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The complexity and diversity of polymer topologies, or chain architectures, present substantial
challenges in predicting and engineering polymer properties. Although machine learning is
increasingly used in polymer science, applications to address architecturally complex polymers are
nascent. Here, we use a generative machine learning model based on variational autoencoders and
data generated frommolecular dynamics simulations to design polymer topologies that exhibit target
properties. Following the construction of a dataset featuring 1342 polymerswith linear, cyclic, branch,
comb, star, or dendritic structures, we employ a multi-task learning framework that effectively
reconstructs and classifies polymer topologies while predicting their dilute-solution radii of gyration.
This framework enables the generation of polymer topologies with target size, which is subsequently
validated through molecular simulation. These capabilities are then exploited to contrast rheological
properties of topologically distinct polymers with otherwise similar dilute-solution behavior. This
research opens avenues for engineering polymers with more intricate and tailored properties with
machine learning.

The topology of a polymer chain, or equivalently the chain architecture, can
substantially influence their properties and those of derivativematerials. For
example, in natural polymers, while linear amylose forms dense aggregates
with low aqueous solubility, the analogous but highly branched structure of
amylopectin impedes association of chains, thereby enhancing its
solubility1. In the realm of synthetic polymers, the branching in low-density
polyethylene improves its processability for applications like blow and
extrusion molding, whereas linear high-density polyethylene possesses
superiormechanical strength and chemical resistance. There is also growing
interest in understanding implications of polymer topology due to
advancements in various controllable synthetic methodologies2–5. These
methods enable the creation of polymers with a wide range of complex
topologies, such as stars6,7, combs8,9, branches10,11, hyperbranches12,13,
dendrimers14,15, rings16,17, and brushes18,19.

Establishing quantitative relationships between polymer topology and
material properties remains challenging. Both experimental and computa-
tional investigations have enhanced understanding of how polymer topol-
ogy influences properties of interest to many areas, such as enhanced oil
recovery20,21, coatings and adhesives22,23, rheology and fluid dynamics24–26,
energy storage27–33, and biomedical applications34–38. Nevertheless, the
efforts of labor-intensive and potentially costly synthesis and characteriza-
tion typically limits experimental studies to a small set of systems, which

may still not yield well-defined topological ensembles3,39. Computationally,
although there is no ambiguity associated with the underlying topologies of
the polymers or their construction, simulations are often restricted to a
particular class of topologies owing to computational costs and perhaps
uncertainty with how to tangibly compare diverse topologies40,41. Overall,
these factors obfuscate the construction of general topology-property cor-
relations, which also precludes facile design of topologically complex
polymers.

Recent advancements in and applications of machine learning have
spurred significant developments in polymer design. These efforts span
many applications, such as tailoring the structures of single-chain
nanoparticles42,43, enhancing enzyme stability44,45, delivering drugs and
therapeutics46–48, and identifying gas-separation membranes49. Generative
machine learning models50 are a particularly intriguing class of algorithms
for chemical design. For example, variational autoencoders (VAEs) are
adept at encoding complex data into lower-dimensional latent spaces51,52

and have previously facilitated the generation of small molecules53,54.
Applications of VAEs in polymer science are also emerging55,56. Shmilovich
et al. combined VAEs with molecular dynamics (MD) simulations and
Bayesian optimization to guide the discovery of π-conjugated
oligopeptides57 with desirable aggregation behavior to influence optoelec-
tronic properties. In devising the Open Macromolecular Genome (OMG),
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Kim et al. utilized a generative framework with VAEs that can not only
provide polymer structures but also retrosynthesis58, thereby facilitating
optimization of synthetically accessible materials. Nevertheless, these and
other studies primarily focus on specific chemical spaces or linear polymers,
highlighting the need for methods to generate polymers with complex
topologies and tailored properties.

In this study, we create amulti-task VAE to generate polymers with
specified topology and desired characteristics. This model is developed
using an original dataset comprising coarse-grained MD data for over
1300 polymers of various topologies, including star, comb, αω-bran-
ched, linear, cyclic, and dendrimer structures, spanning a range of
molecular weights. Input and encoding strategies are critically assessed
by training several models that aim to reconstruct the polymer topology
and also perform auxiliary tasks of estimating the characteristic size of
the polymer and classifying its topology. We find that auxiliary tasks
enhance the physical interpretability of the learned latent space of the
VAE. Our most effective generative modeling framework, TopoGNN,
incorporates both graph and topological descriptor features. For
demonstrative purposes, TopoGNN is leveraged to produce sets of
topologically diverse polymers that exhibit the same characteristic size
in dilute solution (Fig. 1, top) but contrasting rheological behavior at
finite concentrations (Fig. 1, bottom). This work expands the utility of
generative modeling for polymer design and demonstrates how such

algorithms can also facilitate controlled studies across complex, topo-
logically diverse polymers.

Results
Polymer dataset
We first generate and characterize a topologically diverse set of polymers for
training and evaluating the VAE. In particular, we initially prepare and
simulate 1342 polymers across six architectural classes (11 each for linear
and cyclic and 330 each for αω-branched, comb, star and dendrimer); the
αω-branched architecture possesses side-chains at two backbone termini
and is simply denoted “branch” in figures and tables. The degree of poly-
merization ranges from90 to 100 for each architectural class. TheVAEhere
is tasked to encode and decode a specific manifestation of a polymer
topology, although the representation of ensembles of such structures is of
future interest.

