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Elemental numerical descriptions to
enhance classification and regression
model performance for high-
entropy alloys
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Yan Zhang1,2, ChengWen1,3, Pengfei Dang4, Xue Jiang 1 , Dezhen Xue 4 & Yanjing Su 1,5

The machine learning-assisted design of new alloy compositions often relies on the physical and
chemical properties of elements to describe thematerials. In the present study, we propose a strategy
basedonanevolutionary algorithm togenerate newelemental numerical descriptions for high-entropy
alloys (HEAs). These newly defined descriptions significantly enhance classification accuracy,
increasing it from 77% to ~97% for recognizing FCC, BCC, and dual phases, compared to traditional
empirical features. Our experimental validation demonstrates that our classification model, utilizing
these new elemental numerical descriptions, successfully predicted the phases of 8 out of 9 randomly
selectedalloys, outperforming the samemodel basedon traditional empirical features,which correctly
predicted 4 out of 9. By incorporating these descriptions derived from a simple logistic regression
model, the performance of various classifiers improved by at least 15%. Moreover, these new
numerical descriptions for phase classification canbe directly applied to regressionmodel predictions
of HEAs, reducing the error by 22% and improving the R2 value from 0.79 to 0.88 in hardness
prediction. Testing on six different materials datasets, including ceramics and functional alloys,
demonstrated that the obtained numerical descriptions achieved higher prediction precision across
various properties, indicating the broad applicability of our strategy.

High-entropy alloys (HEAs) are a novel class of alloys with intriguing
properties, including high strength1–6, corrosion resistance7,8, irradiation
tolerance9–11, andhigh-temperature oxidation resistance12–14.HEAs typically
contain five or more principal elements with concentrations between 5%
and 35%, holding promise for optimizing various properties. The diverse
microstructures and phases in HEAs greatly influence their targeted
properties. For example, face-centered cubic (FCC) phases are usually
ductile, while body-centered cubic (BCC) phases exhibit high strength15,16.
Therefore, accurately predicting the phases (e.g., solid solution (SS) and
non-solid solution (NSS), FCC, BCC, or dual phases (DPs)) is crucial in
designing HEAs.

One of the main challenges in designing HEAs is the vast unexplored
composition space, resulting from themultiple components andwide range
of element concentrations. Machine learning (ML) has been employed to

predict the phase formation of HEAs17–29. Several surrogate models with
prediction accuracies over 75% have been built using various physical and
chemical properties of elements30–35, such as electronegativity, atomic radius,
and valence electron number, as shown in Fig. 1a. Those elemental prop-
erties serve as numerical descriptions of elements, which are vectors con-
taining particular values for different elements to describe the alloy.
However, further improvement inMLpredictions is hinderedby the limited
number of traditional numerical descriptions of elements.

The existing physical and chemical properties of elements represent
only a small portionof thepossible space, as indicated by theblue lines out of
numerous orange lines in Fig. 1b. The value describing each element is not
inherently restricted, forming a vast space of possibilities. Our interest lies in
generating better numerical descriptions of elements within this space (as
indicated by the red lines in Fig. 1b), to improve model performance for
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phase prediction of HEAs. Moreover, we anticipate that the generated
numerical descriptions can be extended to other predictive tasks, such as
estimating mechanical properties.

In the present study, we propose a strategy based on a tailored
genetic algorithm (GA) to obtain new numerical descriptions. We
generated four new vectors to describe the elements Al, Ti, V, Cr, Fe, Co,
Ni, and Cu. Logistic regression (LR) models based on these generated
numerical elemental descriptions outperformed those based on
empirical features. The classification accuracy for recognizing FCC,
BCC, and DP in HEAs improved by 20%, from 77% to 97%. For dis-
tinguishing SS andNSS phases, the accuracy improved from 81% to 87%.
We experimentally validated our model by randomly selecting 15 new
HEAs. Ourmodel correctly labeled 8 out of 9 for FCC, BCC, andDP, and
13 out of 15 for SS and NSS phases, significantly outperforming models
based on traditional empirical features. By incorporating these
descriptions derived from a simple LR model, the performance of var-
ious classifiers improved by 3% to 22%. Furthermore, the generated
numerical descriptions of elements were directly applied to reduce the
regression errors in predicting the hardness of HEAs. Testing on six
different materials datasets, including ceramics and functional alloys,
demonstrated that the obtained numerical descriptions significantly
improved prediction precision across various properties. This highlights
the broad applicability of our strategy.

