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Non-collinear magnetic atomic cluster expansion for iron
Matteo Rinaldi 1✉, Matous Mrovec1, Anton Bochkarev1, Yury Lysogorskiy1 and Ralf Drautz 1✉

The Atomic Cluster Expansion (ACE) provides a formally complete basis for the local atomic environment. ACE is not limited to
representing energies as a function of atomic positions and chemical species, but can be generalized to vectorial or tensorial
properties and to incorporate further degrees of freedom (DOF). This is crucial for magnetic materials with potential energy surfaces
that depend on atomic positions and atomic magnetic moments simultaneously. In this work, we employ the ACE formalism to
develop a non-collinear magnetic ACE parametrization for the prototypical magnetic element Fe. The model is trained on a broad
range of collinear and non-collinear magnetic structures calculated using spin density functional theory. We demonstrate that the
non-collinear magnetic ACE is able to reproduce not only ground state properties of various magnetic phases of Fe but also the
magnetic and lattice excitations that are essential for a correct description of finite temperature behavior and properties of crystal
defects.
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INTRODUCTION
Recent advancements of data-driven methods and machine-
learned (ML) interatomic potentials have led to dramatically
improved descriptions of the potential energy surface (PES) for
many material systems. However, the incorporation of spin
degrees of freedom (DOF), which are crucial to capture finite
temperature phenomena in magnetic materials, has remained a
challenging endeavor. In spin density functional theory (SDFT),
magnetizaton emerges from the competition of magnetic
exchange and band energy contributions1,2, where the energy
required for reshuffling electrons in up and down spin channels
depends on the local density of states (DOS). The bimodal DOS of
iron in the body-centred crystal (bcc) structure affords large DOS
values close to the Fermi level, leading to larger magnetic
moments than in the face-centred cubic (fcc) structure with its
more unimodal DOS that is lower at the Fermi level3,4. This
intricate interplay between magnetic and atomic structure implies
that multi-atom multi-spin interactions are necessary for capturing
different magnetic and atomic structures in a single model.
Unlike approaches that were derived from electronic structure

theory and that seamlessly incorporate the complexity of
magnetic interactions5–7, classical interatomic potentials needed
to be supplemented via suitable interaction terms that mimic the
quantum exchange interactions. The simplest possibility was to
employ a classical Heisenberg Hamiltonian8, where the atomic
spin operators are substituted by spin vectors and the exchange
interactions are parameterized using first-principles calculations9.
Such strategies have been adopted also in most current ML
approaches for magnetic systems.
Nikolov et al.10 augmented the spectral neighborhood analysis

potential (SNAP) framework with a two-spin bi-linear Heisenberg
model with atomic magnetic moment magnitudes being fixed
and independent of the environment. A similar approach, where a
neural network was trained to describe contributions to the
Heisenberg Hamiltonian based on the local magnetic environ-
ment, was developed by Yu et al.11. However, this approach did
not include information about the underlying lattice and treated
the magnetic moments as unit vectors. Eckhoff et al.12 extended
the formalism based on Behler-Parrinello symmetry functions13 in

a framework that was limited to collinear configurations. Magnetic
moments as additional DOF were incorporated by Novikov et al.14

in the moment tensor potential framework15. Even though the
description was confined to collinear moments only, the magnetic
moment tensor potential was able to reproduce a number of
thermodynamic properties of bulk bcc Fe. Recently, Domina
et al.16 extended the SNAP framework to deal with arbitrary
vectorial fields and demonstrated its functionality by training to
non-collinear spin configurations generated using a model
Landau-Heisenberg Hamiltonian. In a follow-up work, Suzuki
et al.17 showed that it is necessary to include higher-order spin-
dependent partial spectra to discriminate configurations with
different spin orientations and magnetic anisotropy. Finally,
aiming at large-scale spin-lattice dynamics simulations, Chapman
et al.18 added a neural network correction term to an embedded
atom method potential augmented with a Heisenberg-Landau
Hamiltonian. The model was successfully applied in finite
temperature simulations of bulk Fe phases as well as complex
defects. However, due to its simplicity, absolute errors were in
some cases larger than a few tens of meV that are comparable to
the fluctuations of exchange parameters with temperature. Thus,
none of the existing magnetic ML approaches has so far
succeeded in achieving a transferable and quantitatively accurate
description of magnetic interactions suitable for modeling
magnetism in different crystal structures.
We present an explicit treatment of non-collinear magnetic DOF

