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Phase field modeling with large driving forces
Jin Zhang 1✉, Alexander F. Chadwick 1, David L. Chopp2 and Peter W. Voorhees1

There is growing interest in applying phase field methods as quantitative tools in materials discovery and development. However,
large driving forces, common in many materials systems, lead to unstable phase field profiles, thus requiring fine spatial and
temporal resolution. This demands more computational resources, limits the ability to simulate systems with a suitable size, and
deteriorates the capability of quantitative prediction. Here, we develop a strategy to map the driving force to a constant
perpendicular to the interface. Together with the third-order interpolation function, we find a stable phase field profile that is
independent of the magnitude of the driving force. The power of this approach is illustrated using three models. We demonstrate
that by using the driving force extension method, it is possible to employ a grid size orders of magnitude larger than traditional
methods. This approach is general and should apply to many other phase field models.
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INTRODUCTION
The phase field method is a promising tool for materials design.
For this to become a reality, it is essential to be able to employ
realistic materials parameters in a phase field model. Despite the
remarkable success of the phase field method in modeling
microstructure evolution and computational design of materials,
there are still barriers to achieving quantitative prediction for
engineering problems. The phase field method employs a diffuse
interface to obviate the need to track the interface but introduces
an additional length scale of the diffuse interface thickness. A
minimum number of grid points across the diffuse interface is
needed to maintain accuracy and prevent pinning1, which leads to
the high computational cost of phase field simulations. One
milestone in the development of quantitative phase field models
is the introduction of methods that allow orders of magnitude
larger interfacial widths than the physical interface width while
still capturing the correct sharp interface behavior2,3. Many
recently developed phase field models follow this idea to employ
a thicker interface width4–9.
Large driving forces are common in engineering problems and

phase field simulations. In the sharp-interface context, the driving
force is related to an appropriate free energy jump at the interface
that is responsible for the interface movement. The driving force is
defined only at the interface. The magnitude of the driving force
can be large for interface kinetic-limited growth like rapid
solidification, electrodeposition, island growth on the surface,
oxidation, and corrosion. In many other cases, the interface is
assumed to be at local equilibrium, and the (sharp-interface) driving
force has a small magnitude. In the diffuse-interface context, e.g.,
phase field models, the driving force is defined everywhere in the
system; therefore, it can vary across the diffuse interface. In
realization of the local equilibrium in a phase field model, the local
equilibrium is valid to the first-order asymptotics7. Even if the
physical driving force is small, higher-order asymptotic terms can
still act as a large driving force, especially when the diffuse interface
width is large. Therefore, in this context, a large driving force means
a large apparent driving force: either due to a large physical/sharp-
interface driving force or a large diffuse-interface driving force
resulting from a large diffuse interface width.

These large apparent driving forces impose a strong upper
bound on the interface width. This upper bound limits the spatial
grid size to nanometers or even sub-nanometers, prohibiting the
application of phase field models to practical system sizes ranging
from micrometers to millimeters. The resulting computational cost
is one of the most fundamental issues in quantitative phase field
modeling. This limitation can be dramatic when considering
stoichiometric line compounds, for example, where commonly
employed parabolic free energies can be numerically unstable
when trying to capture the correct composition10. Adaptive mesh
refinement and advanced time integration methods may mitigate
the problem, but they introduce additional numerical complexity.
Various options are proposed to enable a larger grid size.
Traditionally, the stability limit of the third-order interpolation is
thought to be thermodynamic in nature. The most common
strategy is using higher-order interpolations, like the widely used
fifth-order interpolation11, to make the free energy thermodyna-
mically stable. Another is reformulating the evolution equations
by a nonlinear transformation of the phase field function to a
signed-distance type1. A third strategy is the sharp phase field
method12,13, which employs a discrete free energy to resolve the
interface with as little as one grid point. However, it is not easy to
extend these methods to general numerical techniques with
unstructured meshes, and it is not straightforward to apply them
to some existing phase field models. A common feature of all
previous strategies is that they rely on the surface energy term in
the phase field equation to stabilize the traveling wave structure
of the phase field profile; therefore, they do not fundamentally
solve the stability problem, and the phase field profile will
eventually break if the driving force is large enough. Recently, a
stabilization method has been proposed where the surface energy
is increased for the potential and the normal component of the
Laplacian of the order parameter, while the physical surface
energy is kept for the rest of the Laplacian14. This approach has
addressed part of the large driving force issue, but it has not been
extended to the most general cases with coupled fields or other
phase field models. The last strategy is simply using unrealistic
parameters in the model, but this precludes quantitative
predictions, comparison with experiments, and models that can
be used for materials design.
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We propose a strategy to maintain an unconditionally stable
phase field profile independent of the magnitude of the driving
forces. We find that the stability issue is caused by a nonlinear
variation of the driving force within the diffuse interface instead of
the magnitude of the driving force. By noticing that the traveling
wave structure can be maintained without the surface energy
term using the third-order interpolation and a constant driving
force, we propose a driving force extension method to project the
driving force to a constant perpendicular to the interface. The
limitation on grid size by the driving force is eased, making it
possible to freely choose grid size orders of magnitude larger than
previous methods. We demonstrate the versatility of our method
with several applications: a single order parameter case and two
general cases with coupling fields. The proposed method correctly
captures the Gibbs-Thomson effect and is straightforward to be
applied to higher dimensions. The proposed driving force
extension method only needs a simple modification of the phase
field equation; therefore, it is straightforward to apply to existing
phase field models and easy to adapt to many numerical
techniques. Our vision is that this method could be employed in
most existing phase field models to handle the stability problem
due to large apparent driving forces, thereby initiating a significant
step forward in using the phase field method as a quantitative tool
in materials design.
We first explain the stability issue due to large driving forces

