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Accurate piezoelectric tensor prediction
with equivariant attention tensor graph
neural network
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The piezoelectric materials enable the mutual conversion between mechanical and electrical energy,
which drive a multi-billion dollar industry through their applications as sensors, actuators, and energy
harvesters. The third-rank piezoelectric tensor is the corematrices for piezoelectricmaterials and their
devices.However, the highcostsof obtaining full piezoelectric tensor data through either experimental
or computational methods make a significant challenge. Here, we propose an equivariant attention
tensor graph neural network (EATGNN) that can identify crystal symmetry and remain independent of
the reference frame, ultimately enabling the accurate prediction of the complete third-rank
piezoelectric tensor. Especially, we perform an irreducible decomposition of the piezoelectric tensor
into four irreducible representations to efficiently reserve the symmetry under group transformation
operations. Our results further demonstrate that this model performs well in both bulk and two-
dimensional materials. Finally, combining EATGNN with first-principles calculations, we discovered
several potential high-performance piezoelectric materials.

The absence of inversion symmetry and non-conductor are necessary for
generating a large piezoelectric effect. The piezoelectric tensor describes the
change in electric polarization induced by mechanical stress or strain, or
conversely, the change in stress or strain inducedby an external electricfield.
Many bulk piezoelectric materials have been extensively investigated and
applied, such as quartz, Rochelle salt, barium titanate, and lead zirconate
titanate (PZT)1. Those piezoelectric materials drive a multi-billion dollar
industry through their applications as sensors, actuators, and energy har-
vesters. Recently, discovery of lead-free and high-performance piezoelectric
materials has attracted great attention for next generation eco-friendly and
efficient devices.

Conventional discovery of new piezoelectric materials has relied on
experimental efforts and density functional theory (DFT) calculations. The
former often requires substantial time for experimental synthesis processes,
while the latter demands increasingly vast computational resources as the
system size grows, especially for the complicated calculations of three-rank
piezoelectric tensors. Recently, machine learning based on existing data has
emerged as a new paradigm in materials science research with largely
enhanced efficiency and reduced resource demand. It has achieved success
in predicting various material properties, such as band gaps2, crystal
structures3, free energies4, and dielectric constants5. Generally, there are two

classes of machine learning approaches in the materials field. Firstly,
methods based on feature descriptors, such as Matminer6, classical force-
field-inspired descriptors (CFID)7 have attained considerable success. These
methods generate feature descriptors for each specificmaterial and combine
them with traditional tree models or other models to predict material
properties. Theyoftenperformwell for scalar predictions and small datasets.
Secondly, graph neural networks (GNNs) play a crucial role in crystalline
materials, with representatives like CGCNN8 and ALIGNN9 mapping
crystal structures to crystal graphs for neural network training, displaying
decent performance in predicting most material properties, albeit typically
requiring large datasets for training. To improve the model performance,
several advanced techniques from the field of machine learning, such as
equivariance, multi-head attention mechanisms and layer normalization10,
have been introduced into materials science research.

Recently, several efforts are trying to predict the piezoelectric constants
and piezoelectric tensors of crystals, employing conventional machine
learning or invariant scalar graph neural networks11–13. However, predicting
the full piezoelectric tensor, rather than a single piezoelectric component,
offers a more comprehensive understanding of a material’s piezoelectric
properties. The full tensor provides crucial information about longitudinal,
transverse, and shear piezoelectric effects, enabling the accurate description
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of material responses in all crystallographic directions. Additionally, the
signs of different tensor components carry important physical significance.
For example, when the longitudinal and transverse components share the
same sign, the material may exhibit the electric auxetic effect14, where an
electric field induces simultaneous expansion or contraction in all direc-
tions. The piezoelectric tensor is typically represented as a 3 × 6 matrix due
to index symmetry15, which is highly dependent on the choice of coordinate
system and crystal symmetry. The conventional invariant scalar models are
hard to capture the relationship between crystal symmetry and target tensor,
as they are not designed to handle the directional and symmetry-related
characteristics of tensors.