Results
Design strategy and modeling
As schematically illustrated in Fig. 1c, this study introduces a tailored GA
framework to optimize numerical descriptors for elements, enhancing the
predictive performance of phase classification in HEAs. The protocol
consists of five key steps: initial population generation, materials feature
construction, feature evaluation using a classification model, selection, and
crossover & mutation.

Initial population generation. The numerical description of elements
is designed to capture the inherent differences among various ele-
ments. Each element is assigned a value between 0 and 1, reflecting its
relative magnitude compared to other elements. To construct the
search space, this range is discretized into 100 values with an incre-
ment of 0.01. For this study, eight elements, including Al, Ti, V, Cr,
Fe, Co, Ni, and Cu, are considered. Consequently, a vector (~x) con-
taining eight values serves as the numerical description of the ele-
ments. Two numerical vectors (i.e., a pair of ~x) are generated,
ensuring clear physical interpretability and limiting the search space
(additional details can be found in the Supplementary Discussions).
Thus, each individual in the GA is represented as a string of length 16.
An initial population of p = 500 strings is randomly generated as a
parent generation.

Fig. 1 | The proposed strategy to generate newnumerical descriptions of elements
for a particular problem. a Common practice is to combine the composition with
numerical descriptions of elements to construct material features. b The known
numerical descriptions of elements, such as radius and valence electron con-
centration, are only a small fraction of the optimization space. Better numerical

descriptions of elements are likely to be generated to improve the model's perfor-
mance and extensibility. c As the optimization space is enormous, a tailored genetic
algorithm framework is employed to generate better numerical descriptions of
elements.
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Materials feature construction. Based on the two vectors (~x) in each
individual, two material features (X) are calculated using the formula:

X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ci 1� x!i
�X

 !2
v
u
u
t ð1Þ

where i stands for different elements, ci is the concentration and �X is the
mole average of~x, given by

�X ¼
Xn

i¼1

ci x
!

i ð2Þ

This formula has been widely used to characterize the mismatch between
elements in HEAs36–39. At this stage, 500 pairs of material features are
generated, corresponding to the initial population of the GA. Each pair of
features represents a unique combination of elemental descriptors that will
be evaluated for their ability to predict the phase behaviour of the alloy.
Thesematerial features serve as the input for theMLmodel in the next step,
where their predictive power will be assessed.

Materials feature evaluation. An LR classifier is employed to assess the
predictive performance of the material features derived from each indi-
vidual in the tailoredGA. The classification accuracy, calculated using the
entire dataset, serves as the fitness value. The higher the classification
accuracy, the better the material features are at distinguishing between
different phases, indicating that the individual is more effective in
representing the desired characteristics of the high-entropy alloys. This
evaluation process ensures that individuals with higher fitness values, i.e.,
higher classification accuracy, have a greater probability of passing on to
the next generation.

Selection. The Stochastic Tournament Selection method40 is employed
to select individuals (numerical descriptions of elements) for reproduc-
tion based on their relative fitness values, steering the GA toward more
optimal solutions. Specifically, two individuals are randomly selected
from the population, and the one with the higher fitness value is retained
for the next generation. This selection process is repeated 500 times to
maintain a constant population size of 500 individuals.