within the atomic cluster expansion (ACE)19,20, which provides a
complete basis in the space of atomic environments19,21. Accurate,
transferable and computationally efficient parameterizations of
ACE have been developed for diverse bonding environments
including bulk metallic systems as well as covalent molecules22–26.
Thanks to ACE universality, additional scalar, vectorial or tensorial
DOF can be incorporated seamlessly into ACE models20.
Specifically for magnetic systems, ACE provides a body-ordered
decomposition of combined atomic and magnetic PES in terms of
a complete set of basis functions that depend on atomic and
magnetic DOF. The inclusion of magnetic DOF requires an
extension of the ACE equivariant basis such that any transforma-
tion of the relevant translation and rotation symmetry group
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acting on both atomic and magnetic spaces leaves the energy
invariant. Magnetic ACE can therefore be considered as a
generalization of most existing magnetic ML models as well as
the classical spin-cluster expansion (SCE)27–31.
In this work, we develop a non-collinear magnetic ACE

parameterization for the prototypical magnetic element Fe. The
model is trained on a large dataset of both collinear and non-
collinear DFT calculations and validated for a broad range of
structural, thermodynamic, and defect properties. The resulting
interatomic potential is able to describe accurately complex
potential energy landscapes of different magnetic and atomic
phases of Fe as a function of both atomic positions and local
magnetic moment vectors.

RESULTS
Reference DFT data
A comprehensive sampling of variations in both atomic positions
and magnetic moments is crucial for the construction of any
atomistic magnetic ML model. Sampling of the atomic DOF can be
carried out following well established protocols employed in ML
fitting of PES, commonly by choosing a set of structures and
varying their geometries and atomic positions. In contrast,
sampling of the magnetic DOF presents a significant difficulty,
both from the computational and methodological point of view.
Firstly, the number of required calculations increases drastically
due to the additional spin degrees of freedom and, secondly, the
local atomic magnetic moments need to be constrained to desired
magnitudes and orientations32. While it is, in principle, possible to
fix both the direction and the magnitude of each atomic magnetic
moment to a target vector32, these calculations are computation-
ally demanding. Furthermore, as atomic magnetic moments are
computed by integrating over a sphere, different magnetization
densities within the sphere may in principle lead to identical
moments.
To generate the training dataset for magnetic ACE, we

considered both conventional, unconstrained, and collinear as
well as constrained non-collinear spin-polarized configurations.
These configurations ranged from various spin spirals in ideal bcc
cells to supercells with random orientations of the moments and
perturbed atomic positions. For bulk phases along the Bain

transformation path, we sampled the magnitudes of the collinear
magnetic moment over the whole physically reasonable range
from 0 to ~ 3 μB atom−1. The simultaneous sampling of both
atomic and magnetic DOF enabled to generate a set of uniformly
distributed configurations that are relevant for the properties of
interest for a wide range of atomic densities as well as magnitudes
and directions of the atomic magnetic moments. An example of
data collected with this strategy is given in Fig. 1 for the bcc and
fcc ferromagnetic (FM) phases. Each data point corresponds to the
energy of either structure at a given volume and a constrained
value of the magnetic moment. The ground state configurations
are marked by the black curve. While the bcc phase has only one
minimum, corresponding to the ground state FM bcc phase, the
fcc phase exhibits two minima corresponding to high-spin and
low-spin configurations.
The constrained magnetic calculations required convergence of

the energy and forces with respect to a constraining penalty
term32. In some limited cases it was computationally prohibitive to
achieve numerically small penalty contributions, mainly for
configurations far from equilibrium such as highly distorted
structures and defects (see Supplementary Note 2 for representa-
tive examples). Therefore, we excluded configurations for which
the penalty energy was larger than ≈ 5 meV atom−1 as these
would significantly increase the noise in the data and adversely
affect the parameterization.
The resulting training dataset contained about 70,000 structures

in total that can be divided into several categories, each
associated with a particular property of interest. The categories
are listed in Table 1, where we specify the number of
configurations and the range of volumes and magnetic moment
magnitudes that we considered. The free atom data, obtained
from calculations of a bcc unit cell with lattice parameter equal to
12 Å at different magnitudes of the magnetic moment, was used
to fit the first-order contribution of the expansion that char-
acterizes the asymptotic large volume limit for each structure with
a given magnetic moment. Detailed information about the free
atom reference is provided in the Supplementary Note 1.