To address the limitations of traditional invariant models, equivariant
neural networks, which incorporate spatial rotational symmetry, have been
proposed and have demonstrated a significant impact in various domains of
physical property prediction10,16–19. Different from its invariant counterpart,
the equivariant model is independent of the reference frame and can pre-
serve material symmetry under the rotational operation. Thus, the equiv-
ariant models can inherently identify materials with inversion symmetry
and produce piezoelectric components where all elements are zero. Fur-
thermore, these models accurately generate piezoelectric tensors that con-
formto the symmetryoperationsof various spacegroups18.While, achieving
such outcomes with conventional non-equivariant machine learning
models is challenging, it requires data augmentation to approximate this
process. Therefore, employing equivariant models for machine learning of
piezoelectric tensors is highly suitable.

In this work, we propose a tensor equivariant attention tensor graph
neural network (EATGNN) that incorporates multi-head attention
mechanisms and layer normalization into the equivariant graph neural
network10,17,20. EATGNN is equivariant to rotation transformations of the
crystal structure in order to predict the complete piezoelectric tensor of both
two-dimensional (2D)materials and bulk crystals. The output of thismodel
is independent of the reference frame, so the choice of any reference frame

does not affect the model’s results. Moreover, the model can intrinsically
capture the symmetry of the material, which is reflected in the output
piezoelectric tensor, thereby preserving thematerial’s symmetry. Compared
to the previously developed equivariant neural network for predicting the
bulk tensor property18,21, our model incorporates multi-head attention
mechanisms and enhanced encoding of atomic attributes. These enhance-
ments strengthen the learning capabilities of the equivariant model,
resulting in improved performance in learning piezoelectric tensors. Besides
the superb performance for bulk crystals, our model is also in good pre-
diction in low-dimensionalmaterials. This work holds great significance for
accurately predicting piezoelectric tensor and identifying more potential
high-performance piezoelectric materials.

Results
Equivariant attention tensor graph neural network
EATGNNcan establish the relationship between crystal structures and their
properties. The architecture and specific details of EATGNN are shown in
Fig. 1. It takes the crystal structure as input22, represents it as a crystal graph
GðV; EÞ, and utilizes message passing andmulti-head attentionmechanism
to update the graph across multiple graph attention layers. Ultimately, the
model outputs the piezoelectric tensor in its irreducible representation,
which is then post-processed to obtain the target piezoelectric tensor.

The crystal graph GðV; EÞ is composed of nodes and edges, where the
nodes represent atoms, and edges represent atomic bonds. The feature
vector f i characterizes atom i, and the initial value of f i is obtained by
Magpie23,24 which describes the physical properties of an atomusing a vector
that contains 21 atomic physical attributes, including atomic weight,
covalent radius, electronegativity, group number, period number, and other
information. We then perform one-hot encoding on these 21 atomic
attribute values, resulting in a 119-dimensional vector to represent the
nodes’ attributes and initial features25. A cutoff radius rcut varies for different
unit cell sizes to better capture the full symmetry of the crystal, and edges are

Fig. 1 | Schematic overview of EATGNN. The
model converts the input crystal structure into a
graph representation, which is then processed by an
equivariant graph attention neural network to pre-
dict the piezoelectric tensor as the output. In this
figure, “�” denotes addition, “�” denotes multi-
plication, and “TP” means tensor product.
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created to connect atoms within the cutoff radius, considering the periodic
boundary conditions during the search for neighboring atoms. For the edge
embedding, it is processed in two parts: first, the radial component jj~rijjj is
expandedusing a smooth-finite basis functions,where~rij is a vector between
atoms i and j, and the angular component~̂rij is expanded using spherical
harmonics Ym

l .
GNNs typically update information through a message-passing

mechanism.

f 0i ¼
X
j2∂ðiÞ

f j � hðjj~rijjjÞY
~rij
jj~rijjj
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; ð1Þ
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Equation (1) represents a general message-passing formula for equiv-
ariant graphneural networks,where f j, f

0
i are the nodes input and output, ∂ðiÞ

is the set of average neighbors of the atom i in the training dataset,~rij is the
relative vector, h is a MLP with distance between atoms as input, Y is the
spherical harmonics and x � y is tensor product of x and y parametrized by
some weights w10,18, the tensor product � is defined in Eq. (2), where C
denotes the Clebsch-Gordan coefficients. Equation (6) is an equivariant
function, so if the input is rotated, the output is transformed accordingly.
Unlike traditional GNNs, the atomic features in EATGNN include not only
scalars but also higher-order irreps tensors, which enhances the model’s
generalizationcapabilities andallows it toachievebetter resultswith lessdata18.