Crossover and mutation. Uniform crossover41 and single-point
mutation42 operators are employed to generate novel elemental numer-
ical descriptions, thereby increasing the diversity of the search process. In
the uniform crossover phase, 90% of the population is preselected, and
two individuals are randomly chosen as parents. Each gene in the off-
spring’s individual is randomly selected from one of the corresponding
genes of the two parents. This procedure is repeated until the required
number of offspring is generated for the subsequent mutation step.
Following crossover, single-point mutation is applied. A total of 800 gene
loci from the entire population (16 genes locus × 500 individuals) are
randomly selected, with a mutation probability of 10%. The selected
genes are then replaced with new values randomly drawn from a range
between 0 and 1. This introduces additional variability, ensuring a more
thorough exploration of the search space.

The newly generated 500 individuals are appended to the next gen-
eration. The classification accuracies of the new generation are then eval-
uated, and the selection, crossover and mutation processes are repeated.
This iterative process continues until a maximum of 1000 generations is
reached. It is noted that besides the GA, other heuristic algorithms or
cutting-edge techniques like reinforcement learning could also be incor-
porated into our framework. Exploring these methods is a promising
direction for future work.

Elemental numerical descriptions for phase prediction of high-
entropy alloys
We investigated two classification problems: classification I for SS and NSS
HEAs, and classification II for FCC, BCC, and DPHEAs.We first searched
for a pair of numerical descriptions of elements for classification I.

TheGA strategy shown in Fig. 1cwas employed. The best classification
accuracy within each generation of 500 LRmodels was plotted as a function
of the number of iterations for one GA run in Fig. 2a. As the initial popu-
lation of numerical descriptions for elements was stochastically generated,
resulting inMLmodels with low classification accuracy. The crossover and
mutation of GA rapidly explored offsprings, presumably with better pre-
diction accuracy. Such a GA process was performed 50 times to obtain a
stable and superior solution, as the result ofGAusually depends on its initial
population. The red solid line in Fig. 2a represents the best performer of the
50 GA runs. And, the two vectors of numerical descriptions for elements
with the highest classification accuracy were identified as (~x 1

I and~x 2
I ) for

classifying SS and NSS alloys, as listed in Table 1.
Based on~x 1

I and~x
2
I , twomaterials features (X1

I andX
2
I ) were calculated

according to Equation (1). In Fig. 2c, the data are plotted on the plane of X1
I

and X2
I with a classification margin differentiating SS and NSS. The classifi-

cationaccuracy is87%.Wetraverseallpossiblepairsofnineempiricalmaterial
features to choose the onewith the highest accuracy for separating SS andNSS
in our dataset. As shown in Fig. 2e,Λ-γ has the highest accuracy of 81%. Thus
using the generated two vectors of numerical descriptions of elements~x 1

I and
~x 2
I , the classification accuracy for SS and NSS is improved by 6%.

We then performed the same procedure to identify two vectors of
numerical descriptions of elements for classification II. The GA rapidly
converges, as shown in Fig. 2b and identifies two vectors (~x 1

II and~x
2
II) as

listed in Table 1. Figure 2d shows the classification margin for separating
FCC, BCC and DP on the plane of X1

II and X
2
II calculated from~x 1

II and~x
2
II .

The classificationaccuracy is as high as 97%.Compared to the best empirical
materials features pair ofVEC and δR in Fig. 2f, the classification accuracy is
improved by 20%.

Compared to previous efforts in ML-assisted phase prediction of
HEAs30–35, our strategy achieved a higher classification accuracy with sim-
pler ML models by the newly generated elemental numerical descriptions.
Therefore, it is possible to generatenewvectors of numerical descriptions for
elements in an unlimited space, which would enhance model performance
for specific problems. However, whether the generated numerical descrip-
tions of elements provide validated predictive capability and can be exten-
ded to other problems remains unclear. In the following two subsections, we
performed experiments to verify the predictive capability and then utilized
the new sets of numerical descriptions for elements in the phase classifi-
cation problem to improve the regression model for the mechanical prop-
erties of HEAs.

Experimental validation of classification model predictions
Fifteen compositions were randomly chosen from a large virtual space
consisting of 1,697,136 candidates. This space was constructed by varying
themolar fraction of elements between 0.05 and 0.35 in steps of 0.03, within
a system of Al, Ti, V, Cr, Fe, Co, Ni, and Cu (considering only alloys with
four to six elements). The chemical compositionsof the15alloys (denoted as
A1 to A15) are listed in Table 2.

