Fig. 9: Distributions of various fields in a sample for the case with parameters \({{\boldsymbol{\delta }}}_{{\boldsymbol{1}}}={{\boldsymbol{\delta }}}_{{\boldsymbol{3}}}={\boldsymbol{0}},{{\boldsymbol{\delta }}}_{{\boldsymbol{2}}}={{0.803}},\) \({\boldsymbol{k}}={{5.20}}\), and \({{\boldsymbol{p}}}_{{\boldsymbol{\varepsilon }}}^{{\boldsymbol{d}}}={\bf{2.65}}-({{\boldsymbol{q}}}_{{\bf{0}}}-{\bf{0.42}})\) in the kinetic equation. | npj Computational Materials

Fig. 9: Distributions of various fields in a sample for the case with parameters \({{\boldsymbol{\delta }}}_{{\boldsymbol{1}}}={{\boldsymbol{\delta }}}_{{\boldsymbol{3}}}={\boldsymbol{0}},{{\boldsymbol{\delta }}}_{{\boldsymbol{2}}}={{0.803}},\) \({\boldsymbol{k}}={{5.20}}\), and \({{\boldsymbol{p}}}_{{\boldsymbol{\varepsilon }}}^{{\boldsymbol{d}}}={\bf{2.65}}-({{\boldsymbol{q}}}_{{\bf{0}}}-{\bf{0.42}})\) in the kinetic equation.

From: Quantitative kinetic rules for plastic strain-induced α - ω phase transformation in Zr under high pressure

Fig. 9

ac Fields of volume fraction of \({\rm{\omega }}\)-Zr \(c\), accumulated plastic strain \(q\), pressure \(p\) for three loadings characterized by \({\bar{p}}_{\max }\). df Fields of components of Lagrangian plastic strains for three loadings characterized by \({\bar{p}}_{\max }\).

Back to article page