In thiswork,we replace this summationprocess inEq. (1)with amulti-
head attention mechanism. The attention mechanism transforms features
sent from one node to another with input-dependent weights10, and
enhances themodel’s ability to update informationof the node andgraphby
leveraging the neighbors of each node. We perform a tensor product of the
node features and node attributes to obtain the query (qi), and a tensor
product of the node features and edge attributes to obtain the key (ki) and
value (vi) required for the attention mechanism computation. Then, the qi,
ki and vi are each split according to the number of heads10, then, for each
head, we obtain the respective qim, kim and vim. And then calculate the
attention coefficientsαijm, which are definedbyEq. (3), the calculation of the
output for node features f 0im is shown as in Eq. (4) and concatenate the
representations from all heads back together17. Afterward, the node features
are subjected to nonlinear activation and equivariant layer normalization10.
Before the model outputs the target quantity, an average pooling is per-
formed across all nodes, since our target physical quantity, the piezoelectric
tensor, is independent of the number of atoms in the unit cell.

αijm ¼
exp qim � kjm
� �

Pn
j0¼1 expðqim � kj0mÞ

ð3Þ

f 0im ¼
Xn
j¼1

αijmvjm ð4Þ

In summary, EATGNN can be considered as an equivariant function
to the group transformation, such that:

Dy g
� �

f xð Þ ¼ f Dx g
� �

x
� �

; ð5Þ

where DxðgÞ and Dy g
� �

are the transformation matrices for the crystal
structure and the piezoelectric tensor, respectively. Equation (5) ensures the
model’s capability for equivariant recognition, accommodating the sym-
metry operations of major space groups and outputting a piezoelectric
tensor that conforms to the material’s intrinsic symmetry. Under these
symmetry constraints, many components of the piezoelectric tensor are
restricted, thereby significantly enhancing the model’s predictive accuracy
for piezoelectric tensors.

Irreducible representation of piezoelectric tensor
The piezoelectric tensor eijk is a third-rank tensor, with a total of 27 com-
ponents, and it satisfies the index symmetry relation eijk ¼ eikj. Therefore,
there are a total of 18 independent components for a piezoelectric tensor.
The intrinsic symmetry requirements of materials further restrict the
number of independent components in the piezoelectric tensor (Fig. 2a). It
is worth noting that the specific representation of the third-rank piezo-
electric tensor depends on the choice of the coordinate axes. Thus, the
rotation of the reference coordinate axes will change the values of tensor
elements. The piezoelectric component varies with the rotation of the
coordinate axes, as follows:

e�ijk ¼ AilAjmAknelmn; ð6Þ

where Ail are the elements of the rotation matrix corresponding to the two
coordinate axes26. Therefore, when we know the piezoelectric tensor in one
coordinate system, the formula can be used to find the representation of the
piezoelectric tensor in any other coordinate system. Due to the constraints
imposed by the intrinsic symmetry of the crystals and in conjunction with
Eq. (6), we obtain the distribution of independent elements in the piezo-
electric tensors across all crystal systems and point groups, as illustrated in
Fig. 2a. Nevertheless, the numerical values of the final piezoelectric tensor
matrix still depend on the choice of coordinate system and cannot be
directly expressed in an equivariant form with respect to the crystal
structure.