Figure 3a shows the X-ray diffractometer (XRD) profiles of the 15 new
HEAs. For classification I, six selected alloys (A1–A6) are labeled asNSSdue
to the appearance of intermetallic phase (IM) peaks, while the remaining
alloys are labeled as SS. Since the IM peaks of A1-A4 alloys are not very
distinct, further scanning electron microscopic (SEM) combined with
energy dispersive X-ray spectroscopy (EDS) analyses, shown in Fig. 3b–e,
confirm that an Al-Cr-rich IM phase exists in A1 and A2 alloys, a B2
structure IM phase appears in A3 alloy, and fine V-rich precipitates are
present in A4 alloy. For classification II, A7, A8, and A9 alloys exhibit XRD
peaks corresponding to FCC and are thus labeled as FCC. A10, A11, and
A12 alloys show peaks for both FCC and BCC phases, leading to their
classification as DP. Correspondingly, A13, A14, and A15 alloys are labeled
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as BCC. The actual labels and the predicted ones are compared in Table 2. It
can be seen that 13 of the 15HEAs are accurately predicted for classification
I, and 8 of the 9HEAs are accurately predicted for classification II, using LR
models basedon thenewly generatedelemental numerical descriptions. The
new labels of the synthesized HEAs are also plotted in Fig. 2c–f. These new
data can be fed back into the original datasets to further improve accuracy.

TheA1 andA2alloysweremislabeled by traditional empirical features.
It may be because traditional features primarily involve information on the
mismatch in atomic size (for example, δR represents atomic size difference,
and γ reveals the atomic packing misfitting and topological instability43).
The difference in radius of elements such as Al, Ti, V, and Cr in A1 and A2

alloys is rather small, leading to the incorrect prediction of SS formation.
However, the Cr has a large negative enthalpy of mixing with Al and
facilitates the formation of Al-Cr-rich intermetallic compounds, which was
missed by traditional empirical features. Our features failed to predict the
NSS label for A4, as a small variation in Cr and Co leads to a low fraction of
fine V-rich precipitates in the A4 alloy compared to the SS phase in A7.

Phases significantly influence the mechanical properties of HEAs, so
we conducted compression tests at room temperature on the new SSHEAs.
The stress-strain curves of the nine alloys are shown in Fig. 4a. The FCC
alloys, including A7, A8, and A9, exhibit low strength (yield strength
σy ~ 200MPa) but high ductility (fracture strain ϵf > 50%). In contrast, A13,

Fig. 2 | Results of 50 GA runs and the classification performance for phase
prediction of HEAs. a, b The classification accuracy of the logistic regression (LR)
model as a function of the number of iterations within 50 GA runs for classification I
and classification II, respectively. The red solid line indicates the best performer.
c, e is themargin of LRmodel to classify the SS andNSSHEAs based on thematerials

features defined from the numerical descriptions of elements and traditional
empirical features, respectively. d, f is the margin of the LR model to classify FCC,
BCC, andDPHEAs based on the features of thematerial defined from the numerical
descriptions of elements and traditional empirical features, respectively. The larger
symbols represent the 15 newly synthesized HEAs.
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A14, andA15 alloys, characterized by the BCCphase, display relatively high
strength and low ductility. The DP alloys, including A10, A11, and A12,
showa large variation in both strength andductility. As illustrated in Fig. 4b,
a DP structure combining BCC and FCC phases provides a good balance,
trading off between strength and ductility. In summary, phase information
as a priori knowledge is crucial for the targeted design of alloys.