Training procedure
The fitting of the magnetic ACE potential for Fe was done
following procedures that were established for the non-magnetic

Fig. 1 DFT energy vs volume for FM bcc and fcc. Constant magnetic moment energy-volume curves for FM bcc and fcc phases computed
using constrained DFT. The black curve marks the ground state configurations without any applied constrain. The two minima for fcc
correspond to the high- and low-spin magnetic configurations.
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ACE22,33. A hierarchical basis extension was employed, starting
from one-body contribution and adding gradually contributions
with higher body orders. In the first step, expansion coefficients
for the first order contribution were parameterized using the free
magnetic atom data. This term can be reduced to a Ginzburg-
Landau expansion

P
nAnm2n

i , where a maximum number of three
terms is commonly used31,34–37. In our parameterization, excellent
agreement with the reference data ( ~ 2 meV atom−1 error) could
be obtained using four terms (n= 4). After the first order
contribution was fixed, we fitted second-order contributions. The
ACE second-order contributions are formally equivalent to a
distance-dependent Heisenberg Hamiltonian ∑i > jJij(rij)mi ⋅mj, its
biquadratic correction

P
i > jBijðrijÞðmi �mjÞ2, and its bicubic term

for l0max ¼ 1, 2 and 3, respectively (see Methods). In addition, a
third-order magnetic contribution, analogous to a screened three-
spin interaction ∑ijkKijk(mi ⋅mj)(mj ⋅mk), was also included. Angular
contributions in higher-order magnetic terms did not improve the
fit significantly and were neglected, which reduced the number of
basis functions significantly. Radial and angular indices for the
atomic contributions were then incremented following a hier-
archical basis expansion scheme33, where contributions with

increasing body order were gradually added. The cutoff distance
of the present parametrization was set to 4.5 Å, but it can be
extended if necessary28. Additional hyperparameters, relevant to
magnetic DOF only, include the magnetic cutoff mcut= 4 μB, which
defines the upper bound of the possible magnitude of atomic
magnetic moments, and the upper bounds for magnetic radial
functions and spherical harmonics n0max and l0max for each body
order (see Methods for details).
The resulting model consists of 6519 parameters and its overall

accuracy is equal to 8 meV atom−1 and 37 meV Å−1 for energies
and forces, respectively. The main limiting factor in reducing the
error further was numerical noise in the reference DFT data that
originated from the magnetic moment confinement procedure. In
addition, another parameterization was constructed with a
particular focus on defect properties (see Supplementary Note 3).

Predicted properties at 0 K
We carried out a thorough validation of the non-collinear
magnetic ACE against the reference DFT data and evaluated a
broad range of properties of various bulk Fe phases that were not
included explicitly in the training. The predicted volume-energy
curves for the bcc and fcc magnetic and non-magnetic (NM) Fe
phases are plotted in Fig. 2, where the corresponding cohesive
energies are given with respect to the non-magnetic free atom. It
is obvious that ACE predictions agree closely with the reference
DFT data for all considered magnetic and non-magnetic phases,
including the portion of the magnetic energy landscape where the
NM to magnetic transitions take place. Moreover, our potential is
able to distinguish subtly different magnetic states within one
structure, such as the low-spin and high-spin states of the FM fcc
structure.
Variations of the magnetic energy as a function of magnetic

moment are displayed for FM bcc in Fig. 3, where each curve
corresponds to a constant volume. As expected, these depen-
dencies are positive and monotonic for small volumes (dark blue
curves), while above a certain critical volume their behavior
qualitatively changes to include a minimum at finite value of the
magnetic moment in analogy to a Landau expansion. In the limit
of large volumes (dark red curves), the magnetic energy
approaches the free atom value. Graphs for other bcc and fcc
structures are given in the Supplementary Figure 6.
Two contour plots of magnetic PES for FM bcc and fcc phases

are shown in Fig. 4. These plots demonstrate that ACE can capture
simultaneously PES of different phases over a broad range of
volumes and magnetic moments (from zero up to ≈ 3.2 μB). In
agreement with DFT, the bcc phase has a single global minimum
at the corresponding equilibrium volume and magnetic moment,

Table 1. Summary of the database.

Property Number of
structures

Volume
range
(%V0)

M range
(μB)

Number of
atoms per
cell

Free atom 15 – 0.0-4.0 1

E-V curves 10,030 ± 30 0.0-3.2 2,4

Elastic constants 13,919 ± 5 1.5-2.8 2

Phonons 2847 ± 5 1.5-2.8 4–12

Supercells 13,762 ± 5 – 16,32,54

Transformation
paths

16,805 ± 20 0.0-3.2 2,4

Spin rotations 5559 ± 30 0.0-3.2 2

Defects 12,233 ± 20 – 3–129

A list of categories associated with a given target property. To each
category, we provide the total number of structures, the volume range in
percentage of the equilibrium volume V0 of the corresponding phase, the
range of sampled magnetic moments, and the number of atoms in the
simulation cell. In the case of both constrained and unconstrained
supercell calculations, only the direction of the magnetic moments was
fixed while their magnitude was self-consistently converged to the
equilibrium value. Defects were calculated without any constraints
regarding the atomic magnetic moments.