To address this issue, we performed a harmonic decomposition of the
piezoelectric tensor27. Then, the space of piezoelectric tensors is factored into
the direct sumof irreducible representations. The piezoelectric tensor can be
decomposed into four irreducible subspaces:

Piez ! H3 �H1 �H2 �H1 ð7Þ

whereHn is the space of nth order symmetric and traceless tensors28, and a
symmetric and traceless tensor is called a deviator. For example, scaler and
vector are zeroth- and first-order deviator. The piezoelectric tensor eijk has
the orthogonal irreducible decomposition27,29:

eijk ¼ δjkui þ δijvk þ δikvj �
2
3
δjkvi

� �
þ ϵiksDsj þ ϵijsDsk

� �
þ Dijk

ð8Þ
where u ¼ ðuiÞ and v ¼ ðvjÞ is a vector with three independent compo-
nents,D ¼ ðDijÞ is a second order symmetric and traceless tensor with five
independent components, Dijk is a third order symmetric and traceless
tensor with seven independent components, ϵijk is the Levi-Civita symbol
and δij is the Kronecker delta27–29, as shown in Fig. 2b. In Eq. (8), each
component of the decomposed piezoelectric tensor is equivariant to
rotational operations. This decomposition provides a powerful framework
for physically understanding the piezoelectric behavior of various materials
based on the contributions from these irreducible subspaces.

With the irreducible representation of the piezoelectric tensor, we now
canovercome the challenges in previous reports11–13,18 posed by the choice of
coordinate system in the prediction of piezoelectric tensors. Therefore, by
combining the irreducible representation of the piezoelectric tensor and the
multi-head attentionmechanismwith an equivariantmodel, we can achieve
highly accurate AI model for predicting the piezoelectric tensor of crystals.
This significantly accelerates the discovery of new and high-performance
piezoelectric materials and devices.

Piezoelectric tensor machine learning for bulk crystals
The piezoelectric tensor data of bulk crystals in thisworkwas obtained from
the Materials Project21 and a recent high-throughput computational study
on piezoelectric tensors24,30. Due to the presence of a significant number of
outliers in the piezoelectric tensors, we performed data resampling before
applying machine learning techniques to prevent overfitting. Additionally,
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werestricted thematerials used in thiswork to aunit cell containingnomore
than 25 atoms to ensure a reasonable distribution of data. We examined all
materials dataset to ensure that the target piezoelectric tensors are consistent
with the material’s symmetry. Furthermore, we mathematically adjusted
those piezoelectric tensors that did not conform to the material’s symmetry
to be invariant under crystallographic symmetry operations. Ultimately, we
obtained a dataset comprising 3444 entries, and these data were randomly
divided into training and test sets in a 9:1 ratio.

Figure 3a shows the distribution of the absolute values of themaximum
piezoelectric components in the dataset after resampling. TheMAE of each
piezoelectric tensor element in Voigt notation is displayed in Fig. 3b using a
heatmap. Unlike other models about piezoelectric tensor prediction,
EATGNN can directly predict complete piezoelectric tensors that conform
to crystal symmetries, and each tensor element exhibits relatively small
errors. Utilizing the complete piezoelectric tensor allows for the determi-
nation of themaximumpiezoelectric components, including themaximum
longitudinal, transverse, and shear piezoelectric effects. Furthermore, the
Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE)
of EATGNN on the test set are 0.154 C/m2 and 0.141 C/m2, respectively.

Table 1 compares the performance of EATGNNwith the equivariantmodel
MatTen18, the invariantmodel ALIGNN, and the invariant model based on
CFID descriptors combined with XGBoost (XGB)31. It can be observed that
EATGNN outperforms the other models in both MAE and RMSE. Addi-
tionally, we evaluated the impact of themulti-head attentionmechanismon
the learning capability of the equivariant model. The results in Table 1
indicate that incorporating this mechanism further enhances the model’s
predictive performance. This demonstrates the effectiveness of the multi-
head attention mechanism and harmonic decomposition of the tensor.