Enhancing regression models for the hardness of HEAs
Next, we demonstrate the improvement in regression model performance
by using the numerical descriptions of elements generated from the clas-
sification task. We hypothesized that these features capture hidden infor-
mation about the HEAs phase structures, and therefore, the numerical
descriptors used for phase classification are likely to enhance the prediction
accuracy of materials properties. Rather than generating specific numerical
descriptions tailored for the regression task, we utilized both the newly
generatedmaterials features (X1

I ,X
2
I ,X

1
II , andX

2
II), and traditional empirical

features to build gradient boosting decision tree (GBDT) models for pre-
dicting thehardness ofHEAs.This analysiswas performedusing adataset of
173 samples. The empirical material features include the nine traditional
features used for phase prediction, as well as additional mechanical
property-related features, such as shear modulus (G), local modulus mis-
match (D. G), difference in shear modulus (δG), energy term in the
strengthening model (A), Peierls-Nabarro factor (F), modulus mismatch
(η), latticedistortion energy (D.R), local sizemismatch(μ), and the squareof
the work function (w)44–49. A detailed list of these 18 features is provided in
Supplementary Table S1.

We then evaluated the performance of the GBDT models using
three material features. We selected the best subset of features from the
newly generated material features (X1

I , X
2
I , X

1
II , and X

2
II), along with the

best subset of empirical features. To assess model performance, we
employed both 10-fold cross-validation and the hold-out method. In
the hold-out method, the original dataset was randomly split into a
training set (90%) and a testing set (10%). A GBDT model was then
trained on the training set, and its performance was evaluated on the
testing set. Model performance was quantified using the coefficient of
determination (R2) and the mean absolute error (MAE), calculated
using the formula:1n

Pn
i¼1∣yi � ŷi∣ where n is the number of data points,

yi is the true value, and ŷi is the predicted value. This procedure was
repeated 100 times to ensure robustness, and the average R2 and MAE
values for each model were recorded as indicators of model
performance.

As shown in Fig. 5a, b, the feature subset that achieved the lowest test
error for hardness prediction includesX2

I ,X
1
II , andX

2
II . This subset resulted

in an MAE of 45.8 HV and an R2 value of 0.88. In comparison, the best
empirical feature subset, consisting of VEC, F, and δG, yielded an MAE of
58.6 HV and an R2 value of 0.79. This improvement is statistically sig-
nificant, as evidenced by the t test P value, which is smaller than 0.01, as
shown in Fig. 5. This confirms that the inclusion of the newly generated
elemental numerical descriptors significantly enhanced model perfor-
mance, reducing the MAE by 22% and increasing the R2 value from 0.79 to
0.88. These results highlight the effectiveness of the descriptors, originally
designed for phase classification, in enhancing regression performance for

Table 1 | The obtained numerical descriptions of elements for phase prediction of high-entropy alloys

Numerical description of elements Al Ti V Cr Fe Co Ni Cu

~x 1
I

0.21 0.9 0.81 0.32 0.18 0.16 0.2 0.1

~x 2
I

0.35 0.13 0.77 0.55 0.87 0.74 0.85 0.78

~x 1
II

0.01 0.27 0.19 0.92 0.23 0.56 0.71 0.9

~x 2
II

0.1 0.2 0.09 0.09 0.14 0.91 0.69 0.37

~x 1
I and~x 2

I are for predicting solid solution or non-solid solution, while~x 1
II and~x

2
II are for recognizing FCC, BCC or dual phase.

Table 2 | The composition, phase formation, and mechanical properties of the 15 newly synthesized HEAs

S. no. Composition Predicted
phase
information

Experimental phase
information

Predicted
phase
information

Experimental phase
information

Yield
strength
(MPa)

Fracture
strain (%)