and propose the driving force extension method. We demonstrate
the proposed strategy using a driven Allen-Cahn equation
employed as a model for additive manufacturing15,16 and
compare it with traditional methods. Once validated, the method
is applied to a more general problem with coupled fields: a
solidification problem with coupling between a phase field and a
concentration field. We use both the Kim-Kim-Suzuki (KKS)
model17 and the grand potential model6 to demonstrate its
generality. We further validate the driving force extension
method’s ability to capture the capillary effect and perform
calculations in higher dimensions.

RESULTS
Driving force extension method
The phase field method uses one or more order parameters u to
describe interfaces in materials. The order parameter has constant
values in bulk phases and has a sharp transition at the interface.
The evolution equation of a nonconserved order parameter u in a
phase field model has the following general form

τ
∂u
∂t

¼ κ∇2u�mg0ðuÞ þ p0ðuÞF; (1)

where τ is a time scale determined by the kinetics of the interface,
g(u) is a double-well function for a single order parameter, and a
multi-well function for multiple order parameters, p(u) is an
interpolation function, κ= 6γl and m= 3γ/l for g(u)= u2(1−u)2 are
model parameters related to the surface energy γ and the diffuse
interface width l, and F is the driving force, which can be a
function of relevant field variables, e.g., temperature, concentra-
tion, mechanical displacement, and electrostatic potential. Phase
field models with a different form than Eq. (1), like the hyperbolic
phase field model18, are not considered in this work. Generally, F is
a function of space and time. The driving force F typically varies
across the diffuse interface, as shown in Fig. 1b (see the “Methods”
section for the specific form of F used to construct Fig. 1). Here we
define the apparent driving force Fapp as the maximum of the
absolute value of F within the diffuse interface: Fapp ¼
maxfjFðxÞj : uðxÞ> ε ∪ uðxÞ< 1� εg for a small positive number
ε≪ 1. A large apparent driving force can result from either a large
physical driving force or a large diffuse interface width. Frequently
seen in phase field simulations, especially with a large Fapp, the
phase field profile becomes unstable, as shown by the dashed line

in Fig. 1a. This deviates considerably from the desired traveling
wave structure of the phase field profile, as shown by the solid line
in Fig. 1a. To better understand the problem, let us rearrange
Eq. (1) by substituting the expressions of κ and m:

τ
∂u
∂t

¼ 6γ
l

l2∇2u� 1
2
g0ðuÞ

� �
þ p0ðuÞF: (2)

The first term on the right-hand side is a surface energy term,
stabilizing the phase field profile and maintaining its traveling
wave structure during evolution. The second term is a driving
force term, which typically breaks the traveling wave structure.
Since the surface energy part scales with the inverse of the
diffuse interface width l, when the driving force F is large, a small
interface width, and consequently a small grid size, is necessary to
balance the surface energy and the driving force terms. For
example, the driving force corresponding to a typical over-
potential η= 0.1 V in electrochemical systems is on the order of
F � Fη=Vm � 109 Jm�3, where F is the Faraday constant and Vm
is the molar volume. For a typical surface energy of γ= 0.2 Jm−2,
the interface width to balance the two terms is l ≈ 1 nm. The grid
size will be even smaller to properly resolve the diffuse interface
since typically six to eight grid points across the interface are
needed. Here, we define a large driving force as the case when
Fapp≫ 6γ/l11,14.
Here, we explore a different way to stabilize the phase field

profile. To solve this problem of an unstable phase field profile
under a large driving force, we start with two observations. First, in
the sharp limit (l→ 0), the driving force is only defined at the
interface. Second, if F is a constant perpendicular to the interface,
the traveling wave solution is stable even without the surface
energy term. This can be seen by substituting the third-order
interpolation function p(u)= u2(3− 2u) and the steady-state
phase field profile u ¼ 1

