Table 1 Summary of the 60 error metrics, their corresponding benchmarks, and the fractions of MLIP models that meet the benchmarks

From: Learning from models: high-dimensional analyses on the performance of machine learning interatomic potentials

Category

Configuration/dataset

Error metrics

Benchmark

The fraction of MLIP models achieving the benchmark (%)

Defect formation energy, EfDefect

Vacancy

\(\delta {E}_{{\rm{f}}}^{{\rm{vacancy}}}\)

0.1 eV (handpicked)

3.7

Split-<110> interstitial

\(\delta {E}_{{\rm{f}}}^{{\rm{split}}- < 110 > }\)

0.1 eV (handpicked)

5.0

Tetrahedral interstitial

\(\delta {E}_{{\rm{f}}}^{{\rm{tetrahedral}}}\)

0.1 eV (handpicked)

2.8

Hexagonal interstitial

\(\delta {E}_{{\rm{f}}}^{{\rm{hexagonal}}}\)

0.1 eV (handpicked)

4.4

Elastic constants

Supercell with 64 atoms

\(\delta {C}_{11}^{{\rm{supercell}}}\)

1.4 GPa (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}2}\))

2.0

\(\delta {C}_{12}^{{\rm{supercell}}}\)

4.0 GPa (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}2}\))

8.5

\(\delta {C}_{44}^{{\rm{supercell}}}\)

3.4 GPa (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}2}\))

8.3

Bulk modulus, \(\delta {K}^{{\rm{supercell}}}\)

3.2 GPa (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}2}\))

7.3

Vacancy

\(\delta {C}_{11}^{{\rm{vacancy}}}\)

492 GPa (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}2}\))

77.9

\(\delta {C}_{12}^{{\rm{vacancy}}}\)

251 GPa (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}2}\))

76.0

\(\delta {C}_{44}^{{\rm{vacancy}}}\)

84 GPa (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}2}\))

75.1

\(\delta {K}^{{\rm{vacancy}}}\)

3.8 GPa (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}2}\))

9.3

Split-<110> interstitial

\(\delta {C}_{11}^{{\rm{split}}- < 110 > }\)

3.2 GPa (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}2}\))

7.0

\(\delta {C}_{12}^{{\rm{split}}- < 110 > }\)

4.9 GPa (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}2}\))

12.7

\(\delta {C}_{44}^{{\rm{split}}- < 110 > }\)

0.7 GPa (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}2}\))

3.2

\(\delta {K}^{{\rm{split}}- < 110 > }\)

2.1 GPa (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}2}\))

7.0

Tetrahedral interstitial

\(\delta {C}_{11}^{{\rm{tetrahedral}}}\)

21 GPa (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}2}\))

27.1

\(\delta {C}_{12}^{{\rm{tetrahedral}}}\)

20 GPa (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}2}\))

40.7

\(\delta {C}_{44}^{{\rm{tetrahedral}}}\)

26 GPa (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}2}\))

21.9

\(\delta {K}^{{\rm{tetrahedral}}}\)

5.8 GPa (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}2}\))

16.3

Hexagonal interstitial

\(\delta {C}_{11}^{{\rm{hexagonal}}}\)

0.5 GPa (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}2}\))

1.0

\(\delta {C}_{12}^{{\rm{hexagonal}}}\)

4.4 GPa (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}2}\))

12.0

\(\delta {C}_{44}^{{\rm{hexagonal}}}\)

3.0 GPa (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}2}\))

9.1

\(\delta {K}^{{\rm{hexagonal}}}\)

2.8 GPa (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}2}\))

8.2

Lattice parameter

Unit cell with 8 atoms

\(\delta {a}^{{\rm{unit\; cell}}}\)

0.16 Å (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

98.2

Supercell with 64 atoms

\(\delta {a}^{{\rm{supercell}}}\)

0.03 Å (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

61.0

Vacancy

\(\delta {a}^{{\rm{vacancy}}}\)

0.05 Å (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

67.6

Split-<110> interstitial

\(\delta {a}^{{\rm{split}}- < 110 > }\)

0.04 Å (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

46.7

Tetrahedral interstitial

\(\delta {a}^{{\rm{tetrahedral}}}\)

0.02 Å (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

32.0

Hexagonal interstitial

\(\delta {a}^{{\rm{hexagonal}}}\)

0.03 Å (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

38.9

Energy rankings of multiple defects

Ranking dataset \({\mathcal{D}}\)1: 2-vacancies in supercells with 214 atoms

Ranking error rates, \({P}_{{\rm{ranking\; error}}}^{{\mathcal{D}}1}\)

7.6% (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

0.1

Mean \(\Delta E\)DFT of ranking errors, Mean \({\Delta E}_{{\rm{DFT}}}^{{\mathcal{D}}1}\)

16 meV (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

0.0

Max \(\Delta E\)DFT of ranking errors, Maximum \({\Delta E}_{{\rm{DFT}}}^{{\mathcal{D}}1}\)

54 meV (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

0.1

Ranking dataset \({\mathcal{D}}\)2: 3-vacancies in supercells with 141 atoms

\({P}_{{\rm{ranking\; error}}}^{{\mathcal{D}}2}\)

