVGR
p

:
(22)

In Equations (20) and (21) only the 9 independent components of
the elastic tensors of orthorhombic single crystals appear92. A more
sophisticated approach would be to relax the isotropy and
homogeneity assumptions, using the variational principle that holds
for arbitrary crystal shapes127. The resulting bounds, which go under
the name of Hashin-Shtrikman bounds, have been derived for
cubic128, orthorhombic129, tetragonal130, and monoclinic131 symme-
tries, and prove to give more accurate results than the VRH
approximation128–131, though still lying within the Voigt and the
Reuss bounds128,131. Thus, for simplicity, and considering the scope of
this work, we will restrict ourselves here to the VRH approximation.
Young’s modulus E and Poisson’s ratio ν are calculated from B and G
through the relations126:

1
E
¼ 1

3G
þ 1
9B

; ν ¼ 1
2

1� 3G
3Bþ G

� �
: (23)

For the strain-fluctuation method, where a statistical error is
provided for the elastic tensors (see above), the errors on the
elastic moduli B, G, E, and Poisson’s ratio are obtained by
propagating the errors on the compliance (Equation (11)) and the

stiffness (Equation (12)) to the expressions of the moduli in the
VRH approximation (Equations (20) and (23))116,124,126.
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