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Our concerns apply to the inadequate ways statistical distributions of
crystallographic orientations are compared and occasionally confirmed to
agree sufficiently well. The authors of “Machine learning enhanced ana-
lysis of EBSDdata for texture representation”1 suggest amethod to replace
an EBSD dataset of crystallographic orientations with a much smaller
synthetic dataset preserving the texture. They claim that their “texture
adaptive clustering and sampling” algorithm generates datasets of a few
hundred crystallographic orientations, realizing an equivalent crystal-
lographic orientation distribution as the initial dataset. To prove the
principle and substantiate their claim of equivalent orientation distribu-
tions, the authors content themselves with (i) a visual inspection of the
crystallographic pole density function, in fact, of three crystallographic
“pole figures” and (ii) Kolmogorov–Smirnov tests for each of the three
Euler angles of the crystallographic orientations individually. However,
these criteria are insufficient to confirm equivalence of orientation dis-
tributions, they do not provide scientific evidence to substantiate the
authors’ claim that “texture adaptive clustering and sampling” generates
crystallographic orientations in terms of their Euler angles representing
the same texture.

Our dissent against (i) is that different distributions of crystallographic
orientations may have several identical crystallographic pole figures. Our
objection to (ii) is threefold.
• The stochastic independence of observations required by the

Kolmogorov–Smirnov test is most likely to be violated by spatially
referenced crystallographic orientations sampled with EBSD experi-
ments scanning the crystallites of a material specimen. The individual
Euler angles are presumably affected by spatially induced stochastic
dependence acquired from the grain fabric.

• Failure to reject the null-hypothesis of agreement of two distributions
of the Kolmogorov–Smirnov test must not be interpreted as proof of
their equivalence. As with every statistical test of significance, the
Kolmogorov–Smirnov test provides insightful inference in case of
reasonable rejection of its null-hypothesis only. Since the replacement
datasets are designed to be small, probabilities of false non-rejection
tend to be large. Applying the Kolmogorov–Smirnov test to any
original dataset and a replacement dataset consisting only of itsmedian
will always fail to suggest rejection of its null-hypothesis of equivalent
distributions.

• Furthermore, the agreement of the marginal distributions for each of
the three Euler angles does not generally imply agreement of their joint
distribution, the exception being the case of joint stochastic indepen-
dence of the three Euler angles.

Last but not least, we remind you that examples of “successful”
application of some mathematical or statistical method of data ana-
lysis do not substitute the mathematical proof of its properties and
performance. Mistaking examples as proof of principle is all the more
dangerous if the means of validation by examples are inadequate
themselves. Then, an example may be envisioned, where the algo-
rithm goes astray, however unnoticed by the applied means of
validation.

In the following we shall elaborate on our opposition to the authors’
way to compare statistical distributions of crystallographic orientations in
terms of counter examples.

Counter example 1: Different crystallographic orienta-
tiondensity functionswitha fewcoincidentpolefigures
We assume orthorhombic crystal symmetry (mmm) with all axes of unit
length (“pseudo cubic”). Then we define two different orientation density
functions f1, f2 each composedof three equallyweightedcomponents labeled
ψij, i = 1, 2, j = 1,…, 3, of de la Vallée Poussin type ψdlVP of a halfwidth of
bκ = π/6 centered at orientations g11 = (π/2, 0, 0), g12 = (π/2, π/2, π/2),
g13 = (0, π/2, 0) and g21 = (π, 0, 0), g22 = (π, π/2, π/2), g23 = (π/2, π/2, 0),
respectively, in terms of Euler angles according to the zxz-convention, i.e.,

f 1ðg;ψ11;ψ12;ψ13Þ ¼ 1
3 ψdlVPðg; g11; bκÞ
�

þψdlVPðg; g12; bκÞ þ ψdlVPðg; g13; bκÞ
�

f 2ðg;ψ21;ψ22;ψ23Þ ¼ 1
3 ψdlVPðg; g21; bκÞ
�

þψdlVPðg; g22; bκÞ þ ψdlVPðg; g23; bκÞ
�
:

Since the two sets of crystallographic orientations are related by a rotation
ofπ/2 about the z-axis, they are not crystal symmetrically equivalent.Once
the orientation density functions have been computed, their pole density
functions for the crystal forms of Miller indices (1, 0, 0), (0, 1, 0), (0, 0, 1),
(0, 1, 1), (1, 1, 1), (1, 1, 3), (1, 0, 2), (1, 2, 3) are calculated. Then, the two
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orientation density functions are plotted as σ-sections, Fig. 1, and their
pole density functions for the 8 crystallographic forms listed above are
plotted as equal-area projections of the upper hemisphere onto the unit
disk (Fig. 2).