Figure 2a showcases the diversity of structures across a representative
set of these polymers. This diversity is alsomanifest through the variation of
numerous topological descriptors shown in Fig. 2b: Nnodes represents the
number of nodes,Nedges the number of edges, �d the average node degree,�dnb
the average neighbor degree, δ the graph density, ϕdiam the graph diameter,
ϕrad the graph radius, λalg the algebraic connectivity, Cdeg the degree cen-
trality, Cbet the betweenness centrality, and rdeg the degree assortativity.
These descriptors, which are derived purely from knowledge of the
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Fig. 1 | Strategy underlying a variational autoencoder of polymer topology. In the
Training Phase (top), molecular dynamics (MD) simulations are employed to
compute computationally tractable descriptors, such as the average squared radius
of gyration, hR2

gi, for a set of polymers. Information regarding topological descrip-
tors and the polymer graph are then encoded into a lower-dimensional latent space
using an artificial neural network (ANN) and a graph neural network (GNN). The
latent space is decoded to accomplish reconstruction, regression, and classification

tasks. These encoded features are concatenated to form a reduced-dimensional
latent space, fromwhich a decoder reconstructs the polymer structure. In the Search
Phase (bottom), points are sampled from the latent space to proffer polymers that are
predicted to exhibit a target hR2

gi and specified topology. These predictions are
evaluated againstMD simulations, and post-validation, enable systematic analysis of
how topology impacts additional properties, such as viscosity.
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molecular graph/polymer connectivity, provide a first means to quantita-
tively characterize and distinguish polymer topologies. The current dataset
is restricted to architectures that possess atmost one cycle (corresponding to
the macrocycle of the cyclic polymer) and also does not describe polymer
networks; however, including descriptors related to cyclization or meshes
may benefit future models. Despite the uniformity in the number of nodes
and edges, which are commonly used to characterize polymers, significant
variations are observed in other topological descriptors. For instance, comb,
branch, star, and dendrimer topologies, exhibit notable differences in
descriptors like graph diameter, radius, betweenness centrality, and degree
assortativity, even when node and edge counts are identical. Our primary
aim is to assess the efficacy of ML to describe properties of topologically
complexpolymers.Consequently, theCGsimulations used to generatedata,
for training and benchmarking, are based on the phenomenological
Kremer-Grest (KG) model, which is agnostic to constitutional unit chem-
istry. Furthermore, the results do not represent any specific polymer,
althoughKGcanbedescriptiveofmanypolymer systemsbasedonmapping
schemes59. We anticipate that future work could straightforwardly leverage
similar ML architectures of chemically specific parameterized CG models,
including those with hydrodynamic interactions.

Figure 2c and Supplementary Fig. 1 illustrate the range of characteristic
polymer sizes, as expressed through the simulated mean squared radius of
gyration hR2

gi, observed in each class. Because the present study imposes a
maximum number of monomers, polymers from the linear, cyclic, and
dendrimer classes exhibit relatively narrow distributions in hR2

gi by contrast
to comb, branch, and star classes. Dendrimers notably form compact,
globular structures over the range of simulatedmolecular weights relative to
all other classes. Overall, the dataset is partitioned into a 64/16/20 train/
validation/test split for future model construction and evaluation; stratified

sampling is used to ensure proportional representation of architectural
classes across all splits.

Polymer reconstruction and property prediction
Based on prior work on linear polymer featurization60,61, we hypothesized
that polymer reconstruction with a VAE could be enhanced if derived
topological descriptorswere supplied as inputs.Toexamine this,we evaluate
three distinct encoding strategies: TopoGNN, which integrates topological
descriptors with graph features; GNN, which exclusively relies on graph
features; and Topo, which solely employs topological descriptors. For each
strategy, we consider a multitude of models with distinct hyperparameters
and their performance across a broad range of evaluation metrics. For
example, reconstruction performance is quantitatively evaluated with
balanced accuracy (BACC), which measures the accuracy of individual
entries in the reconstructed adjacencymatrix. For topology classification, F1
score is chosen to address the class imbalance in our dataset. Other metrics
include the coefficient of determination R2 for regression on hR2

gi and the
Kullback-Leibler (KL) divergence. Representativemodels for each encoding
strategy are selected using a comprehensive evaluation score (CES) that
simultaneously considers all criteria:

CES �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� BACCÞ2 þ ðKLÞ2 þ ð1� R2Þ2 þ ð1� F1Þ2

q
ð1Þ

where a denotes themin-maxnormalized value of a; CES canbe interpreted
as thedistance fromtheorigin (aperfectmodel) in avector spacespannedby
error metrics.

Table 1 summarizes the performance of these representative models.
Across encoding strategies,TopoGNN emerges as themost overall effective,

cb

a

Fig. 2 | Characteristics of generated polymers. aRepresentative graphs of polymers
from each architectural class. The number of polymers is proportional to occurrence
in the dataset. b Comparison of topological descriptors across architectural classes.
Values are standard-normalized for the dataset for each topological descriptor.
Within a class, data for polymers are organized from left-to-right in ascending order
of descriptor values, starting with the top (i.e., “Number of nodes”) and proceeding

downward to successively break ties. c The distribution of simulated hR2
gi for each

architectural class. The white dot represents the median, the black bar spans the
inter-quartile range (i.e., 25% to 75% percentiles), and the width indicates the dis-
tribution density. The color of the graphs in (b) align with those of the violins
positioned over the respective classes in (c).
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registering the smallest CES. By comparison, theTopomodel yields slightly
superior performance on regression and comparable F1 score. Conversely,
the GNN model demonstrates a slightly higher balanced accuracy in
reconstruction tasks and a lower KL divergence; however, it significantly
underperforms in regression and classification. These results support the
inclusion of topological descriptors during construction of the VAE.