Λ-γ X1
I -X

2
I

VEC-δR X1
II-X

2
II

A1 Al0.19Ti0.15V0.21Cr0.35Co0.05Ni0.05 ✗ ✓ NSS - - - - -

A2 Al0.23Ti0.15V0.19Cr0.33Ni0.05Cu0.05 ✗ ✓ NSS - - - - -

A3 Al0.2V0.11Cr0.05Co0.05Ni0.35Cu0.23 ✓ ✗ NSS - - - 1555 8.6

A4 V0.05Cr0.35Fe0.05Co0.15Ni0.35Cu0.05 ✓ ✗ NSS - - - 216 50

A5 Ti0.17Cr0.29Fe0.08Co0.11Ni0.17Cu0.17 ✗ ✓ NSS - - - 864 12.7

A6 Ti0.23Cr0.05Fe0.35Co0.05Ni0.14Cu0.17 ✓ ✓ NSS - - - 1758 4.3

A7 V0.05Cr0.32Fe0.05Co0.17Ni0.35Cu0.05 ✗ ✓ SS ✓ ✓ FCC 198 50

A8 Al0.05V0.14Fe0.29Co0.05Ni0.2Cu0.26 ✓ ✓ SS ✓ ✗ FCC 268 50

A9 Al0.05V0.05Cr0.23Fe0.26Co0.08Ni0.32 ✓ ✓ SS ✗ ✓ FCC 188 50

A10 Al0.05V0.13Fe0.35Co0.15Ni0.11Cu0.21 ✓ ✓ SS ✗ ✓ FCC+BCC 372 50

A11 Al0.13Ti0.05Fe0.35Co0.19Ni0.05Cu0.23 ✓ ✓ SS ✗ ✓ FCC+BCC 1333 13

A12 Al0.11Cr0.05Fe0.35Co0.11Ni0.08Cu0.29 ✓ ✓ SS ✗ ✓ BCC+FCC 530 46

A13 Al0.2V0.26Cr0.05Fe0.05Co0.08Ni0.35 ✗ ✓ SS ✓ ✓ BCC 1358 16.5

A14 Al0.2V0.14Fe0.2Co0.14Ni0.14Cu0.17 ✓ ✓ SS ✗ ✓ BCC 995 22.4

A15 Al0.05V0.27Cr0.23Co0.35Ni0.05Cu0.05 ✓ ✓ SS ✓ ✓ BCC 1885 4.3
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hardness prediction. This demonstrates their versatility and broader
applicability in materials property prediction (regression) tasks for HEAs.

Discussion
The generated numerical descriptions of elements are effective for both
classification and regression tasks in the design of HEAs. These descriptions
likely correlated with specific physical and chemical properties of elements.

We conducted Pearson correlation analysis between the generated numerical
descriptionsandvariouselementalproperties suchasatomic radii (R),Pauling
electronegativity (χP), valence electron concentration (VEC), and others. A
detailed list of these properties can be found in Supplementary Table S2).

Our analysis revealed that~x1I and~x
2
I have the highest Pearson corre-

lation coefficients with the electrical resistivity (ER) and the metallic radius
(R), respectively, among all the physical properties. The results are shown in

Fig. 3 |Microstructure of newly synthesizedHEAs. aXRDprofiles of newly synthesizedHEAs. b–eThe SEMandEDS analysis for selectedHEAs: bA1, cA2,dA3, and eA4.

Fig. 4 | Compressive mechanical properties of the nine newly synthesized HEAs. a Compressive stress-strain curves. b Room temperature compressive yield strength vs
fracture strain.
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Fig. 6a, b. ~x1I contains similar information with ER, which is related to
electronegativity, while~x2I correlates with R, representing the atomic size
effect. Both electronegativity and atomic size are crucial factors in the
Hume-Rothery rules for evaluating the phase stability of alloys36,50,51. Thus,
the generated~x1I and~x

2
I are consistent with empirical knowledge.

Figure 6c, d show that~x1II and~x
2
II aremost relevant to the proportion of

s-electron in total VEC (s.VEC) and the work function (WF). The WF
measures how tightly a metal holds its electrons, while VEC represents the
number of total electrons, including d electrons in the valence band. These
parameters have beenused to predict the formation of FCCandBCCphases

in HEAs52,53. Our result in Fig. 6c indicates that s.VEC could be a better
numerical description of elements for this classification problem as it
includes both the effect of VEC and the number of easily lost s-electrons.

