Table 2 Summary of widely adopted machine learning potentials for indirectly predicting lattice thermal conductivities.
From: Predicting lattice thermal conductivity via machine learning: a mini review
Potential | Feature | Algorithm | Application systems |
---|---|---|---|
MTP | moment tensor70 | linear regression | monolayers77,78,79,80,81,82,83,84,95, bilayers85, heterostructures20, perovskites86, skutterudites68,87, alloys88, wurtzite structures89, phase change materials91,92, complex crystals93, etc |
NNP | NN | molten salts21, polymorphs103, near-stoichiometric compounds106, high-entropy ceramics107,108, ternary salts109, nanowires110, monolayers111, antiperovskites112, etc | |
GAP | GPR | crystalline compounds113,114,115, crystals with defects116, monolayers117,118, amorphous structures119, etc |