To assess model generalizability, we examine the performance of the
representative models on the held-out test set. Figure 3 again indicates that
TopoGNN delivers consistently strong performance across several evalua-
tion criteria, while GNN and Topo can be deficient in particular metrics.
Balanced accuracy is highest for GNN (0.9397), closely followed by
TopoGNN (0.9369) and then Topo (0.9164). This suggests that topological
descriptors do not necessarily enhance reconstruction performance,
although the ability of Topo to effectively reconstruct certain topologies
(e.g., branch polymers) highlights the extensive information content
encompassed by the 11 topological descriptors. By contrast, directly sup-
plying topological information is clearly advantageous for predicting the
characteristic polymer size.Here,TopoGNN stands out as themost effective,
achieving the highest mean value (0.9920), surpassing Topo (0.9854)and
GNN (0.9639).Meanwhile,GNN achieves the highestmean F1 score (0.9783),
followed by TopoGNN (0.9689) and Topo (0.9678); however all models
display statistically comparable results regarding this classification metric.
Taken together, this suggest workflows with VAEs can effectively address
complexities induced by these polymer architectures.

For a more nuanced assessment of model quality, Fig. 4 breaks down
TopoGNN performance across architectures; comparable information for

other models is in Supplementary Figs. 2 and 3. In polymer reconstruction,
TopoGNN excels but faces challenges with specific cyclic and comb poly-
mers (Fig. 4a, gray dashed boxes). Notably, GNN generates errors, especially
for star polymers, while Topo exhibits minor errors across most archi-
tectures. Regarding the prediction of hR2

gi (Fig. 4b), TopoGNN performs
well regardless of polymer class. Both GNN and Topo display high corre-
lation, but errors are generally larger for GNN (Supplementary Fig. 2),
indicating the difficulty in establishing a direct relationship between graph
features and hR2

gi. A saliency analysis (Supplementary Fig. 3) reveals that
graph diameter, betweenness centrality, and algebraic connectivity most
strongly influence hR2

gi, aligning with their direct correlation with hR2
gi

(Supplementary Fig. 1). For topology classification, TopoGNN (Fig. 4c) is
broadly effective, with most misclassifications occurring in linear, αω-
branched, and comb architectures. These issues are more pronounced in
Topo and GNN (Supplementary Fig. 3) and can be augmented with other
misclassifciations. Overall, TopoGNN, which utilizes both graph and
topological features, not only consistently outperforms other models but
also delivers high-quality results. The remainder of the article therefore
focuses on analysis and applications of TopoGNN to illustrate its practical
deployment.

Latent space exploration and polymer generation
Figure 5 presents theUMAPprojection of the 8-dimensional latent space of
topoGNN into a 2-dimensional space for visualization. Distinct topological
clusters emerge in Fig. 5a and b, which reveals organization of the latent
space that depends on relationships amongst architectures and their phy-
sical properties. Dendrimers, characterized by their high orders of branches,
form three, mostly isolated and distinct clusters that reflect how the den-
drimer architectures were algorithmically generated; they are most closely
related to star polymers and αω-branched polymers (particularly those with
pom-pom architectures). Branch, comb, and star polymers all notably
overlapwithin the latent space, which is attributed to topological similarities
(Fig. 2b). Cyclic and linear polymers are interspersed within comb and
branch clusters, with linear polymers sharing a long backbone and cyclic
polymers possessing a long ring-closed backbone. This organization is
clearly informed training with auxiliary tasks for predicting hR2

gi and clas-
sifying topologies, as illustrated in Fig. 5b. A vertical trajectory in theUMAP
space (marked by an increase inZ2) results in an almostmonotonic increase
in hR2

gi for the generated polymer topologies (Fig. 5c). Conversely, a hor-
izontal trajectory (associated with an increase in Z1) moreso transitions
topology classes with slight variations in hR2

gi ((Fig. 5d). Omitting the
auxiliary tasks leads to less distinct separation of topological classes and
disrupts the monotonicity of the hR2

gi (Supplementary Fig. 6). The latent
spaces ofGNN andTopo (Supplementary Fig. 5) are prone to similar issues.
Overall, this highlights the effectiveness of the workflow for TopoGNN to
produce an intuitive and physically meaningful latent space.

The latent space of TopoGNN can be used to generate a diverse set of
polymer topologies. This is exemplified by computing the Vendi Score (VS)
for each architecture (see section “Machine Learning Details” for details)
and comparing it to that of the originally constructed dataset. Whereas the
VS for the original dataset (1342 points) is 2.0968, that for 1342 topologies
generated using TopoGNN is 5.0684, which exceeds those for GNN (4.9580)
andTopo (4.3305). Examples of the generatedpolymer topologies and their
distribution are shown in Supplementary Figs. 7–10. This indicates that all
models can generate a more diverse range of polymer topologies compared

Table 1 | Performance of representative models for each encoding strategy on validation set

Models Balanced Accuracy Regression R2 Classification F1 KL Divergence Distance to Origin

TopoGNN 0.9439 0.9915 0.9953 18.7244 0.3829

GNN 0.9448 0.9634 0.9768 15.6018 0.8348

Topo 0.9281 0.9949 0.9953 16.0418 0.3992

Bold number indicates the best result.