7.4% (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

0.2

Mean \({\Delta E}_{{\rm{DFT}}}^{{\mathcal{D}}2}\)

26 meV (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

0.0

Maximum \({\Delta E}_{{\rm{DFT}}}^{{\mathcal{D}}2}\)

67 meV (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

0.0

Ranking dataset \({\mathcal{D}}\)3: 3-vacancies in supercells with 93 atoms

\({P}_{{\rm{ranking\; error}}}^{{\mathcal{D}}3}\)

9.9% (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

0.0

Mean \({\Delta E}_{{\rm{DFT}}}^{{\mathcal{D}}3}\)

78 meV (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

0.0

Maximum \({\Delta E}_{{\rm{DFT}}}^{{\mathcal{D}}3}\)

263 meV (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

0.0

Ranking dataset \({\mathcal{D}}\)4:3-vacancies in supercells with 61 atoms

\({P}_{{\rm{ranking\; error}}}^{{\mathcal{D}}4}\)

5.5% (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

0.1

Mean \({\Delta E}_{{\rm{DFT}}}^{{\mathcal{D}}4}\)

69 meV (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

0.0

Maximum \({\Delta E}_{{\rm{DFT}}}^{{\mathcal{D}}4}\)

240 meV (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

0.0

Rare events (REs)

\({{\mathcal{D}}}^{{\rm{RE}}-{\rm{I}}}\) Testing data of 100 interstitial configurations containing REs in ref. 8

Directional error of forces, \(\Delta {NAC}({{\rm{\delta }}}_{{\rm{\theta }}},{{\mathcal{D}}}^{{\rm{RE}}-{\rm{I}}})\)

0.22 (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

4.8

Magnitude error of forces, \(\Delta {NAC}({|\delta }_{{\rm{F}}}|,{{\mathcal{D}}}^{{\rm{RE}}-{\rm{I}}})\)

0.20 (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

3.8

\({{\mathcal{D}}}^{{\rm{RE}}-{\rm{V}}}\) Testing data of 100 vacancy configurations containing REs in ref. 8

\(\Delta {NAC}({{\rm{\delta }}}_{{\rm{\theta }}},{{\mathcal{D}}}^{{\rm{RE}}-{\rm{V}}})\)

0.15 (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

15.7

\(\Delta {NAC}({\rm{|}}{\delta }_{{\rm{F}}}|,{{\mathcal{D}}}^{{\rm{RE}}-{\rm{V}}})\)

0.13 (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

12.7

\({{\mathcal{D}}}^{{\rm{RE}}-{\rm{I}}}\)

\({\sigma }_{{\rm{E}}}^{{\rm{RE}}-{\rm{I}}}\)

15 meV atom−1 (handpicked)

85.8

\({\sigma }_{{\rm{F}}}^{{\rm{RE}}-{\rm{I}}}\)

0.25 eV Å−1 (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

3.7

\({{\mathcal{D}}}^{{\rm{RE}}-{\rm{V}}}\)

\({\sigma }_{{\rm{E}}}^{{\rm{RE}}-{\rm{V}}}\)

15 meV atom−1 (handpicked)

85.7

\({\sigma }_{{\rm{F}}}^{{\rm{RE}}-{\rm{V}}}\)

0.17 eV Å−1 (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

11.7

Energy and force errors, E & F RMSEs

\({{\mathcal{D}}}^{{\rm{enhanced}}-{\rm{I}}}\) Training data from ref. 8 having interstitial REs

\({\sigma }_{{\rm{E}}}^{{\rm{enhanced}}-{\rm{I}}}\)

15 meV atom−1 (handpicked)

58.8

\({\sigma }_{{\rm{F}}}^{{\rm{enhanced}}-{\rm{I}}}\)

0.12 eV Å−1 (handpicked)

15.5

\({{\mathcal{D}}}^{{\rm{enhanced}}-{\rm{V}}}\) Training data from ref. 8 having vacancy REs

\({\sigma }_{{\rm{E}}}^{{\rm{enhanced}}-{\rm{V}}}\)

15 meV atom−1 (handpicked)

60.8

\({\sigma }_{{\rm{F}}}^{{\rm{enhanced}}-{\rm{V}}}\)

0.12 eV Å−1 (handpicked)

17.1

Thermal properties

Bulk: unit cell with 8 atoms

Free energy, \(\delta {E}_{{\rm{free}}}^{{\rm{bulk}}}(T)\)

0.25 (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

18.3

Entropy, \(\delta {S}^{{\rm{bulk}}}(T)\)

0.33 (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

14.5

Heat capacity, \(\delta {c}^{{\rm{bulk}}}(T)\)

0.12 (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

16.6

Vacancy

\(\delta {E}_{{\rm{free}}}^{{\rm{vacancy}}}(T)\)

39 (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

60.7

\(\delta {S}^{{\rm{vacancy}}}(T)\)

92 (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

68.2

\(\delta {c}^{{\rm{vacancy}}}(T)\)

41 (\({\Delta }_{{\rm{DFT}}}^{{\rm{K}}1{\rm{to\; K}}4}\))

72.2

  1. The fractions of the challenging properties (i.e., < 15%) are bolded. (See Methods for the ‘handpicked’).