For classification I, materials features of δR and δERwere defined by R
and ER according to Equation (1). The classification accuracy of 0.81 is the
same as the one from widely used empirical features (Fig. 2e). For classifi-
cation II, the pair ofWF and s.VEC calculated by Equation (2) improves the
classification accuracy from 0.77 (using empirical features) to 0.8. The
selection of Equation (2) is based on the observation that Equation (2)
consistently resulted in higher classification accuracy for Classification II

Fig. 5 | Improvement in hardness prediction with newly generated features.Comparison of aR2 and bMAE values formachine learningmodels based onmaterial feature
subsets that achieve the lowest test error, with and without the inclusion of our newly generated features. The statistical significance of the improvement is indicated by the t
test P value (<0.01).

Fig. 6 | Correlation between physical properties of elements and the generated optimal numerical descriptions of elements. a~x1I vs electrical resistivity. b~x
2
I vs R. c~x

1
II vs

s-electron in total VEC. d~x2II vs work function.
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compared to Equation (1). This finding aligns with prior experience, as the
VEC parameter, which is widely used to distinguish FCC, BCC, and DP
phases, is also derived using Equation (2). Figure 7 compares the perfor-
mance of classifiers based on features from our generated numerical
descriptions of elements, features selected through correlation analysis, and
traditional empirical features. Features from our generated numerical
descriptions outperform the other two sets. A possible reason is that existing
physical properties of elements may vary in complex systems due to the
significant influence of physical and chemical interactions from sur-
rounding atoms.

Although the elemental numerical descriptions shown in Table 1 were
generatedusingLRmodels, it is expected that incorporating these valueswill
enhance the performance of other classifiers for phase formation in HEAs,
as already utilized in previous studies30–35,54,55. Five widely used classification
models were built: a decision tree model (Dtree), a Naive Bayes classifier
(Bayes), a Neural Network classifier (Nnet), a random forest model, and a
support vector machine with a radial basis function kernel (SVM.rbf). To
estimate the performance of these ML models, we adopted a cross-
validation method (10-folds with 100 repetitions) during the models’
training and testing. The final reported testing accuracy is the average of the
100 testing accuracy results.

Figure 8 presents a comparison of the fiveMLmodels using traditional
empirical features versus the same models using the newly generated fea-
tures. When the new features from our numerical descriptions are

introduced, the accuracy of all classifiers increases. The classification
accuracy can be improved by up to 15% for SS and NSS, and up to 22% for
FCC,BCC, andDP, as shown inFig. 8. Thus, the generalization ability of our
generated numerical descriptions of elements was verified by the experi-
mental results and their efficient improvement in both regression and
classification tasks across different ML models.

The strategy developed in this study can be extended to various
materials datasets, including high-temperature strength (HT strength) and
fracture strain of HEAs, the piezoelectric coefficient (d33), the electrostrain
and the dielectric energy storage density (DES density) of BaTiO3 ceramics,
and the transformation temperatures of NiTi-based shape memory alloys
(SMA TC). Detailed information about these datasets is summarized in
Supplementary Table S3, and all datasets are available in the Supplementary
Information. Since the datasets we used differ from the ones in the refer-
enced studies, adirect comparisonof our resultswith theirswouldnotbe fair
or meaningful. To ensure a more robust comparison, we focused on eval-
uating the impact of our feature generation strategy using the same dataset
and ML models.

Following the same procedure shown in the “Design strategy and
modeling” subsection, our strategy generated two new numerical
descriptions of elements for each targeted property, as listed in Sup-
plementary Table S4. We then used these descriptions to construct two
materials features according to Equation (2) and built the corre-
sponding support vector machine (SVM) regression model. For com-
parison, traditional materials features were selected using sequential
forward selection (SFS) methods, which resulted in models with more
than three features. The traditional features are detailed in Supple-
mentary Table S3.