While the orientation density functions are different, the first six
polfigures are identical, only the (102)- and (123)-pole figures are
different. This example may appear as a very special case of ambiguity.
However, it is reminded, that any two crystallographic orientation

Fig. 1 |σ-sectionsof twodifferent crystallographicorientationdensity functions. a σ-sections of orientation density function f1.b σ-sections of orientation density function f2.
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density functions which differ in their odd Fourier coefficients only,
have identical crystallographic pole density functions for all crystal
forms2,3. For more details, the reader is referred to MTEX
documentation4.

Counter example 2: Different crystallographic orienta-
tion density functions with coincident marginal dis-
tributions of their three Euler angles
Visualizing the marginal distributions of individual Euler angles (φ1,
Φ, φ2) of the crystallographic orientations sampled from the orienta-
tion density functions f1 and f2, respectively, reveals almost perfect
matches of the histograms of the marginal distributions, Figs. 3 and 4.

The corresponding univariate cumulative frequency distribution
functions are very close, Fig. 5. Their comparison in terms of
Kolmogorov–Smirnov tests is illusive because (i) non-rejection of its
null-hypotheses must not be interpreted as their acceptance and (ii)
univariatemarginal distributions do not generally define a unique joint
multivariate distribution, i.e., identical univariate marginals may stem
from different joint multivariate distributions.

Conclusion
Visual inspection of pole figures may be deceptive because they are
images of the even part of crystallographic orientation density func-
tions only. It may lead to false conclusions. Referring to the three

Fig. 2 | Pole density functions of several crystallographic forms of two different crystallographic orientation density functions. a Pole figures of orientation density
function f1. b Pole figures of orientation density function f2.
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marginal distributions of individual Euler angles, e.g., comparing their
cumulative frequency distributions, does not generally provide addi-
tional information to distinguish different crystallographic orientation
density functions, because marginals do not generally define the joint
distribution. Thus, the authors’ proof of principle and validation of

their TACS approach are invalid. Users may be better off with any of
the conventional methods, e.g. methods based on kernel density
estimation5.

To compare distributions of crystallographic orientations, it takes
distributions of crystallographic orientations.

Fig. 3 | Histograms of marginal distributions of 350 Euler angles sampled from
two different crystallographic orientation density functions. Top row: Histo-
grams of the marginal distributions of 350 Euler angle φ1 (a), Φ (b), and φ2 (c) of
crystallographic orientations sampled from the orientation density function f1;

Bottom row: Histograms of the marginal distributions of 350 Euler angle φ1 (d), Φ
(e), and φ2 (f) of crystallographic orientations sampled from the orientation density
function f2.

Fig. 4 | Histograms of marginal distributions of 7000 Euler angles sampled from
two different crystallographic orientation density functions. Top row: Histo-
grams of the marginal distributions of 7000 Euler angle φ1 (a), Φ (b), and φ2 (c) of
crystallographic orientations sampled from the orientation density function f1;

Bottom row: Histograms of the marginal distributions of 7000 Euler angle φ1 (d),Φ
(e), and φ2 (f) of crystallographic orientations sampled from the orientation density
function f2.
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Fig. 5 | Comparison of empirical cumulative distribution functions of Euler
angles for two different crystallographic orientation density functions. Empirical
cumulative distribution functions of Euler angles φ1 (a), Φ (b), and φ2 (c) of 350

crystallographic orientations and φ1 (d), Φ (e), and φ2 (f) of 7000 crystallographic
orientations sampled from the crystallographic orientation density functions f1 and
f2, respectively.
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