Fig. 3 | Performance of variational autoencoder models. Comparison of
TopoGNN, GNN, and Topo in terms of polymer graph reconstruction, hR2

gi
regression, and topology classification. BACC represents balanced accuracy,R2 is the
coefficient of determination, and F1measures accuracy based on the harmonicmean
of precision and recall. The error bars represent the standard deviation arising from
10 random samplings of the latent space.
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to the original handcrafted dataset, which could have implications for
downstream tasks, as explored in the next section.

Property-guided polymer topology generation
To illustrate one application for TopoGNN, we generate a series of distinct
polymer topologies that exhibit specific hR2

gi. While hR2
gi itself is a funda-

mental characteristic of the polymers, the rationale here is moreso to
demonstrate the production of alternative materials with similar char-
acteristics and further to assess how topology affects other polymer prop-
erties, such as rheology, without conflation of other factors. We therefore
select target hR2

gi ranges of 7.5 ± 2, 30 ± 2, and 50 ± 2 which represent the
low, intermediate, and high regions of hR2

gi in the dataset, respectively (Fig.
2) and conditionally sample polymers from the latent space across the
different topological classes. The hR2

gi are then validated for the generated
polymer topologies usingMD simulation. These results are shown in Fig. 6,
which illustrates that TopoGNN can indeed produce a range of distinct
structures that exhibit effectively similar hR2

gi. Targeting
� ¼ 7:5 ± 2 pre-

dominantly yields dendrimer and star topologies, targeting hR2
gi ¼ 30 ± 2

yields branch, comb, cyclic, and star topologies, and targeting hR2
gi ¼ 50 ± 2

mostly yields in branch and combarchitectures.With the current approach,
however, architectures that satisfy specific targets cannot be arbitrarily
produced based on the molecular-weight restrictions. For example, den-
drimers are more or less restricted to low hR2

gi, while linear polymers are
mostly restricted to larger hR2

gi. Moreover, relatively few polymers meet the
ambitious target of 50 ± 2,which is consistentwith the paucity of data points
around hR2

gi ¼ 50 ± 2 within the original dataset; however, the group of
polymers here uniformly exceed those of the smaller 30 ± 2 target. Inter-
estingly,TopoGNN also proffers architectures, such as irregular dendrimers
and nuanced branching patters in stars and combs, that go beyond those of
the original dataset. Overall, these results reflect the intended capability of
TopoGNN to generate a broad spectrumof original polymer topologies that
align with a target property.

Rheological Analysis
The viscosity-modifying properties of polymers are key to numerous
applications62–64 anddependon a variety of factors, including unit chemistry,
polymer composition, and chain topology65,66. The relative impacts of such
factors can be difficult to disentangle. Using TopoGNN, we specifically
explore the influence of polymer topology on rheological characteristics.
While solution viscosity at dilute concentrations is primarily determined by
polymer size, which sets the overlap concentration67, we control for this
factor by designing topologies with specified hR2

gi and examine topological
implications across a range of concentrations. Figure 7a examines the
concentration-dependent shear viscosity as determined from MD simula-
tions of four selected topologies. Figure 7a presents concentration-
dependent shear viscosity from MD simulations of four selected

topologies.Differences emerge beyond0.4 σ−3, with cyclic polymers showing
lower viscosities due to reduced entanglements, and branched polymers
exhibiting elevated viscosities due to extended side chains. Star and comb
polymers demonstrate similar, somewhat lower shear viscosities compared
to branched polymers, highlighting the impact of side-chain position and
density on entanglement effectiveness. Additionally, we observe nuanced
differences in frequency-dependent storage and loss moduli, G0 and G″,
across topologies and concentrations (Fig. 7b, c). While all solutions exhibit
liquid-like viscousbehavior at low frequencies and solid-likebehavior at high
frequencies below 0.6 σ−3, star, branch, and comb polymers display three
crossover frequencies as concentration increases. In contrast, cyclic poly-
mers maintain a single crossover frequency, indicating less nuanced vis-
coelastic behavior. The presence of multiple crossover frequencies at higher
concentrations (Fig. 7c and Supplementary Fig. 11) has been previously
observed in both simulations and experiments68–72. Notably, the plateau
between the lowest and second lowest crossover frequencies, whereG0 >G00

signifies a rubbery plateau attributed to polymer entanglement. Regarding
the relative viscosities of differing architectures, some results are also reso-
nant with prior work. For example, cyclic polymers exhibit relatively lower
viscosities, which is due to the absence of free ends that tends to reduce
entanglements73, and αω-branched polymers tend to possess higher visc-
osities, which is consistent with expectations set by experimental investiga-
tion of the impact of side-chain length on viscosity74,75. Here, polymers
classified with comb architectures have a similar number of side chains and
similar backbone lengths as those classified as αω-branched architectures;
however, the side-chains are shorter, resulting in less effective friction and
lower viscosity. This highlights potential for how rheological properties
might be modulated through strategic architecture design.

