Table 2 Summary of widely adopted machine learning potentials for indirectly predicting lattice thermal conductivities.

From: Predicting lattice thermal conductivity via machine learning: a mini review

Potential

Feature

Algorithm

Application systems

MTP

moment tensor70

linear regression

monolayers77,78,79,80,81,82,83,84,95, bilayers85, heterostructures20, perovskites86, skutterudites68,87, alloys88, wurtzite structures89, phase change materials91,92, complex crystals93, etc

NNP

ACSF71,72, digital image66, SOAP18

NN

molten salts21, polymorphs103, near-stoichiometric compounds106, high-entropy ceramics107,108, ternary salts109, nanowires110, monolayers111, antiperovskites112, etc

GAP

SOAP18, two-body and three-body descriptors117,118

GPR

crystalline compounds113,114,115, crystals with defects116, monolayers117,118, amorphous structures119, etc