Piezoelectric tensor machine learning for 2D crystals
The high demand for flexible nanodevices drives interest in 2D piezoelectric
materials, essential for precision actuators, wearable sensors, and smart
materials. These materials serve as nano-generators, offering a practical
alternative to micro-scale battery packs for powering nanoscale devices. In
contrast to bulk systems, the periodicity along the c-direction in 2Dmaterials
is lost, and consequently the 2D piezoelectric tensor can be further simplified
to a 3 × 3 matrix32. Therefore, there has not been any reported machine
learningmodels to predict piezoelectric tensors for both bulk and 2Dcrystals.
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Fig. 2 | Schematic of piezoelectric tensor. a Symmetry classes and independent components of the piezoelectric tensor in each crystal system and point group. b Irreducible
representation decomposition of the piezoelectric tensor.
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Next, we will prove that our EATGNNmodel is also applicable for 2D
materials with good accuracy. The piezoelectric tensor data of 2D materials
was obtained from the C2DB database33,34, comprising a total of 1382 data
points, after analyzing and removing some extreme outliers to prevent the
model from learning an inaccurate data distribution, 1350 data points
were retained and randomly split into training and test sets with 9:1 ratio.
Figure 3c shows the distribution of the absolute values of the maximum
piezoelectric components in the dataset after resampling. EATGNN requires
that the output maintains equivariance when the input data undergoes a
group transformation. We first checked whether the piezoelectric tensors in
the dataset satisfy the symmetry of their corresponding crystal structures.
This was achieved by applying the crystal structure’s symmetry operations to
the tensor and checking if it remains invariant under these operations. If a
change occurred, we transformed the tensor into a symmetry-compliant

form that respects the lattice symmetry22. Generally, this operation can utilize
symmetry constraints to restrict certain tensor elements to zero.

EATGNN can output the full piezoelectric tensor, and the RMSE and
MAE are used to evaluate the performance of this model. the RMSE and
MAE of our model are 50.6 pC/m and 16.8 pC/m, respectively. Table 1
compares the performance of EATGNN on 2D materials with that of the
equivariantmodelMatTen, the invariantmodelALIGNN, and the invariant
model based on CFID descriptors combined with XGB, similar to the
comparisons performed for bulk models. It can be observed that EATGNN
outperforms the other models in both MAE and RMSE, with the incor-
poration of the multi-head attention mechanism further enhancing its
predictive capability.

We also computed several commonly used piezoelectric properties: the
maximumpiezoelectric component and longitudinal component, all taken as
absolute values (jeijjmax

and jeiijmax). Model performance on the test set is
shown in Fig. 3d and e. Additionally, we generate material descriptors using
CFID and train scalar models with XGB and Random Forests (RF)35 for
comparison. The results, shown in Table 2, indicate that for predicting the
highly symmetry-dependent physical quantity of the piezoelectric tensor,
EATGNN demonstrates a significant advantage over the descriptor-based
methods.

Table 1 | Performance of various models in predicting the
complete bulk piezoelectric tensor (C/m2) and 2D
piezoelectric tensor (pC/m)

Methods MAE RMSE

bulkeijk EATGNN (nhead = 2) 0.141 0.389

EATGNN (nhead = 1) 0.141 0.392

EATGNN (nhead = 0) 0.146 0.400

MatTen 0.190 0.479

ALIGNN 0.242 0.473

CFID+ XGB 0.172 0.422

2Deijk EATGNN (nhead = 2) 16.8 50.6

EATGNN (nhead = 1) 17.0 50.9

EATGNN (nhead = 0) 19.3 57.9

MatTen 24.0 69.3

ALIGNN 28.6 93.3

CFID+ XGB 31.9 99.8

Table 2 | Performance of various models in predicting the
maximum piezoelectric component (pC/m) and maximum
longitudinal piezoelectric component (pC/m)

Props r2 MAE PearsonR RMSE

jeij jmax
EATGNN 0.54 85.8 0.75 166.2

XGB 0.25 134.8 0.53 208.2

RF 0.34 136.5 0.59 196.9

longitudinal jeii jmax EATGNN 0.58 73.9 0.79 149.9

XGB 0.28 127.2 0.54 196.0

RF 0.33 130.1 0.58 188.7

Fig. 3 | Performance of EATGNN on various piezoelectric properties and the
distribution of dataset. aHistogram of the distribution of jeijjmax

for bulkmaterials.
b Heatmap of the MAE of the piezoelectric tensors for bulk materials in unit of
C=m2. cHistogram of the distribution of jeijjmax

for 2Dmaterials. d Regression plot
of the maximum piezoelectric component in 2D materials. e Regression plot of the
maximum longitudinal piezoelectric component in 2D materials. f The maximum