2 ð1� tanh x�vt
2l Þ into Eq. (2) and neglecting

the surface energy term

�vτ
∂u
∂x0

¼ �6lF
∂u
∂x0

; (3)

where x0 ¼ x � vt is a moving coordinate with velocity v relative to
the fixed coordinate x. Intuitively, a constant F keeps the traveling
wave structure; otherwise, v will vary across the diffuse interface,
leading to an unstable profile. Mathematically, as will be shown in
the “Discussion” section and Supplementary Note, any F that can
be written as a constant plus an anti-symmetric function preserves
the traveling wave structure. This analysis also works for other
phase field profiles, like the one related to the double-obstacle
potential. See Supplementary Note for details.
In many practical applications, F is coupled, e.g., to the

temperature or the concentration field, which can be nonlinear
across the diffuse interface. To address the stability problem with
a nonlinear driving force, we propose the following projection of
the driving force to a constant perpendicular to the interface

PðFðx; tÞÞ ¼ FðxΓ; tÞ; (4)

where xΓðxÞ ¼ fy : min
y2Γ

jy� xjg is the closest point to x on the

interface Γ. See Fig. 1b for an example in 1D and Fig. 1c-d for 2D.
The interface can be regarded as the contour u= 1/2. It can be
shown that the projected driving force is constant perpendicular
to the interface ∇PðFðxÞÞ � ∇ u ¼ 019, which can also be seen in
Fig. 1d. With this projection of the driving force, we introduce a
simple modification of the evolution equation (Eq. (1))

τ
∂u
∂t

¼ κ∇2u�mg0ðuÞ þ p0ðuÞPðFÞ: (5)

This projection P can be made with efficient velocity extension
algorithms for higher dimensions and general spatial discretiza-
tions19,20. See the “Methods” section for a summary.

J. Zhang et al.

2

npj Computational Materials (2023)   166 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;



Application 1: additive manufacturing
We start from the simplest case: a driven Allen-Cahn equation with a
nonlinear driving force (due to the nonlinear temperature field).
Figure 1e shows the modeling problem. A moving laser source
generates a temperature field (Eq. (10)). The liquid phase exists in
regions above the melting temperature Tm, and the solid presents in
regions below. The phase field variable equals zero/one in the bulk
liquid/solid. Details of the form of the driving force, the phase field
model, materials parameters, and initial and boundary conditions are
provided in the “Methods” section. The system has two interfaces,
one solid-liquid interface and one liquid-solid interface, as shown in
Fig. 1e (the shaded region marks the liquid domain). The evolution of
their location is simulated by the proposed driving force extension

method and compared with results by traditional methods with both
third- and fifth-order interpolation functions. The relative errors of
the interface velocity are compared with the analytical solution and
shown in Fig. 1f. The traditional method with the third-order
interpolation is the least stable and breaks above 10 nm grid size.
The fifth-order interpolation has a similar order of accuracy to the
third-order interpolation but is much more stable: it is stable up to a
grid size of 100 nm. The proposed method is stable with a 1 μm grid
size. As shown in Fig. 1f, the driving force extension method has a
similar convergence behavior as the traditional method, but with a
grid size more than one order of magnitude larger than the state-of-
art methods with similar accuracy (see gray dashed lines in Fig. 1f),
making a significant reduction in computational cost.

Fig. 1 Stability issue of the phase field profile and the driving force extension method. a A schematic example of an unstable phase field
profile (dashed line) for a traveling wave starting from the dot-dashed line. A similar traveling wave with the proposed method is stable (solid
line) at the same time. b An example of the proposed driving force extension method projects the original driving force (thick dashed line) to
a constant (solid line). The two verticle dashed lines mark the diffuse interface between u= 0.01 and u= 0.99. c An example of the original
driving force in 2D, where the solid line marks the location of the interface and the dashed lines mark the diffuse interface between u= 0.01
and u= 0.99. A cutoff at − 0.08 is used to better visualize the driving force variation within the diffuse interface. d An example of the
projected driving force in 2D. e The phase field variable and the temperature profile generated by a point laser source moving to the right at a
constant speed. The shaded region shows the melting pool. f The relative error of the interface velocity as a function of grid size for the
proposed method and the original method with the third- and fifth-order interpolations. The dashed lines provide a guide of the same
relative error.