Discussion
This study employed variational autoencoders to address emergent com-
binatorial complexityofdiversepolymer topologies,whichhasbeen scarcely
addressed in machine learning of macromolecules. We constructed an
extensive dataset featuring the average squared radius of gyration (hR2

gi) for
1342 polymers with various architectures, including linear, cyclic, branch,
comb, star, and dendrimer structures. By analyzing different encoding
strategies and input representations, we found thatmeaningful latent spaces
of polymerswith complex topologies can be established by (i) incorporating
both graph-explicit and graph-derived features and (ii) coupling graph
reconstruction tasks with auxiliary prediction tasks, such as those related to
physical properties. Probabilistic sampling over the latent space was shown
to result in rich topological diversity. These generative capabilitieswere then
used to produce distinct polymer topologies with target characteristic sizes
in dilute solution. This enabled subsequent investigation by coarse-grained
molecular dynamics into how topology influences rheological properties,
such as shear viscosity and viscoelastic moduli, while controlling for

Fig. 4 | Performance decomposition of TopoGNN. a Polymer graph reconstruc-
tions by TopoGNN, contrasting true (blue) and predicted (red) polymer topologies.
b Regression parity plot. The diagonal line signifies ideal regression accuracy, and
error bars show standard deviation from random latent space sampling. cConfusion

matrix representing the classification performance across various topologies: linear
(lin), cyclic (cyc), branch (brn), comb, star, and dendrimer (den). Diagonal entries
correspond to accurate classifications, while off-diagonal entries indicate
misclassifications.
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Fig. 5 | Visualization and exploration of the latent space. a Two-dimensional
visualization of the TopoGNN latent space using the Uniform Manifold Approx-
imation and Projection (UMAP) technique. A subset of the data is displayed for
clarity, with each marker representing a polymer graph based on its latent vector.
Different colors denote distinct topologies. b Organization of (left) hR2

gi and (right)
topology in the UMAP-coordinate space. The dots signify the latent vectors of

polymer graphs. The two arrows mark regions in the latent space targeted for
exploration (i.e., new polymer topology generation). c As exploration progresses
with an increase in Z2 in the latent space (represented by a solid line), there is a near-
monotonic rise in hR2

gi for the generated polymers. d Progression with an increase in
Z1 (indicated by a dashed line) showcases shifts in polymer topology, moving
through clusters characteristic of star, comb, and branch topologies.
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polymer size. While all architectures exhibited similar rheological behavior
at relatively low concentrations, distinct responses emerged at higher con-
centrations. For instance, localized branches at chain ends resulted in more
viscous solutions compared to other architectures, including cyclic struc-
tures that exhibited minimal entanglements. Apart from illustrating how
rheological behaviormight be tuned or altered via polymer architecture, this
also showcases a paradigm for studying the physical properties of topolo-
gically distinct systems.

This work also invites several future research directions. Particularly,
TopoGNN exhibits promising potential as a generative model, offering a
cost-effective alternative to experiments or simulations in predicting
properties like hR2

gi. While hR2
gi serves as a straightforward and computa-

tionally accessible quantity, there is interest in extending the strategy to
incorporate or utilize other properties. Although this work leveraged
TopoGNN to simply compare rheological properties in systematic fashion,
in the future, it may be deployed to guide design efforts aimed at optimizing

Fig. 7 | Effect of polymer topology on shear visc-
osity and complex moduli at comparable hR2

gi.
a Influence of polymer topology and concentration
on viscosity, featuring topologies such as star,
branch, comb, and cyclic, each with a hR2

gi of
approximately 30 ± 2. b Relationship between
polymer topology, concentration, and complex
moduli crossover frequencies. cComplexmoduli for
various topologies at concentrations of 0.1 and 0.8,
with the star symbol marking the crossover point.

Fig. 6 | Generation of polymer topologies with target hR2
gi. Topologies are gen-

erated aiming for target hR2
gi values of 7.5 ± 2, 30 ± 2, and 50 ± 2. Each generated

topology is accompanied by its type and the predicted hR2
gi from TopoGNN, pre-

sented in parentheses on the x-axis. A violin plot showcases the revalidation of hR2
gi

via MD simulation for every topology. The gold dot marks the hR2
gi, while the white

dot stands for the median. The black bar represents the interquartile range, and the
plot width reflects the distribution density of R2

g. Two dashed lines highlight the hR2
gi

range used in the guided search.
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polymer properties. We also note that the dataset and machine learning
framework are currently limited to polymers with a narrow range of bead
numbers (equivalently, molecular weights). Future research will explore the
extensibility and transferability of machine learning architectures across
various molecular weights, potentially through the use of string-based
representations76–78.

This study also focused on specific structural and rheological char-
acterizations of chemically homogeneous and precise polymers at coarse-
grained resolution. The ML framework might be feasibly extended to
address compositional complexity; however, such efforts will need to
address increased data burdens to capture the behavior of such systems. For
this and other reasons, TopoGNN and related ML strategies will benefit
from advancements that accelerate molecular simulation to increase data
throughput, and those that improve the accuracy of CGmodels, which will
expand the validity and range of properties that can be reliably computed. In
particular, parameterized CG models may not be transferable across all
thermodynamic conditions of interest, and dynamical consistency between
CG models and high-resolution systems poses a persistent challenge40.
Finally, thedataset andMLmodels introducedhere feature precisely defined
polymer architectures. Although the architectural classes studied are
broadly accessible, precision control over architecture is beyond current
synthetic capabilities. Therefore, future efforts in both theMLandmodeling
space must address how to predict and represent ensembles of polymer
structures77 that are accessible with modern synthetic approaches and
appropriately tailoring generative capabilities towards these58. Overall,
understanding and controlling the properties of polymers, which involve
chemical, compositional, and topological complexity, and aligning these
properties with synthesizable polymer systems remains a significant chal-
lenge in polymer science. This study provides a foundation to pursue these
directions.