piezoelectric component of MoS2 under various rotations of the coordinate system,
the coincidence of the solid and dashed lines indicates that EATGNN satisfies
equivariance. The green curve represents themaximumpiezoelectric components of
the initial output piezoelectric tensor at various rotation angles, while the yellow
stars denote the maximum piezoelectric components output by EATGNN at
each angle.
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To ensure the model’s equivariance, we rotated the crystal structure
and anticipated that the predicted piezoelectric tensor would correspond-
ingly transform. Using Eq. (6), we calculated the piezoelectric tensor under
rotational operations at various angles and checked if it was consistent with

the model’s output. As shown in Fig. 3f, we calculated the maximum pie-
zoelectric component jeijjmax

of MoS2 under arbitrary in-plane rotations of
the coordinate system. Simultaneously, we rotate the crystal structure
accordingly, and employ the model to predict the corresponding rotated
piezoelectric tensor and its maximum piezoelectric component. By com-
paring the predicted and calculated values, we verify the equivariance of the
model as shown in Fig. 3f. The results demonstrate that the model predic-
tions perfectly match the actual calculations, confirming that this model is
indeed an equivariant model for piezoelectric tensor prediction.

Screening of crystals with large piezoelectricity
Inorder todiscovernewpotential high-performancepiezoelectricmaterials,
we use ourmodel on both 3D and 2Dmaterials in theMaterials Project and
2DMatPedia database36, respectively. Our selection criteria are 1) out of the
training datasets, 2) inversion asymmetry, 3) Egap > 0.1 eV, and 4) Nuc < 30
atoms. Using our model, we identify several good candidates (See in Tables
3 and 4 and Supplementary Material), which are further validated using
density functional perturbation theory (DFPT) calculations. As demon-
strated in Fig. 4a, the distribution of the maximum piezoelectric compo-
nents of these newly discovered bulk materials were obtained through first-
principles calculations. The results of one of the best piezoelectric materials,
CsBiNb2O7, is shown inFig. 4b,with its piezoelectric tensor components e22
and e26 being 2.01 and 2.72 C/m

2, respectively. The piezoelectric tensor can
be further decomposed into two parts: a clamped-ion term and internal
strain term37. One can observes that the total e22 is dominated by the large
internal strain term. However, the clamped-ion contribution is nearly zero.
Besides, since the piezoelectric tensor depends on the choice of coordinate
system, rotating the structure by 45 degrees around the z-axis can yield
larger piezoelectric tensor components e11 ¼ 3.14 C/m2. Based on this
property, a Z-45° cutting slice can be fabricated in experiments to achieve
greater longitudinal piezoelectric effect.

Discussion
In this work, we decomposed the piezoelectric tensors into irreducible
representations, enabling them to serve as learning targets for neural network.
Our EATGNN utilizing multi-head attention mechanism and layer normal-
ization, is constructed specifically formachine learning applications involving
piezoelectric tensors. From the predicted full piezoelectric tensor, various
piezoelectric performance metrics can be extracted, such as the maximum
piezoelectric component,maximumlongitudinal piezoelectric component.By
combining the model predictions with DFPT calculations, we screened both
bulk and 2Dmaterial databases and identified newmaterials exhibiting large
piezoelectric components which have never been reported before.

One of the key novelties in this work lies in the formulation of the
piezoelectric tensor prediction as an equivariant learning task, achieved
through the irreducible representation decomposition. This approach,
implemented via the equivariant graph attention neural network, captures
the relationship between the crystal structure and piezoelectric tensor,
respecting the inherent symmetries. Consequently, the model can identify
materials with inversion symmetric structures, which lack piezoelectric

Table 3 | A selection of potential bulk piezoelectric materials,
along with their Material Project IDs, formulas and
jeij jmaxðC=m2Þ calculated by DFT

Index Material Project ID Formula jeij jmaxðC=m2Þ
1 mp-1225870 Cs2 Ta2 S6 0.60131