J. Zhang et al.

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)   166 



Application 2: solidification
The previous application uses a single order parameter. Here we
apply our method to a more general case where the order
parameter is coupled with a concentration field. The order
parameter describes phase transformation, and the concentration
describes solute diffusion. In this test case, constant undercooling
is applied during the solidification of a binary alloy, and the
growth is assumed to be diffusion-limited and the concentrations
at the interface are given by the local equilibrium condition
(L= Leq). The evolution of the interface and concentration are
coupled and modeled by the KKS model. Details on the model,
materials parameters, and initial and boundary conditions are
provided in the “Methods” section. Although the driving force is
expected to be small with the local equilibrium condition (it is zero
in the sharp interface limit for a planar interface), the interface can
still be unstable up to a finite value of the driving force (due to a
diffuse interface), as shown in Fig. 2d. Figure 2a compares the
evolution of the interface location and velocity determined by
traditional and proposed methods for a driving force parameter
B= 10 (curvature of the parabolic free energy; see Eq. (15) for the
definition; made dimensionless by RT/Vm). In real systems, B can
be large, especially for systems with compounds10. A comparison
of the concentration profile is shown in Fig. 2b. It can be seen that

even with a grid size 100 times larger, the proposed method can
correctly capture the bulk concentration and local equilibrium
interfacial concentrations and gives a reasonable prediction of the
interface location and velocity (the relative error in the velocity is
typically about 5% in Fig. 2a). Since there is no analytical solution,
the simulation result of the fifth-order interpolation function with
a 10 nm grid size is used as a reference for the relative error.
Figure 2c shows the relative error of interface location as a
function of the grid size for B= 10 (see Supplementary Note for
numerical details). For this case, the third- and fifth-order
interpolations are stable up to a grid size of 10 nm and 50 nm,
respectively. The proposed method is stable with a grid size of
1 μm (system size is 128 μm). Unlike the previous single order
parameter case, there is an intrinsic modeling error related to the
interface width in the KKS model, as the model is based on thin
interface asymptotics. As seen in Fig. 2c, the error is virtually
proportional to the interface width, independent of the methods
used. The driving force extension method has small effect on the
convergence rates. Denoting the error as hp, where h is the grid
size, we have p= 1.18 for the traditional method (fifth-order
interpolation) and p= 1.00 for the proposed method. Generally,
for the same grid size, the driving force extension method tends
to have a slightly larger error (1.5 to 2 times) than the original
method, due to discretization and interpolation errors in the

Fig. 2 Solidification. a Evolution of the interface location and velocity. The proposed method uses a grid size 100 times larger than the
original method with fifth-order interpolation. b The concentration profile for the proposed method with a grid size of 1 μm and the original
method with a grid size of 10 nm. Local equilibrium concentrations xleq and xseq at the interface are recovered. c Relative error of the interface
location as a function of grid size for various methods. The driving force parameter B controls the magnitude of the driving force and is
dimensionless by an energy scale RT/Vm= 2.25 × 108 Jm−3. d Upper limit of the driving force for a given grid size for the original method with
third- and fifth-order interpolations. The proposed method has no unstable region.

J. Zhang et al.

4

npj Computational Materials (2023)   166 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



numerical implementation. For example, with B= 1 the relative
error for the fifth-order interpolation with a grid size of 100 nm is
1.44 × 10−3 while with the proposed method, the relative error is
2.12 × 10−3 for the same grid size and timestep size. However, our
method enables a larger grid size where traditional methods are
unstable. A larger value of Bmeans larger driving forces. As shown
in Fig. 2d, there is an upper limit on how large the driving force
can be resolved properly by the traditional methods with a given
grid size: the larger the driving force, the smaller the maximum
grid size that can be used. For B= 1000, the traditional method
with the fifth-order interpolation is only stable up to a grid size of
5 nm, while the proposed method is stable with a grid size of
1 μm. The proposed method not only reduces the number of grid
points by a factor of 200, but also reduces the number of
timesteps by a factor of 40000 for the same physical time, leading
to a combined reduction of 8 × 106. The proposed method erases
the upper bound and is stable for any value of the driving force,
significantly improving the computational efficiency.