Fig. 2 Energy vs volume for bcc and fcc. Volume-energy curves for both magnetic and non-magnetic structures of bcc (left) and fcc (right)
with corresponding DFT data (small circles).
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while the FM fcc phase exhibits two local minima corresponding
to the low-spin and high-spin states.
The equilibrium properties of the most important bulk Fe

phases are listed in Table 2. Further properties, such as magnetic
moment variations and phonon spectra, are presented in the
Supplementary Figures 7 and 8. As one can see, the equilibrium
lattice parameters, magnetic moments, and elastic constants of

the magnetic phases are in good agreement with the reference
DFT values. Larger discrepancies exist for the non-magnetic
phases since only very few of these configurations were included
in the training dataset.
The Bain transformation path is closely related to the bcc-fcc

phase transformation. In the case of Fe, the energetics of this
transformation depends sensitively on the magnetic state of both
phases38–41. Variations of energy along the Bain path, computed
at the FM bcc equilibrium volume for different magnetic phases of
Fe are shown in Fig. 5 for ACE and DFT. Unlike the ground state
FM bcc phase, the AFM and NM bcc phases are not mechanically
stable with respect to tetragonal distortion, as reflected by
negative values of the C0 ¼ 1

2 ðC11 � C12Þ elastic constant (cf. Table
2). For the fcc phase (c=a ¼ ffiffiffi

2
p

), the energies of the FM and AFM
magnetic states are almost identical, but both phases are unstable.
The minimum energy AFM structure is a body-centered tetragonal
phase with c/a ≈ 1.45. The excellent agreement between ACE and
DFT for the Bain path is due to correct incorporation of the
coupling between the magnetic and lattice DOF, which is
anomalously strong in Fe40.
The energy barrier for spin rotations depends sensitively on

angular interactions between atomic magnetic moments and
changes in moment magnitudes. Here, we demonstrate that ACE
captures the energetics of spin rotation between FM and AFM bcc
phases. In Fig. 6, we show the energetics associated with the
rotation of one magnetic moment in a two-atom bcc cell. As the
moment on the central atom is rotated, the magnetic configura-
tion gradually transforms from FM to AFM. The contour plot in Fig.
6(b) depicts PES as a function of volume and rotation angle. The

Fig. 3 Magnetic energy for FM bcc. Magnetic energy vs magnetic
moment magnitude at different volumes for bcc FM. Dashed lines
and black dots correspond to equilibrium volume ACE and reference
DFT data, respectively.

Fig. 4 Contour plots for FM bcc and fcc. Contour plots for the bcc (left) and fcc (right) FM phases.

Table 2. Equilibrium elastic properties for bcc and fcc.

a (Å) M (μB) C11 C12 C44 C0

bcc FM 2.83 (2.83) 2.22 (2.20) 302 (283) 158 (145) 95 (104) 72 (69)

AFM 2.80 (2.79) 1.25 (1.35) 46 (4) 252 (249) 175 (139) −103 (−123)

NM 2.74 (2.76) – −44 (87) 187 (361) 104 (180) −116 (−141)

fcc FM 3.61 (3.65) 2.35 (2.63) 236 (255) 312 (133) 80 (85) −38 (61)

NM 3.46 (3.45) – 634 (414) 249 (214) 326 (240) 193 (100)

Equilibrium properties of bcc and fcc phases of Fe predicted by ACE and DFT (in brackets). The elastic constants are given in GPa; the elastic constant
C0 ¼ 1

2 ðC11 � C12Þ characterizes the stability of the structures with respect to the Bain distortion. Data for FM fcc correspond to the high-spin state.
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black arrow marks the minimum energy path between the FM and
AFM phases. While the equilibrium volumes of both phases are
not very different, the magnetic moment of the AFM phase is
significantly lower than that of the FM phase (cf. Table 2). This is
also correctly reproduced by ACE, as shown in Fig. 6(c), where we
plot the rotation energy barriers evaluated at constant magnetic
moments. The minimum energy path (dashed gray curve),
corresponding to a reduction of the absolute value of magnetic
moment from 2.22 μB in FM bcc to 1.25 μB in AFM bcc, is in
excellent agreement with the DFT reference (black points).
The energy of magnetic moment orientations that deviate only

slightly from the collinear alignment can be described by lowest
order contributions only, i.e., a bilinear Heisenberg model. From
the distance-dependent exchange interactions Jij in the bilinear
Heisenberg model, the magnon spectrum can be obtained in
adiabatic approximation as

Ei qð Þ ¼
X
j

Jij 1� cos q � Rij
� �� �

: (1)