Figure 9 compares the performance of models using traditional
features with those using the newly generated features. Figure 9a, b
display the predicted values versus themeasured electrostrain. The data
points are closer to the diagonal line for the model using our new
features (Fig. 9b). This trend is also observed for the high-temperature
strength of HEAs and the transformation temperatures of SMA TC, as
shown in Fig. 9c–f. Figure 9g, h presents the comparison of model
performance in terms of R2 and mean absolute percentage error
(MAPE), calculated as 100%

n

Pn
i¼1∣

yi�ŷi
yi

∣. Using only two features from
the generated elemental numerical descriptions outperforms ML
models that rely on multiple traditional empirical features across all
datasets tested in this study.

In summary, we proposed a strategy to generate numerical descrip-
tions of elements to enhance the prediction accuracy of ML models for
targeted properties. This strategy was applied to predict phase formation in
HEAs, achieving up to a 20% improvement in classification accuracy for
recognizing FCC, BCC, and dual-phase alloys. Experimental validation
demonstrated that the features of the material constructed from the gen-
erated numerical descriptions accurately predicted 8 out of 9 newly

Fig. 7 | The performance of classifiers based on the features from our new numerical
descriptions of elements, the features selected by the correlation analysis shown
above, as well as traditional empirical features.

Fig. 8 | Comparison among different ML models: traditional features vs new features. a Classification I. b Classification II.
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synthesized alloys, outperforming traditional empirical features, which
yielded 4 correct labels. The generated numerical descriptions of elements
were also utilized to enhance regression models for the hardness of HEAs,
improving the R2 value from 0.79 to 0.88. Additionally, the prediction
accuracy of five classifiers was improved using these generated numerical
descriptions, with accuracy gains ranging from 3% to 15%. The strategywas
tested on six different materials datasets, consistently improving model
performance for predicting targeted properties. This work provides a robust
method for generating new numerical descriptions of elements and con-
sequently enhancing the performance of ML models.

Methods
Dataset and empirical materials features
The phase information for AlTiVCrFeCoNiCu HEAs was collected from
the literature, limited to as-cast samples. Our dataset comprises 301
experimentally obtainedHEAs, labeled as either SSorNSS.Additionally, the
150 SS alloys were further categorized into FCC, BCC, or DP.

For comparison,we also usednine empiricalmaterial features reported
to affect the phase formation of HEAs. These include the mixing enthalpy
(ΔHm), the mixing entropy (ΔSm), the VEC, the difference in the Pauling
electronegativities (δχP), the Allen electronegativity (δχA), the atomic size
difference (δR), comprehensive descriptor (Ω) that quantifies the pre-
dominance of the entropywith respect to the enthalpy, and two geometrical
descriptors (Λ) and (γ)36–39,43,52,53,56–59. A detailed list of these features is
provided in Supplementary Table S1.

Experimental procedure
The experimental validation of the ML predictions was performed. The
HEA ingots with a weight of 50 g were prepared by arc melting on a water-
cooled copper mold in the argon atmosphere, with a mixture of raw
materials of 99.9% pure elements. All the ingots were melted at least six
times to improve the homogeneity. The crystalline structures were analyzed
by a BrukerD8ADVANCEXRDwithCuKα radiation with the 2θ ranging
from 30° to 100° at a speed of 3°/min. The morphology and the micro-
composition of the HEAs were obtained by a Zeiss Sigma300 SEM com-
bined with EDS. Cylinder specimens with a diameter of 3mm and a height
of 6 mm for compressive tests were prepared by spark cutting followed by
grinding with sandpaper. Compressive stress-strain curves were measured
by an Instron 5969 tensilemachine at room temperaturewith a strain rate of
0.3mm/min. Each test was repeated at least three times. The 0.2% proof
strength was identified as the yield strength.

Data availability
All datasets used in this study, including phase classification data, hardness
data for high-entropy alloys, and six additional materials datasets, are
available in our GitHub repository: https://github.com/diegoxue/Feature_
Generation_High_Entropy_Alloys.

Code availability
The code for generating elemental numerical descriptions and training ML
models is also publicly available in our GitHub repository: https://github.
com/diegoxue/Feature_Generation_High_Entropy_Alloys.
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