Effect on capillarity
Another question is if the driving force projection in Eq. (5) affects
the curvature dependant interfacial compositions, i.e., the Gibbs-
Thomson effect. To investigate this question, we model a small
circular particle embedded in a liquid and determine the
interfacial concentration in the liquid (the matrix phase). The
grand potential model is solved in polar coordinates with a quasi-
steady-state assumption. The interfacial liquid concentration is
measured by interpolation to the interface (u= 0.5) and compared
with the one determined by the Gibbs-Thomson equation. The
phase field model and materials parameters can be found in the

“Methods” section. We choose a small particle size here to
highlight the capillary effect. The simulated interfacial liquid
concentration as a function of the particle radius is compared with
the analytical solution in Fig. 3. This verifies that the proposed
method captures the correct Gibbs-Thomson effect.

Application in 2D and 3D
Here we apply the proposed method in 2D and 3D. We model the
evolution of a growing circular particle in a supersaturated
solution using the KKS model (in the diffusion-limited regime). To
minimize the effects of the domain boundary, the domain size is
51.2 μm in 2D and 32.0 μm in 3D. For B= 1, the evolution of the
particle radius is compared with the analytical solution21 in Fig. 4a
for 2D and in Fig. 4b for 3D, where a good match with the
analytical solution is seen. The proposed method uses a grid size
of 100 nm. In comparison, the traditional method with the fifth-
order interpolation is unstable for the same grid size (Supplemen-
tary Fig. 1). For the 2D case, a detailed comparison between the
proposed method and the traditional method for B= 20 is given
in Table 1. The traditional method with the fifth-order interpola-
tion is stable only with a grid size of 25 nm. Although with a
slightly larger error (2.9 times), the proposed method is stable with
a grid size four times larger (100 nm) and a timestep 16 times
larger. Note the proposed method is still stable with B= 1000 and
a grid size of 100 nm, while the traditional method is not stable
with B= 50 and a grid size of 25 nm. For larger B in 2D or in 3D,
comparison with the traditional method demands a significant
amount of computational resources, and the behavior is expected
to be similar to the 1D and 2D (small B) cases; therefore, fine-
resolution simulations are not performed. Considering system size
n (total number of grid points), the computational complexity of
the extension is Oðm logmÞ, where m= n for the full grid and
m ~ n(d−1)/d for a narrow band algorithm. The computational
complexity of the stencil calculations is OðnÞ. This is seen in
Supplementary Fig. 2, that the relative cost of the extension versus
the stencil calculation gets lower with increasing system size for
both 2D and 3D. An increase in grid size enables not only a smaller
system size, but also a smaller number of timesteps. Generally, if
the grid size is increased by N times in d dimensions, the
computational demand can be reduced by N2+d times, with N2 in
the number of timesteps and Nd in the number of grid points. The
theoretical speedup for the case given in Table 1 is 44= 256 while
the actual computational time saved is a factor of 309. This super
speedup may result from better utilization of memory and cache
for the smaller system size. For a fixed system size, the
computational time per timestep and grid of the driving force
extension is similar to the stencil calculations, as shown in
Supplementary Fig. 2. However, the benefit of a much smaller

Fig. 3 The Gibbs-Thomson effect. The interfacial liquid concentra-
tion as a function of the particle size.

Fig. 4 Growing particle in a supersaturated liquid. Evolution of the particle radius of the proposed method compared with analytical
solutions for 2D (a) and 3D (b), respectively. The insert shows the phase field.
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number of timesteps and grids is far beyond the overhead caused
by the driving force extension.

DISCUSSION
Driving force profile across the diffuse interface
The stability issue is caused by a nonlinear variation of the driving
force profile within the diffuse interface. We show that a constant
driving force perpendicular to the interface can keep the traveling
wave structure. This requirement can be relaxed to a driving force
of an anti-symmetric form: a constant plus an anti-symmetric
function with respect to the interface location
FðxÞ ¼ F0 þ

P1
i¼1 aix

2i�1, where x= 0 is the interface. For any
driving force with this anti-symmetric form, the traveling wave
solution exists (see Supplementary Note). In principle, mapping
the driving force to any function with this anti-symmetric form can
solve the stability issue. However, mapping to a constant is the
most straightforward from an implementation point of view.