We determined the exchange interactions for different coordina-
tion shells following the real space approach by Liechtenstein et
al.42–44, where infinitesimal perturbations to the directions of two
neighboring magnetic moments are applied. Calculating the
energy δEij for rotating two spins at atomic sites i and j by
opposite infinitesimal angles ± θ/2 and comparing to the energy
for rotating the two spins individually, δEi and δEj, results in

δEij � ðδEi þ δEjÞ ¼ Jij 1� cos θð Þ � 1
2
Jijθ

2: (2)

The distance dependent exchange interactions are then obtained
by fitting δEij− (δEi+ δEj) with respect to the tilting angle for
consecutive coordination shells in a large supercell. The resulting
adiabatic magnon spectrum is shown in Fig. 7 with reference data
obtained using the spin-polarized relativistic Korringa-Kohn-
Rostoker (SPRKKR) framework45. Small discrepancies between

the ACE and SPRKKR results visible for some high frequencies in
the magnon spectrum can be attributed to the long range part of
the magnetic interactions neglected in the present ACE para-
meterization. Nevertheless, the overall agreement is good,
indicating the ability of our parameterization to describe spin
spirals with different frequencies.

Phase transformations at finite temperatures
The magnetic ACE can be applied in large-scale finite temperature
simulations to investigate properties that depend on both spin
and lattice DOF. The ACE prediction of the FM to paramagnetic
(PM) phase transition in bcc Fe is presented in Fig. 8. In a
simulation with 3456 atoms, we employed coupled molecular
dynamics (MD) - Monte Carlo (MC) sampling46, where the atoms
follow Langevin dynamics while MC is employed for updating the
directions of the atomic magnetic moments. A direct simulation of
the dynamics of the combined atomic and magnetic system is
difficult due to the lack of numerically stable and efficient
symplectic integrators for multi-spin models beyond Heisenberg-
Landau. The MC sampling enabled us to overcome this problem
and to investigate the effect of longitudinal spin fluctuations (LSF)
on the FM-PM transition by carrying the simulations with either
constant or variable spin magnitudes. The variation of magnetiza-
tion with temperature shown in Fig. 8 is consistent with previous
theoretical studies34,47–49. The predicted Curie temperatures from
both approaches are about 980 K (without LSF) and 890 K (with
LSF). The smaller value of TC obtained in the latter case can be
attributed to a decrease of the average local magnetic moment
magnitude with temperature, which was reported in previous
studies34,50. The underestimation in comparison with the experi-
mental value of 1043 K is likely related to neglect of thermal
expansion, as all simulations were performed at volume corre-
sponding to the FM bcc phase at 0 K.

Fig. 5 Bain transformation paths for FM, AFM, and NM phases. Bain transformation paths between the FM, AFM, and NM bcc and fcc phases
(ACE: lines, DFT: circles).
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Apart from the magnetic transition, we also investigated the
structural transitions from α to γ (bcc to fcc) and γ to δ (fcc to bcc)
phases of Fe using the stress-strain thermodynamic integration
method (SSTI)51,52 (see Methods). In these simulations, it is
essential to include the effect of lattice expansion. As shown in
Fig. 9(a), ACE predicts qualitatively correctly the increase of lattice
parameters with increasing temperature for both bcc and fcc
phases. The discrepancy with respect to the experimental values
can be traced to overbinding of the GGA functional.
The estimated transition temperatures of the two transitions are

1430 and 1710 K, respectively. These theoretical predictions agree
reasonably well with the experimental values Texp

α�γ ¼ 1185 K and
Texpγ�δ ¼ 1667 K53, as also visible in Fig. 9(b). The overestimation of Tα−γ
could be due to the insufficient description of the effect of magnetic
fluctuations on the free energy difference, that is responsible for the α
to γ transformation54, while the interplay between vibrations and
magnetic excitations, which largely affects the γ to δ transition54,55, is
correctly captured by our parameterization.

Defects
To demonstrate that ACE is able to capture properties of crystal
defects, we also included several defect configurations in the DFT
training data. However, as discussed in Sec. Reference DFT data, it
is often not possible to reach sufficiently small penalty energies in
the constrained DFT calculations for such distorted configurations.
Therefore, we needed to resort in many cases to unconstrained

spin-polarized calculations only, which limited the sampling of the
magnetic PES for defects.
Here we present results for three types of defects - a

monovacancy, generalized stacking faults, and a screw dislocation.
For most defects, the Heisenberg model is insufficient and it is
necessary to include higher-order terms in the magnetic
Hamiltonian56. In addition, an accurate reproduction of defect
properties can be achieved only if the coupling between spin and
lattice excitations is taken into account.
The monovacancy formation and migration energies of 2.57 eV

and 0.65 eV, respectively, agree well with the reference DFT data
(equal to 2.17 and 0.67 eV, respectively). The generalized
stacking fault energy surface, the γ-surface, for the {110} plane
is shown in Fig. 10(a). Figure 10(b) shows cuts along the 〈111〉
direction on both the {110} and {211} planes that are related to
atomic structures of 1