Methods
Description of dataset
Thedataset comprises 1342polymer architectures, each containingbetween
90 and 100 constitutional units, or beads. Polymer architectures encompass
a wide range of topologies, including linear, cyclic, branch, comb, star, and
dendrimer structures. Due to limitations bead count, linear and cyclic
topologies are restricted to 11 distinct polymers each, whereas other
topologies are represented by 330 distinct polymers each. The polymers are
chemically homogeneouswith all beads treated equivalently. The procedure
for generatingpolymer graphs is described in the SupplementaryDiscussion
Section 2. For each polymer graph, we calculate an 11-dimensional topo-
logical descriptor vector43,79 using the number of nodes, number of edges,
average degree, average neighbor degree, density, diameter, radius, algebraic
connectivity, degree centrality, betweenness centrality, and degree assorta-
tivity as elements. For further details on these descriptors, readers are
referred to Supplementary Discussion Section 1.

Calculation of polymer properties
Radiusofgyration.We investigate the structural properties of individual
polymer chains using coarse-grained molecular dynamics. To do so, we
compute the gyration tensor S:

S ¼ 1
N

XN
i¼1

ri � rcm
� �

ri � rcm
� �T ð2Þ

where ri denotes the position vector of the ith bead, rcm represents the
center-of-mass position of the polymer, and T indicates the transpose
operation. Diagonalizing yields S ¼ diagðλ21; λ22; λ23Þ where the diagonal
elements are the principal moments of the gyration tensor ordered as
λ1 ≤ λ2 ≤ λ3. The squared radius of gyration can be subsequently computed
as

R2
g ¼ λ21 þ λ22 þ λ23 ð3Þ

and quantifies the size of a given polymer conformation. The ensemble
average hR2

gi is the constructed using a series all sampled configurations.
This ensemble-averaged quantity serves as the target for the regression
auxiliary task.

Rheological properties. We also characterize several rheology-related
properties for select polymer systems. The shear viscosity η of the poly-
mer solution is formally calculated via

η ¼
Z 1

0
GðtÞdt ð4Þ

whereG(t) denotes the stress relaxationmodulus.We determineG(t) using
the Green-Kubo relation

GðtÞ ¼ 1
3

X
αβ¼xy;xz;yz

V
kBT

hσαβðtÞσαβð0Þi; ð5Þ

with V representing the simulation box volume, σαβðtÞ signifying the off-
diagonal stress tensor components averaged at intervals of 1000 steps, and
〈⋯ 〉 denoting an ensemble-average. Often,G(t) exhibits significant noise at
long times, which renders direct numerical integration of Eq. (4) unreliable.
Therefore, following prior work80, we fit the simulated G(t) data to a
generalized Maxwell model, given by GðtÞ ¼PpGp expð�t=τpÞ, where Gp

and τp represent the modulus and relaxation time of the p-th element,
respectively. This approach yields the viscosityη =∑pGpτp.We also compute
the storagemodulus (G0) and the lossmodulus (G″) to better characterize the
viscoelastic properties of the polymers. These moduli are obtained from the
Fourier transform of the stress relaxation modulus, yielding

G�ðωÞ ¼ iω
R1
0 GðtÞe�iωtdt

¼ G0ðωÞ þ iG00ðωÞ: ð6Þ

Here, G0ðωÞ, the storage modulus, reflects the elastic, or energy-storing,
aspect of thematerial, whileG″(ω), the lossmodulus, represents the viscous,
or energy-dissipating, component. This analysis is thus restricted to linear
viscoelasticity.

MD simulation details
MD simulations are used to generate polymer configurations for the
characterization of polymer properties. All simulations are conducted using
the LAMMPS simulation package81 in reduced units; the units of mass,
distance, and energy are denoted by m, σ, and ε, respectively. The reduced
time unit follows as ðmσ2=εÞ1=2. All simulations are considered to take place
in an implicit athermal solvent environment, with dynamics of the poly-
mer(s) governed by the Langevin equation, such that hydrodynamic
interactions are neglected. The equations-of-motion are numerically inte-
grated using the velocity-Verlet integration scheme with a 0.001 timestep.
The solvent friction coefficient is set to ς = 0.1.

Polymer interactions are modeled via a combination of bonded and
nonbonded potential energy contributions. The total potential energyU of a
system with configuration rN is expressed as:

UðrN Þ ¼
X
bonds

UvibðrijÞ þ
X
i<j

UnbðrijÞ; ð7Þ

where rij represents the internal distance calculated from the coordinates rN.
The nonbonded energy contributions for all pairs of beads are computed
using the following equation:

UnbðrijÞ ¼
4εij

σ ij
rij

� �12
� σ ij

rij

� �6� 	
þ ϵij; if i; j are bonded and rij < 2

1=6

0; otherwise;

8<
:

ð8Þ
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where εij and σij are set to 1. For directly bonded beads, the stretching energy
is calculated as:

UvibðrijÞ ¼ � 1
2
KijðRð0Þ

ij Þ
2
ln 1� rij

Rð0Þ
ij

 !2" #
; ð9Þ

where Kij is assigned a value of 30, and Rð0Þ
ij is fixed at 1.5.

Single-chain simulations. Simulations of single coarse-grained polymer
chains (no boundary conditions) are used to characterize hR2

gi. Each
simulation is conducted for 2 × 107 steps, allocating the first half for
system equilibration. Configurations for analysis are sampled every
2 × 103 timesteps during the latter half of the simulation.