Hitting the wall
For extremely large driving forces, the evolution equation can be
approximated as

τ
∂u
∂t

¼ p0ðuÞF ¼ 6uð1� uÞF: (6)

When solving the equation with a computer, there is a truncation
error due to machine precision (typically on the order of 10−16 for
double precision). For the grid points with a value of u below the
machine precision, u cannot be properly resolved numerically,
resulting in zero ∂u/∂t even if the interface is already moving close
to where the initial u is smaller than the truncation error. During
evolution, the phase field profile seems to stop evolving or hit a
wall. To solve this problem, we introduce neighboring information
to approximate p0ðuÞ for those wavefront points (whose u is below
machine precision but with at least one neighbor’s u above) as

p0ðuÞ ¼ 6uð1� uÞ � �6ln̂ � ∇ u ¼ 6lj∇ uj; (7)

where n̂ is the unit normal vector of the interface. This introduces
the effect from neighbors to bring the value of u above the
machine precision. Note that this wavefront regularization is only
needed for a few points; therefore, it does not introduce a
considerable computational overhead. Moreover, if the driving
force is not extremely large, the surface energy term can alleviate
this problem and the wavefront regularization is unnecessary.

Curvature correction for higher dimensions
For 2D or 3D problems, we can correct the Laplacian operator
based on the local curvature to better resolve the interface

kinetics. In practice, we replace ∇2u in Eq. (5) by

∇2
c u ¼ ∇2u� Pð2HÞ � 2Hð Þ uð1� uÞ

l
; (8)

where H ¼ 1
2∇

2ϕ is the mean curvature, and ϕ is the signed
distance function, which is a direct output from the driving force
extension (see Eq. (20) in the “Methods” section for details).
Considering the extra computational costs, we find that this
correction is generally not favored compared to refining the mesh,
but can be useful for cases that demand higher accuracy.

Numerical considerations
The proposed driving force extension method involves a simple
modification of the phase field equation, as given in Eq. (5). It
relies on the well-developed velocity extension algorithm19, which
has already been implemented with efficient algorithms19,22,23

and has been parallelized and accelerated (e.g., on GPUs)23,24.
These algorithms can be directly applied to the proposed method.
In the current work, for the sake of simplicity, we solve all the

equations with a forward-Euler time stepper and finite difference
spatial discretization. However, the proposed method can
be applied to other time integration schemes: multi-stage time
stepping like the Runge-Kutta method, adaptive time stepping
like the embedded Runge-Kutta method, and implicit time
stepping like the backward differentiation formula (BDF), to
name a few. Regarding spatial discretization, it is straightforward
to incorporate the proposed method with other techniques like
the pseudo-spectral method, the finite volume method, and the
finite element method. Moreover, the velocity extension algo-
rithm can work on unstructured meshes25 and with adaptive
mesh refinement26, so the proposed method can cooperate with
various mesh techniques.
The numerical implementation of the velocity extension

algorithm employed in this work uses a cubic interpolation and
a first-order upwind scheme. The accuracy of the velocity
extension can be improved by using a higher-order interpolation
and a higher-order discretization; however, there is a balance
between accuracy and computational cost, depending on the
need. Further optimization of the implementation can be done by
cleverly reusing the fast marching step when the phase field is
fixed and only the extension step is needed, e.g., in the nonlinear
solve for the concentration.
In the limit of large driving forces, the evolution equation

behaves like an advection equation. However, we find that there
is no need for the upwind or non-oscillatory schemes, possibly
due to two reasons: (i) even a small surface energy term can
mitigate the stability issue of the advection equation, (ii) the fact
that p0ðuÞ is used instead of∇ u eases discretization error of the
gradient term.

Table 1. Results for the 2D case (KKS model with B= 20).