2 h111i screw dislocations. The ACE
predictions for both cuts are in excellent agreement with the
DFT reference. ACE also predicts the core structure of the 1

2 h111i
screw dislocation, which governs the low-temperature plasticity
of Fe, in quantitative agreement with DFT reference57,58 as
demonstrated in Fig. 10(c).
To examine the ability of ACE to reproduce properties of other

defects, we constructed a smaller training dataset containing also
surfaces and interstitials and generated another ACE parameter-
ization. As shown in the Supplementary Note 3, ACE can
reproduce properties of these defects as well.

Fig. 6 FM to AFM spin rotation for bcc. Analysis of the FM to AFM transformation in the bcc phase via rotation of the spin on the central
atom: a A schematic picture of the transformation. b A contour plot of PES as a function of volume vs rotation angle. c FM to AFM spin
rotation energy barriers at constant magnetic moment. The minimum energy path is marked by the gray dashed curve together with the DFT
reference (black points).
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DISCUSSION
By incorporating magnetic DOF in the form of atomic magnetic
moment vectors into ACE, we demonstrated that constrained non-
collinear DFT reference data can be reproduced with excellent
accuracy and transferability, exceeding those of existing magnetic
ML interatomic potentials. We constructed a non-collinear ACE
parametrization for Fe and validated it for a wide range of
properties, including volume-energy curves, elastic moduli,
phonon spectra, Bain transformation paths, spin rotations and
magnon spectra, and point and extended defects. These tests
showed that magnetic ACE is not only able to capture large
structural and magnetic variations but also resolves subtle spin
fluctuations that are crucial for a correct reproduction of phase
transitions and thermodynamic properties. To this end, it is
necessary to include multi-atom multi-spin interactions that are
missing in simple models with pairwise couplings between atoms
and/or magnetic moments. In iron magnetic angular contributions
of body order four and higher are numerically small and can be
neglected.
The magnetic ACE was parameterized from DFT reference data

that was generated by constraining both the magnitude and
direction of the atomic magnetic moments. For configurations
with defects or significant atomic displacements, it was often
difficult to achieve self-consistency. Furthermore, as the con-
straints were implemented by integrating magnetization over

spheres about atoms, various intra-atomic magnetization distribu-
tions could result in the same atomic magnetic moment. This non-
uniqueness effectively led to noise in the DFT reference data that
ultimately limited the accuracy of our parameterization. Therefore,
there is a strong incentive to implement more advanced
constraints in DFT that would help to increase the accuracy of
magnetic ACE as well as other magnetic ML approaches.
The numerical efficiency of ACE enables to carry out large-scale

molecular and spin dynamics simulations to study the dynamics of
combined magnetic and structural phase transitions. Nevertheless,
to predict both magnetic and structural phase transitions in iron,
we employed MD simulations for the atomic positions and MC
sampling to vary the atomic magnetic moments. One of the
reasons is that there is a lack of classical or semi-classical
equations of motion and corresponding, numerically robust
integrators applicable to combined atomic and spin dynamics in
systems with multi-atom multi-spin interactions and including
changes of magnitudes of magnetic moments59.
The ACE for iron can be extended directly to multicomponent

systems, such as technologically important magnetic alloys and
carbides. While this is straightforward from a formal point of view,
the generation of accurate and comprehensive DFT reference data
for magnetic multicomponent materials is challenging. Here
efficient sampling based on D-optimality active learning60

extended to include magnetic DOF will help to reduce the
number of required DFT reference calculations.

METHODS
We provide a summary of the magnetic ACE formalism together
with aspects of its implementation. Further explanations on
implementation and workflow are available in the Supplementary
Methods. We also provide computational details of the DFT
calculations, the combined MD-MC simulations that were
employed for the calculation of the FM-PM transition and the
SSTI method.

Energies, forces, and magnetic gradients
We define state variables σji of atom j neighboring atom i in terms
of interatomic distances vectors rji, chemical species μj, magnetic
moments mj, etc. as

σji ¼ μj ; rji;mj
� �

; (3)

Fig. 7 Jijs and magnon spectra. Exchange interactions (left) and adiabatic magnon spectra (right) predicted by ACE (red) in comparison with
SPRKKR calculations (black).