Many-chain simulations. Simulations of many chains within a simu-
lation cell with cubic periodic boundary conditions are used for rheolo-
gical analysis of a subset of polymers with comparable ensemble-
averaged square radii of gyration, hR2

gi. Simulations are performed across
various concentrations (0.1 to 0.8) to cover both semi-dilute and semi-
concentrated regimes. Each simulation uses 100 chains with the simu-
lation cell dimensions adjusted to match the desired concentration.
Equilibration periods of 107 steps are utilized for all simulation con-
centrations. Upon achieving equilibrium, data are collected for 107 steps
at a timestep of 0.001. We note that using an implicit-solvent environ-
ment and neglecting hydrodynamic interactions has implications for
simulating rheological properties82. However, while these choices affect
data generation and its interpretation relative to the physics of real
polymer solutions, they do not affect the analysis of the ML task.

Machine learning details
Data preprocessing. Polymers are represented using graph notation
G ¼ ðV; EÞ, where V is the set of nodes, and E is the set of edges. To
address the variability in node counts across different polymers, ranging
from 90 to 100, we introduce “ghost” nodes with zero-edge connections
to standardize graph sizes to 100 nodes using node padding83,84. Because
all polymer beads are equivalent, the adjacency vector ai 2 R100 serves as
the sole node feature for each polymer bead. Elements of this vector are
defined such that ai = 1 if node i is connected to the current node, and
ai = 0 otherwise. All bonds are also equivalent, and so edge features are
not included in the representation. Polymers are also characterized by an
11-dimensional topological descriptor vector t 2 R11 as previously
described. For the task of polymer reconstruction, an adjacency matrix
A 2 R100× 100 is associated with each polymer, where Aij = 1 indicates an
edge between nodes i and j, andAij = 0 indicates no edge. For the auxiliary
regression task, each polymer is associated with a label for hR2

gi, denoted
yr 2 R. For the auxiliary classification task, each polymer is associated
with a one-hot encoded topology label, denoted yt 2 R6. The dataset of
1342 polymers is divided into three subsets: 858 for training (64%), 215
for validation (16%), and 269 for testing (20%). Stratified splitting is used
to ensure each subset represents all polymer topologies. The training set is
utilized to train the VAE, the validation set for hyperparameter optimi-
zation, and the test set to evaluate the model generalizability.

Model architectures. Overall, we explore three distinct encoder archi-
tectures while maintaining a uniform decoder architecture. The first
model, designated as TopoGNN, combines a graph encoder with a
topological descriptor encoder, thus operating as a multi-input model.
The second model, GNN, exclusively employs the graph encoder. The
third model, Topo, relies solely on the topological descriptor encoder.
The architecture of the VAE for TopGNN is depicted in Fig. 8. The
encoder transforms input data into a latent space representation. Graph
inputs are represented using an adjacency matrix A 2 R100× 100 and a
node feature matrix X 2 R100× 100, with the adjacency vector serving as
the node feature due to identical nodes. The Graph Isomorphism

Network encoder85, equipped with two graph convolutional layers, maps
these inputs into a 32-dimensional feature vector hg. Despite its shallow
architecture and narrow receptive fields, GIN has demonstrated robust
performance across a range of tasks in materials science and
chemistry86,87. The topological descriptor vector is similarly converted
into a 32-dimensional feature vector ht by a dense neural network (DNN)
encoder. Subsequently, the feature vectors hg and ht are concatenated to
yield a combined feature vector h 2 R64. Additional dense layers gen-
erate the parameters of the latent Gaussian distribution: the mean μ and
the logarithm of variance log σ2. These parameters define the latent space
embedding z∼N ðμ; σÞ, which has a dimensionality of 8. The decoder
then samples from z to reconstruct data. A convolutional neural network
is used to reconstruct the adjacency matrix Â. Additionally, two addi-
tional and distinct neural networks are tasked with predicting ŷr and ŷt.
We note that the present approach does not enforce symmetry of the
reconstructed adjacency matrix during training, similar to the approach
of prior work using VAE to generate conjugated peptides57. However,
symmetry is enforced during the polymer graph reconstruction and
generation process by selecting Âsym ¼ maxijfÂij; Â

T
ij g.

Loss functions. Training of the VAE uses a composite loss function
LVAE

LVAE ¼ LRec þ LKL þ λRegLReg þ λClsLCls; ð10Þ

which features terms associated with reconstruction, LRec via binary cross-
entropy (BCE); Kullback-Leibler (KL) divergence, LKL; regression for

Fig. 8 | Architecture of the variational autoencoder (VAE) for TopGNN. The
model compresses information from the graph and topological descriptors. These
two sets of compressed features are then concatenated and passed to the latent space,
where the model learns a normal distribution characterized by parameters μ and σ.
Subsequently, samples drawn from this distribution are used by the decoder to
reconstruct the adjacency matrix of the input graph. Additionally, the same samples
are used in two auxiliary tasks: predicting the radius of gyration and classifying the
topology. The numbers in the parentheses indicates the size of the layer.

https://doi.org/10.1038/s41524-024-01328-0 Article

npj Computational Materials |          (2024) 10:139 9



yrLReg; and classification for yt via cross-entropy (CE),LCls. In Eq. (10), λReg
and λCls are hyperparameter weights that are adjustable for optimizing
performance. The individual loss terms are defined as follows:

LRec ¼ BCEðA; ÂÞ

¼ �P100
i¼1

P100
j¼1

AijlogðÂijÞ þ ð1� AijÞlogð1� ÂijÞ;
ð11Þ

LKL ¼ DKLðz jjN ð0; IÞÞ

¼ � 1
2

X8
i¼1

ð1þ logðσ2i Þ � σ2i � μ2i Þ;
ð12Þ

LReg ¼ MAEðyr; ŷrÞ
¼ jyr � ŷrj;