Methods Grid size Timestep System Number of stable? Relative Time

nm ns size timesteps error seconds

Traditional 25 28.41 20482 160,000 yes 0.0883% 102938

Traditional 50 113.64 10242 40,000 no – 4879

Traditional 100 454.55 5122 10,000 no – 310

This work 100 454.55 5122 10,000 yes 0.2521% 333

For the traditional method, the fifth-order interpolation is used. The relative error is the root-mean-square error of the radius compared to the analytical
solution. The computational time (last column) is taken on one node (quest 11) of the Quest supercomputer (64-core Intel Xeon Gold 6338 CPU @ 2.0GHz, 256
GB DDR4 2666 MHz).
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Summary of the work
The ability to perform quantitative phase field simulations is of
scientific significance and practical importance. A strategy of
mapping the driving force to a constant perpendicular to the
interface is proposed to eliminate the constraint due to the
magnitude of the driving force. We demonstrate that the driving
force extension method effectively increases the stable grid size
by orders of magnitude, thus, significantly reducing the computa-
tional cost of phase field simulations. The proposed method
requires a simple modification of the phase field equation and
relies on well-developed algorithms; thus, it can be easily adapted
with various numerical techniques. We expect this simple
modification to apply directly to most phase field models. Note
that if the physical problem relies on an interface width smaller
than the enhanced interface width by the proposed method, like
in the problem of solute trapping or particle coalescence, there is
no benefit from the proposed method. In the future, we expect to
extend the proposed method to more applications, e.g., handling
anisotropy with an anisotropic driving force extension algorithm
and extending to problems with multiple phases.

METHODS
Evolution of solid-liquid interface in additive manufacturing
We model the development of a solid-liquid interface with a
moving laser source in the absolute stability limit. For demonstra-
tion purposes, we use a simplified version of the model in16. The
evolution equation is given by the following Allen-Cahn equation

τ
∂u
∂t

¼ κ∇2u�mg0ðuÞ þ p0ðuÞ Lv
Tm � T
Tm

� �
; (9)

where τ= 6lLv/(μTm), κ= 6γl, m= 3γ/l, Lv is the latent heat, T and
Tm are the temperature field induced by the laser and the melting
temperature respectively, μ is the kinetic coefficient, and γ is the
surface energy. The double-well potential is g(u)= u2(1−u)2. The
third- and fifth-order interpolation functions are p(u)= u2(3− 2u)
and p(u)= u3(6u2− 15u+ 10), respectively. The equation is
coupled to a temperature model with the frozen temperature
approximation. We use a 1D cut of the 3D Rosenthal’s solution for
a steady-state temperature field with a moving point source27

T ¼ T0 þ q
4πkT r

exp � v
2DT

ðξ þ rÞ
� �

;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ y2 þ z2

q
; ξ ¼ x � vt

(10)

where T0 is the ambient temperature, q is the power of the laser,
kT is the thermal conductivity, DT is the thermal diffusivity, x, y, z
are the global/lab coordinates, v is the laser velocity, ξ is the local
coordinate, and r is the distance to the center of the laser point on
the sample.
The materials parameters used in this work are16: Lv= 109 Jm−3,

γ= 0.2 Jm−2, μ= 1ms−1 K−1, Tl= 1700 K, kT= 27Wm−1 K−1, and
DT= 5.2 × 10−6 m2 s−1. Processing parameters are T0= 300 K,
q= 25W, v= 3ms−1. Unless otherwise mentioned, the diffuse
interface width is chosen to be l= 1.5Δx throughout this paper,
where Δx is the grid size. This is equivalent to 8-10 grid points
across the interface. A zero-Neumann boundary condition is used
for the phase field variable. Here we choose μ large enough to
make both the melting and solidifying fronts follow the
temperature profile, so analytically the two interfaces move at
constant velocity v. The relative error is calculated as the root-
mean-square error RMS((xi/ti− v)/v), where xi is the interface
location at time ti. Note that both interfaces are considered when
calculating the error.

Solidification: KKS model
The evolution equations in the KKS model4,17 are

1
L
∂u
∂t

¼ κ∇2u�mg0ðuÞ � p0ðuÞ f s � f l � ðcs � clÞ~μ
� �

; (11)

∂c
∂t

¼ ∇ � M∇ ~μð Þ; (12)

where cs and cl are the solid and liquid concentrations, c= p(u)
cs+ (1− p(u))cl is the mixture concentration, ~μ is the diffusion
potential, M= p(u)Ms+ (1− p(u))Ml is the mixture mobility. For
phase α, Mα= Dαχα with χα ¼ ∂cα=∂~μ the susceptibility and Dα the
diffusivity. The free energy densities of the respective phases are fs

and f l, which are chosen as a parabolic form for simplicity

f α ¼ Aα þ 1
2
Bαðxα � xα0Þ2; α ¼ s; l; (13)

where xα= Vmc
α is the molar fraction and Vm is the molar volume.