2 mp-1228884 Cs2 H6 Se4 O12 1.89861

3 mp-1193046 Cs1 Mg1 As1 H12 O10 1.56463

4 mp-562854 Cs2 Nb4 Bi2 O14 2.71589

5 mp-761178 Cs1 Mg1 P1 H12 O10 0.99027

6 mp-18003 Cs4 Cu4 S16 1.36363

7 mp-559065 Na2 I6 O16 0.85699

8 mp-1220820 Na1 Bi3 Cl2 O4 3.33652

9 mp-1190416 Ba3 Zn3 Te1 P2 O14 0.44069

10 mp-1106270 Ba1 Pd1 I4 O12 1.26864

11 mp-769349 Ba1 Ta6 O16 3.52649

12 mp-1227901 Ba2 La2 Ga6 O14 0.49721

13 mp-1227883 Ba2 Na2 P2 O8 0.99182

14 mp-542832 Ba3 Lu4 O9 0.47071

15 mp-1228581 Ba4 Na2 W2 O11 1.44562

16 mp-861962 Ba1 Sb2 F12 0.40509

Table 4 | A selection of potential 2D piezoelectric materials,
along with their 2DMatPedia IDs, formulas and jeij jmaxðpC=mÞ
calculated by DFT

Index 2DMatPedia ID Formula jeij jmax
ðpC=mÞ

1 2dm-5263 W2 O4 F4 1841

2 2dm-4577 Li1 Fe1 O2 1431

3 2dm-4818 Fe1 H1 O2 1737

4 2dm-5992 Hg1 O1 2125

5 2dm-5855 Te3 O9 2056

6 2dm-5049 Li2 V2 F10 6985

7 2dm-5895 Zn2 Mo2 F10 876

8 2dm-5353 Mg1 V4 O10 1623

9 2dm-5196 Li3 Fe3 O4 F4 3374

10 2dm-5388 Ta1 Pb1 F7 687

Fig. 4 | Analysis of the potential piezoelectric
materials. aHistogram of the distribution of jeijjmax
of new potential bulk piezoelectric materials. b The
variation of polarization with strain along b axis in
CsBiNb2O7. The inset image shows the geometric
structure of CsBiNb2O7.

(a) (b)
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effects, and can also accurately predict the full tensor along with its trans-
formations during coordinate systemrotations. This represents a significant
advantage over scalarmodels that are constrained by symmetry limitations.

Furthermore, the synergy between machine learning predictions and
first-principles calculations facilitated efficient high-throughput screening,
resulting in the discovery of new materials with exceptional piezoelectric
performance, which have potential applications in sensors, energy har-
vesting, and other piezoelectric devices.

The equivariant machine learning approach utilized in this study
effectively predicts the piezoelectric stress tensor e for both 2D and bulk
materials. Theoretically, this model is also expected to perform well in pre-
dicting the piezoelectric strain tensor d. There are two potential methods to
obtain d: thefirst strategy is to construct a dataset specifically ford and train a
similar equivariant graph attention neural network model to predict it
directly. The secondmethod involves predicting the elastic tensorC using an
equivariant attention graph neural network model. Once e and C are
obtained, the piezoelectric strain tensor d can be derived. Therefore, this
equivariant machine learning framework is not limited to the piezoelectric
stress tensor e, but canalsobe extended to thepiezoelectric strain tensord and
other tensor properties closely related to crystal structure and symmetries. By
capturing the relationship between the crystal structure and target tensors
while respecting symmetry constraints, equivariant attention graph neural
networks have demonstrated exceptional performance and generalization
capabilities.Moreover, this approachprovidesapowerfulmethod for efficient
and accurate machine learning prediction of various material tensor prop-
erties governed by symmetries, with potential significant impacts onmaterial
design, property optimization, and related fields.

Methods
DFT ab initio calculations for piezoelectric tensor
Using the Vienna Ab Initio Simulation Package (VASP)38 for ab initio
calculations, and combining it with the Atomic Simulation Environment
(ASE)39 code to run an automated computational workflow, allows us to
automatically compute a majority of the properties. The exchange-
correlation functional is treated using the Perdew-Burke-Ernzerhof (PBE)
parametrization of the generalized gradient approximation (GGA)40. The
plane-wave cutoff energy is fixed at 520 eV. The k-point sampling depends
on the specific material’s lattice constants and symmetry being calculated.