ð13Þ

LCls ¼ CEðyt; ŷtÞ

¼ �P6
i¼1

yt;i logðŷt;iÞ:
ð14Þ

Model training and hyperparameter tuning. All models are imple-
mented using TensorFlow88. Models undergo training for 1000 epochs
with theAdamoptimizer89. A broad range of hyperparameters is explored,
encompassing batch sizes {32, 64, 128}, learning rates
{0.0001, 0.001, 0.01}, and regularization terms λReg∈ {0.01, 0.1, 1, 10, 100}
and λCls∈ {0.01, 0.1, 1, 10, 100}. Criteria for model weight saving include
overall validation loss, Evidence Lower Bound (ELBO), and reconstruc-
tion balanced accuracy. Across three encoder types, this approach results
in 2025 distinct hyperparameter combinations. For each encoder type, the
optimal hyperparameter configuration is selected based on a composite
validation metric that combines several key performance indicators:
reconstruction balanced accuracy (BACC), KL divergence, hR2

gi regres-
sion R2 value, and the topology classification F1 score.

These metrics are min-max normalized

�a ¼ a�minðaÞ
maxðaÞ �minðaÞ ð15Þ

and consolidated into a four-dimensional vector as

v ¼ 1� BACC;KL; 1� R2; 1� F1

h i
: ð16Þ

Subsequently, the optimal hyperparameter configuration is determined as
that nearest to the origin (0, 0, 0, 0). Since hyperparameter optimization
does not involve updating model weights, compared to abstract loss func-
tions, these metrics are more interpretable and directly related to our
objectives, such as improving reconstruction, prediction accuracy, and
model generalization.

Randompolymer generation. To generate random polymer topologies,
points are sampled from a predefined latent distribution, and the resul-
tant latent vector, zgen, is transformed into an adjacency matrix, Agen.
Each element inAgen indicates the connectivity between nodes. To avoid
spurious and unphysical edge-formation or other errors during recon-
struction, generated polymers then undergo a graph-cleansing step. This
step principally removes isolated nodes and breaks small rings. Because
this modifies the original adjacency matrix, we implement a validation
protocol, which is fully described in Supplementary Discussion Section 3.
Briefly, the cleansed graph and its recalculated topological descriptors are
re-encoded to derive updated values for hR2

gi and topology class. Cleansed
graphs are considered valid if they satisfy three criteria. First, the dif-
ference in hR2

gi values before and after cleansing is less than 2 σ2. Second,
the topology classification is unchanged. Third, the mean squared

difference between the pre- and post-cleansing latent vectors is less than
1. These criteria preserve the inherent properties of the generated
polymers.

Polymer generationwith target properties. To generate polymers with
specific target properties, namely hR2

gi and topology, “parent” polymers
that exhibit these desired characteristics are first identified from the
original dataset. The criterion for hR2

gi is relaxed to allow a tolerance range
of ± 2 around the target value. Points are then sampled near the latent-
space vectors of the parent polymers by introducing Gaussian noise with
amean of 0 and a variance of 0.1. The hR2

gi and topology of each generated
candidate polymer is then predicted using the trained ML model. Can-
didates that do not exhibit target topology or deviate in hR2

gi bymore than
2 σ2 are discarded. Following this initial screening, polymer graphs
undergo cleansing as previously described, except that hR2

gi of candidates
must more stringently remain within 2 σ2 of both the initial target and
pre-cleansing values. Subsequently, non-distinct graphs, either dupli-
cated from the original dataset or already present within the generated
pool, are identified and removed through graph isomorphism checks.
Additional details are in the Supplementary Discussion Section 4. The
proportion of generated polymer graphs with target properties that
undergo graph cleansing and pass all validation checks is detailed in
Supplementary Table 1.

Latent-space visualization. The latent space is visualized using the
UniformManifold Approximation and Projection (UMAP) algorithm90.
The parameters follow that of prior work43, wherein the UMAP local
neighborhood size is fixed at 200, the minimum embedding distance
between points is set to 1, and the Euclidean distance metric is utilized in
feature space analysis. This results in a mapping from R8 to R2:
UMAP(z) = u, where z denotes a latent vector and u its corresponding
low-dimensional representation.

Diversity evaluation. To calculate the diversity of a set of polymer
topologies, each graph representation undergoes transformation into a
Laplacian spectrum, encapsulating all eigenvalues of the graph Laplacian
matrix. The Laplacian matrix is defined as the difference between the
adjacency matrix and the degree matrix of the graph. Diversity quanti-
fication employs the Vendi Score (VS)91, defined as:

VSðKÞ ¼ exp �
Xn
i¼1

λi log λi

 !
; ð17Þ

where λi represents the eigenvalues of the matrix K/n, with the convention
0 log 0 ¼ 0. The similarity function in use is the dot product between
normalized Laplacian spectra, denoted asX 2 Rn× 100, with 100 indicating
themaximum eigenvalue count. For spectral vectors shorter than 100, zero-
padding ensures length standardization. For reference, the minimum VS
value is unity.

Data availability
The data associated with this study are publicly accessible at https://doi.org/
10.5281/zenodo.10672434.

Code availability
The code associated with this study is publicly accessible at https://github.
com/webbtheosim/poly-topoGNN-vae.
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