The phase field mobility L is chosen to fulfill the local equilibrium
condition

Leq ¼ Dl

6al2Blðxleq � xseqÞ2
; (14)

where a= 5/6 for the third-order interpolation and a= 47/60 for
the fifth-order interpolation, and xleq and xseq are the common-
tangent molar fractions. Note that this expression is derived from
the thin interface analysis, which requires the local equilibrium to
be satisfied asymptotically; therefore, variation of the driving force
within the diffuse interface still exists, due to higher-order
asymptotics. This explains why there are instability issues even
with local equilibrium, especially with a thick interface.
For the special case Bs= Bl= B and As= Al= 0, the driving force is

F ¼ f s � f l � ðcs � clÞ~μ ¼ 1
2
B ðxlÞ2 þ ðxsÞ2 � ðxl0Þ

2 � ðxs0Þ2
� �

:

(15)

This means we can control the magnitude of the driving force by
the parameter B.
The materials parameters used in this work are28: xl0 ¼ 0:9,

xl0 ¼ 0:1, Al= As= 0 Jm−3, Ds= Dl= 4.4 × 10−9 m2 s−1,
γ= 0.44216 Jm−2, and Vm= 1.1 × 10−5 m3mol−1. Note the materi-
als parameters are chosen to make the sharp interface solution
independent of Bl. For the simulations in section “Application 2:
solidification”, the zero-Neumann boundary condition is used for
the phase field variable and the left side of the concentration. The
right side of the concentration is fixed to be xl= 0.5 by
the Dirichlet boundary condition. The initial phase field has the
equilibrium hyperbolic tangent profile and the initial concentra-
tion has a linear distribution inside the liquid. The relative error is
calculated with respect to a reference simulation (fifth-order
interpolation and Δx= 10 nm): RMSððxi � xrefi Þ=xrefi Þ, where xi is
the interface location and x ref

i is the interface location of the
reference simulation. For the simulations in section “Application in
2D and 3D”, the zero-Neumann boundary condition is used for the
phase field variable and the Dirichlet boundary condition is used
for the concentration xl= 0.5. The initial condition for
the concentration is determined from the analytical solution at
time t= 10ms for 2D and t= 4ms for 3D. The initial condition of
the phase field is determined from the analytical radius and the
equilibrium hyperbolic tangent profile. The radius is calculated
from the order parameter as (∫udA/π)1/2 for 2D and (3∫udV/(4π))1/3

for 3D.

Solidification: Grand potential model
To show the generality of our method, we apply the proposed
driving force extension method to a different equation, where
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the diffuse equation has a source term, and use it to test the
capillarity. The evolution equations in the grand potential
model6 are

1
L
∂u
∂t

¼ κ∇2u�mg0ðuÞ � p0ðuÞ ωs � ωl
� �

; (16)

χ
∂~μ

∂t
¼ ∇ � M∇ ~μð Þ � p0ðuÞðcs � clÞ ∂u

∂t
; (17)

where ωα is the grand potential density of phase α, χ= p(u)
χs+ (1− p(u))χl is the mixture susceptibility, and the phase field
mobility is given by L= μTm/(6lLv). The rest of the symbols have
the same definitions as in previous models. For diffusion-limited
growth, the local equilibrium assumption is used and the phase
field mobility is replaced by

Leq ¼ V2
mD

lχ leq

6al2ðxleq � xseqÞ2
; (18)

where a, xleq and xseq have the same definitions as before,
and χ leq is determined from xleq.
We use the dilute binary alloy free energy

Vmf
α ¼ Cα þ Eαxα þ RTðxα ln xα � xαÞ; α ¼ s; l; (19)

from which the grand potential density can be determined:
ωα ¼ f α � ~μcα6. The materials parameters are the same as in the
KKS model, except T= 880. 3 ∘C, Tm= 933. 3 ∘C, and the free
energy parameters Cs=− 37579 J mol−1, Es=− 20000 J mol−1,
Cl=− 36957 J mol−1, and El=− 33885 J mol−128.
To check the capillary effect, we solve the quasi-steady-state

equation by setting ∂~μ=∂t ¼ 0. The liquid concentration xl at the
interface is determined from ~μ and interpolated to u= 1/2.
Boundary and initial conditions are the same as in the KKS model.

Velocity extension algorithm
The driving force extension in Eq. (4) can be done with the velocity
extension algorithm19, which solves the Eikonal equation

j∇ϕj ¼ 1; (20)

and the extension equation

∇ F � ∇ϕ ¼ 0; (21)

to get the signed distance to the interface ϕ and the extended
driving force F. The algorithm typically involves two steps, a
marching step to get ϕ and an extension step to get F. There are
two types of boundary conditions for the velocity extension. The
external boundary condition on the outside of the system can be
the same as the phase field variable or using linear extrapolation.
The internal boundary condition for the distance field is
ϕ(u(x)= 1/2)= 0.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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