Fig. 8 Magnetization vs temperature. Magnetization vs tempera-
ture with and without LSF. The vertical dashed lines indicate the
estimated Curie temperatures TC. The experimental value of TC is
1043 K. Insets show snapshots of parts of the simulation cell with
atomic magnetic moments marked by red arrows.
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with σii ¼ μi ;mið Þ. A neighbor density on atom i including atomic
and magnetic contributions can then be written as

ϱi σð Þ ¼
X
j

δ σ � σji
� �

: (4)

Magnetic contributions also enter the single bond basis functions,

ϕv σji
� � ¼ δk μj

� �
R
μjμi
nl rji

� �
Ym
l r̂ji
� �

M
μjμi
n0 l0 mj

� �
Ym0
l0 m̂j
� �

(5)

where v ¼ ðknlmn0l0m0Þ and the primed indices are used to label
basis functions that depend on magnetic contributions, and
ϕv σiið Þ ¼ δk μið ÞMμiμi

n0 l0 mið ÞYm0
l0 m̂ið Þ.

The projection of the density in Eq. (4) on the corresponding
single atom basis functions leads to the atomic basis Aiv and Að0Þ

iv

Aiv ¼ hρijϕvi ¼
X
j≠i

ϕv σji
� �

(6)

and

Að0Þ
iv ¼ ρ

ð0Þ
i jϕv

D E
¼ ϕv σiið Þ: (7)

From the two atomic bases the tensor product basis is formed

Aiv ¼ Að0Þ
iv0

YN
t¼1

Aivt ; (8)

and symmetrized to ensure invariance with respect to rotation
and inversion, leading to equivariant basis functions

Bi ¼ C � Ai; (9)

where C is a sparse matrix of products of the Clebsch-Gordan
coefficients of the atomic and magnetic systems. The coupling tree,
used to form possible tuples v (see Supplementary Methods for an
example), can be simplified assuming that spin-orbit coupling can
be neglected. This is typically an excellent approximation as the
spin-orbit coupling energy is on the order of a few μeV for iron bulk
systems. Then the atomic and magnetic systems can be completely
decoupled and the total angular momenta of the atomic and
magnetic channels couple to zero individually, leading to a
significant reduction in the number of basis functions (see
Supplementary Methods for a detailed explanation). A further
reduction of the allowed combinations of atomic and magnetic
indices can be obtained by requiring inversion invariance for both
atomic and magnetic spaces by restricting the sum of the
corresponding angular momenta to even numbers.
We represent the energy for atom i including atomic and

magnetic contributions as a linear expansion

εi ¼ cTBi ; (10)

where c is the vector of the expansion coefficients.

Fig. 9 Thermal expansion and Gibbs free energy difference. Lattice thermal expansion for bcc and fcc phases predicted by ACE in
comparison to experimental and theoretical results (a); GAP68, Exp. 169, MSLP18, Exp. 253. Gibbs free energy difference between bcc and fcc
phases as a function of temperature for both ACE and CALPHAD70 (b). Vertical green and red dashed lines indicate ACE and experimental
transition temperatures53.
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The energy can be rewritten in terms of the ~c basis introduced
in20,22 as

εi ¼ cTBi ¼ cTCAi ¼ ~cTAi : (11)

This expansion was used to fit the DFT energies and forces. In
order that the expression reduces to the non-magnetic ACE when
the magnetic moments are zero, the first order equivariant basis
was taken as Að0Þiμin0

m ¼ 0ð Þ=1 by our choice of magnetic radial
functions (see the following Sec. Magnetic radial functions).
Expressions for forces and magnetic gradients are obtained by

taking the derivative of the energy with respect to atomic
positions and magnetic moments, respectively, and are written in
a compact notation as

Fk ¼
X
i

fik � fkið Þ; (12)

and

Tk ¼
X
i

tki þ tk : (13)

The pairwise atomic forces fki are given by

fki ¼
X

nlmn0 l0m0
ωiμknlmn0 l0m0∇rkiϕμkμinlmn0 l0m0 (14)

and magnetic forces tk and tki by

tk ¼
X
n0 l0m0

ω
ð0Þ
kμkn0 l

0m0∇mk A
ð0Þ
kμkn0 l

0m0 (15)

and

tki ¼
X

nlmn0 l0m0
ωiμknlmn0 l0m0∇mkϕμkμi nlmn0 l0m0 : (16)

The calculation of the adjoints ωiμi nlmn0 l0m0 and ω
ð0Þ
iμin0 l

0m0 can be
further decomposed to the evaluation of two distinct terms,

ωiμi nlmn0 l0m0 ¼ P
N¼1

P
μnlmn0l0m0

Θ
ðNÞ
μiμnln0l0

´ Að0Þ
iμin

0
0 l
0
0m

0
0

PN
s¼1

dAðsÞ
iμnlmn0 l0m0

(17)

