Fig. 7: 2D projections of the 4D plastic strain—pressure trajectories for the model with parameters \({{\boldsymbol{\delta }}}_{{\bf{1}}}={{\boldsymbol{\delta }}}_{{\bf{3}}}={\bf{0}},{{\boldsymbol{\delta }}}_{{\bf{2}}}={\bf{0}}{\boldsymbol{.}}{\bf{803}}\), \({\boldsymbol{k}}={\bf{5}}{\boldsymbol{.}}{\bf{20}}\), and \({{\boldsymbol{p}}}_{{\boldsymbol{\varepsilon }}}^{{\boldsymbol{d}}}={\bf{2}}{\boldsymbol{.}}{\bf{65}}{\boldsymbol{-}}\left({{\boldsymbol{q}}}_{{\bf{0}}}{\boldsymbol{-}}{\bf{0}}{\boldsymbol{.}}{\bf{42}}\right)\) in the kinetic equation.

a Cross-section of the sample showing the positions of the material points in the undeformed configuration. The coordinates of the material points are: #1(0, 82.5); #2(0, 0); #3(11.3, 42.1); #4(29.2, 45.5); #5(54.1, 82.5); #6(37.8, 0.0); #7(52.3, 66.5); #8(57.2, 40.2); #9(93, 82.5); #10(76.2, 0.0). The units are in \({\rm{\mu }}m\). Shear \({E}_{{rz}}^{p}\) vs. radial \({E}_{{rr}}^{p}\) and axial \({E}_{{zz}}^{p}\) vs. radial \({E}_{{rr}}^{p}\) plastic strain trajectories for various material points with superposed pressure \(p\) evolution (in GPa) (b, c) from the start of PT to the end of PT (d, e) from the end of PT to the end of loading for various material points in Fig. 7a.