Density functional perturbation theory (DFPT)41 is employed to cal-
culate the piezoelectric stress tensor eijk. To simulate the strain, the lattice
constant along the strain direction is fixed, while the lattice constants in the
other directions are fully relaxed. Then, the polarization change induced by
the applied stress and strain should be determined by the piezoelectric stress
tensor and the piezoelectric strain tensor. Therefore, these two can be
represented by the following formulas:

eijk ¼
∂Pi

∂ηjk

 !

E

¼ � ∂σ jk
∂Ei

� �

η

; ð9Þ

dijk ¼
∂Pi

∂σ jk

 !

E

¼ ∂ηi
∂Ejk

 !

σ

; ð10Þ

where i; j; k 2 1; 2; 3f g, σ is strain and η is stress, using Voigt notation, the
piezoelectric stress tensor eijk and piezoelectric strain tensor dijk can be
abbreviated as eij and dij, e and d can be related through the elastic tensorC,
with the specific formula as follows32:

dij ¼
X3
k¼0

eikC
�1
kj : ð11Þ

Dataset
The training data for the model presented in this work is sourced from
Computational 2D Materials Database (C2DB)33,34, the Material Project21

and a recent high-throughput computational study on piezoelectric
tensors30.

Model architecture
Themodel EATGNNused in this work to study the piezoelectric tensors of
crystals is based on the graph. Periodic boundary conditions are considered.
In this work, the model uses the following form for the cutoff radius:

r0cut ¼ max rcut ; a; b
� �

; ð12Þ

the initial cutoff radius rcut is set to a relatively small value, typically to
prevent overfitting. In addition to adjusting the cutoff radius, in this work,
rcut is set to 5 Å, a and b represent the lattice constants of the crystals.

The unit vector ~̂rij is expanded using sphere harmonic basis with a
degree of lmax, the distance rij is expanded using the “smooth_finite”
function from e3nn20. In this work, the nonlinearity of scalar is chosen to be
the SiLU function42, and for each non-scalar part x in atom features, the
gated nonlinearity is adopted43,

x0 ¼ f sð Þx; ð13Þ

where f is a nonlinearity function, and s is a scalar obtained from Eq. (1).
Then, an equivariant layer normalization is applied to accelerate the con-
vergence of model training10.

After updating the information in the graph, a pooling operation is
requiredon the graph’s nodes. Since thepiezoelectric tensor is independent of
the number of atoms in the unit cell, we apply amean pooling and connect it
to the irreducible representation (“2× 1oþ 1× 3oþ 1× 4o” in e3nn nota-
tion) of the piezoelectric tensor through an equivariant linear layer.

Training
Networks are trained using a mean-squared-error loss function based on
complete piezoelectric tensor:

loss ¼ 1
N

XN
n¼0

X
i;j;k

e0nijk � enijk
� �2

27
; ð14Þ

where e0nijk is the predicted piezoelectric tensor and enijk is the target pie-
zoelectric tensor, N is the batch size. And the MAE and RMSE of piezo-
electric tensor is defined as:

MAE ¼ 1
N

XN
n¼0

X
i;j;k

je0nijk � enijkj
27

; ð15Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
n¼0

X
i;j;k

e0nijk � enijk
� �2

27

vuuut ; ð16Þ

We train thismodel with the AdamWoptimizer44 tominimize the loss
function with a mini-batch size of 16. The learning rate is set to 0.01 for 2D
material piezoelectric tensor and is set to 0.0003 for bulk material piezo-
electric tensor. The number of heads in this work is 2, the number of graph
attention layers is 2 for bulk materials and is 3 for 2D materials, and the
dimension of atoms embedding is 32. The query and key of this network is
set to 16x0e+ 16x0o+ 8x1e+ 8x1o+ 4x2e+ 4x2o+ 2x3e+ 2x3o. The
scheduler is employed to adjust the learning rate, setting it to decay by a
factor of 0.95 each epoch, over a total of 30 training epochs.

Data availability
The two-dimensional materials used in this study were obtained from the
C2DB database (https://c2db.fysik.dtu.dk/), while the bulk material data
were sourced from the Materials Project and the JARVIS database (https://
jarvis.nist.gov/login?next=/jarvisdft/).
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Code availability
All the code used in this study is available at this GitHub repository (https://
github.com/FFuxi-dlq/piezoelectric-tensor-machine-learning).
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