Fig. 10 γ-surfaces and dislocations. a Predicted γ-surface for the {110} crystallographic plane. b Cuts along the 〈111〉 direction for the {110}
and {211}γ-surfaces (ACE: lines, DFT: dots). c Differential displacement map of the 1

2 h111i screw dislocation predicted by the magnetic ACE
potential.
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where

Θ
ðNÞ
μiμnln0l0 ¼ ~cðNÞ

μiμnln0 l0 (18)

and

dAðsÞ
iμnlmn0l0m0 ¼ δμμsδnnsδllsδmmsδn0nsδl0 lsδm0ms

´
Q
k≠s

Aiμknk lkmkn0k l
0
km

0
k
:

(19)

The adjoint ωð0Þ
iμi n0 l

0m0 does not contain the onsite basis contribution
and is simply given by

ω
ð0Þ
iμin0 l

0m0 ¼
X
N¼0

X
μnlmn0l0m0

Θ
ðNÞ
μiμnln0l0dA

ð0Þ
iμnlmn0l0m0 (20)

with

dAð0Þ
iμnlmn0l0m0 ¼

YN
s¼1

Aiμsns lsmsn0s l
0
sm

0
s
: (21)

The summation over N in Eq. (20) starts from zero because even a
single atom contributes to the total magnetic gradient.

Magnetic radial functions
The magnetic radial functions M

μjμi
n0 l0 used in this work exhibit a

different functional form to their atomic counterparts that are
given in terms of Chebyshev polynomials19,33). In particular, one
has to ensure that the energy is invariant under time reversal
symmetry, i.e.,mi→−mi for every i. For these reasons, we chose a
linear combination of Chebyshev polynomials Tk as

M
μjμi
n0 l0 mð Þ ¼

X
k0

c
μjμi
n0 l0k0g

μjμi
k0 mð Þ; (22)

with

g
μjμi
k0 mð Þ ¼ Tk0 xðmÞð Þ: (23)

The scaled distance x guarantees the invariance under time
reversal symmetry

x mð Þ ¼ 1� 2
m
mcut

� �2

; (24)

where mcut is the cutoff for the magnetic moment magnitude. The
expansion coefficients c

μjμi
n0 l0k0 for both magnetic and atomic radial

functions are adjusted during the fitting procedure.

DFT calculations
All our reference DFT calculations were performed using the non-
collinear and collinear versions of VASP 5.4.161–64 and the
projector augment wave (PAW) method65. The constrained local
moment approach32 was employed to constrain either both size
and direction or just the direction of the atomic magnetic
moments. The exchange-correlation energy was represented
using the Perdew-Burke-Ernzerhof (PBE) generalized gradient
approximation (GGA) method66. We carried out carefully con-
verged calculations with tight settings of the principal parameters
in order to obtain accurate results for the energy, forces and
magnetic moments. Specifically, the kinetic energy cutoff was set
to 500 eV, the convergence threshold for the energy to 10−5 eV
and the k-mesh density to 0.18 Å−1. The integration radius for the
atomic magnetic moments (VASP parameter RWIGS) was kept
constant at the value of the Fe PAW (1.302 Å). The LAMBDA
parameter was initially increased in smaller steps and then
gradually with larger steps. A typical sequence of values is
(1,2,6,10,15,20,25,30). See Supplementary Notes 1 and 2 for the
convergence of magnetic moment magnitude with respect to the
integration radius and for a discussion on the convergence of the
penalty energy in the constrained local moment method.

MD-MC calculations
The MD-MC simulations of the FM-PM transition in bcc Fe
consisted of alternating MD and MC steps. The MD simulations
were performed using Langevin dynamics (from ASE67 package)
with a time step of 1 fs. The MC sampling included uniform spin
rotations on a unit sphere with and without additional perturba-
tions of the magnetic moment magnitudes. The simulation
supercell had dimensions 12 × 12 × 12 of a bcc cell and contained
3456 atoms. The dimensions of the supercell were kept fixed at all
temperatures so that the effect of thermal expansion was
neglected. At each temperature, we carried out about 107 steps,
with the initial 10% used for equilibration.
The free energy difference between bcc and fcc, shown in Fig.

9b, was calculated following the application of the SSTI method51

to magnetic Fe52. In this approach, stresses are integrated along a
deformation path between the bcc and fcc structures. Our
calculations employed supercells of dimension 8 × 8 × 8 (512
atoms). The lattice parameters of bcc and fcc at each temperature
were adjusted to the values obtained from the corresponding
thermal expansions.

DATA AVAILABILITY
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