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Massive discovery of crystal structures
across dimensionalities by leveraging
vector quantization
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ZiJie Qiu1, Luozhijie Jin2, Zijian Du3, Hongyu Chen2,4, Guanyao Mao2,4, Yan Cen3 , Siqi Sun1,
Yongfeng Mei5 & Hao Zhang2,4,6

Discovering new functional crystalline materials through computational methods remains a challenge
in materials science. We introduce VQCrystal, a deep learning framework leveraging discrete latent
representations to overcome key limitations to crystal generation and inverse design. VQCrystal
employs a hierarchical VQ-VAE architecture to encode global and atom-level crystal features, coupled
with an inter-atomic potential model and a genetic algorithm to realize property-targeted inverse
design. Benchmark evaluations on diverse datasets demonstrate VQCrystal’s capabilities in
representation learning and crystal discovery. We further apply VQCrystal for both 3D and 2Dmaterial
design. For 3Dmaterials, the density-functional theory validation confirmed that 62.22%of bandgaps
and 99% of formation energies of the 56 filtered materials matched the target range. 437 generated
materials were validated as existing entries in the full MP-20 database outside the training set. For 2D
materials, 73.91% of 23 filtered structures exhibited high stability with formation energies below -1
eV/atom.

The discovery of new functional materials through computational
methods represents a frontier in materials science. Despite centuries of
exploration, humankind has only scratched the surface of the vast
material search space, with an estimated 105–106 1–3 order out of 1010 4

theoretically possible solid inorganic materials having been identified to
date. Expanding our catalog of known materials is crucial for scientific
advancement, particularly as data-driven research methodologies
become increasingly integral to modern materials science. Advance-
ments in first-principles calculations have accelerated crystal discovery, a
prevalent framework combines high-throughput virtual screening
(HTVS)5 combined with density-functional theory (DFT)6. This
approach, followed by DFT relaxation to assess structural stability, leads
to databases like the Materials Project (MP)7 and OQMD8. While
accurate, DFT’s computational demands limit large-scale applications,
highlighting the need for more efficient methods.

Deep learning models offer a computationally efficient alternative to
traditional first-principles calculations by generating new crystals through
sampling from learned distributions. Methods9–12 based on generative
adversarial network (GAN)13 drives a similar sampling distribution to the

database distributionwith a generator and a discriminator. But the inherent
training instability and low sampling diversity restrict their application to
specific subsets of crystalline materials like those with space group #22510,11,
binary Bi-Se systems9, or alloys12. More general methods of discovering
crystals are based on variational autoencoder (VAE)14,15 and diffusion
model16. These models map the complex information of diverse unit cells
onto a unified latent space, which enables the encoding and sampling of a
wide variety of materials using a single model. Two notable examples of
them are the Fourier-transformed crystal properties framework (FTCP)17

and the crystal diffusion variational autoencoder (CDVAE)18. FTCP uses a
variational autoencoder model with invertible representation for crystal
generation, incorporating composition and structure. The inverse design
process utilizes a property-prediction head, with subsequent structure
relaxation to enhance validity. But FCTP struggles with reconstruction and
sampling validity. As an improvement, CDVAE uses a hybrid structure of
VAE and diffusionmodels, usingVAE for representation and a score-based
diffusion model to iteratively refine structures, mimicking DFT relaxation.
However, it still faces challenges in reconstruction and sampling validity,
and lacks inverse design capability.
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The development of deep learning pipelines for crystalline materials
discovery and inverse design faces three primary challenges: Effective
representation learning that facilitates bidirectional mapping between the
crystal search space and a unified latent space. The ability to perform
approximate structure relaxation through neural networks, thereby
enhancing sampling reliability. And integration of a property prediction
module and appropriate optimization algorithms for inverse design tasks
across diverse dimensionalities. Current models have yet to successfully
address these major challenges simultaneously.

In this study, theVQCrystal, an innovative framework for the design of
crystalline materials, was developed to address all three primary challenges
mentioned above. To the best of our knowledge, VQCrystal is the first deep
generative model that employs a hierarchical vector-quantized variational
autoencoder (VQ-VAE) architecture to encode the global and atom-level
crystal features, which is an established technique for enhanced repre-
sentation learning in image synthesis19,20, speech analysis21, and molecular
modeling22,23. This intuition also aligns with the discrete nature of crystal
structures, including finite symmetry operations, 230 distinct space
groups24, and defined Wyckoff positions25. Additionally, VQCrystal
leverages OpenLAM26, an established machine learning toolkit, for struc-
tural relaxation decoupled from the tasks of representation learning. For
inverse design, VQCrystal is trained concurrently with an auxiliary task of
predicting properties using the discretized global latent variable. During the
sampling procedure, a Genetic Algorithm (GA) operating on codebook
indices is employed to search for crystals with desired properties.

To benchmark the capabilities of VQCrystal, three open benchmark
datasets, MP-2027, Perov-528, and Carbon-2429,30 were tested. Compared its
performance against state-of-the-art deep learning models for crystal gen-
eration, VQCrystal achieved the highest validity and match rate, with
77.70% match rate, 100% structure validity, 84.58% composition validity,
and 91.93% force validity onMP-20, with the best diversity with the Fréchet
distance (FD)31 score of 0.152. Subsequent analyses show that the global and
local latent space of VQCrystal are highly interpretable. To demonstrate
VQCrystal’s applicability to real-world material design across diverse
dimensionalities, two specific cases across dimensionalities were explored:
3D crystalline materials and 2D crystalline materials. Fifty-six out of the
20,789 3D crystals generated byVQCrystal trained on theMP-20 database27

were selected after removing duplicates, lanthanides, and a neural-network-
based32,33

filtering under the criteria of bandgap (Eg) between 0.5 and 2.5 eV
for conventional semiconductors, and formation energy (Ef) below
−0.5 eV/atom for chemically stable compounds. DFT validation showed
that 62.22%of the bandgaps and 99%of the formation energiesmatched the
target range. Among the 20789 crystals, 437 materials, distinct from the
training set, were validated by the dataset as duplicates of entries in the full
database, with an average root mean square (RMS) distance of only 0.0509.
For 2D materials, VQCrystal was applied to the C2DB database34, gen-
erating 12,000 structures. After the similar filtering processes above, 73.91%
of the 23 filtered relaxed materials had formation energies below −1 eV/
atom, indicating high chemical stability.

Results
VQCrystal model
The VQCrystal shown in Fig. 1 employs a hierarchical vector quantization
architecture, which consists of three main components: the encoder, the
vector quantization module, and the decoder, followed by auxiliary parts
suchas thepropertypredictionhead.The encoder inFig. 1a is composedof a
hierarchical network that extracts both local and global information from
the crystal. The crystal is represented by a tuple consisting of the atomic
number of the L atoms, their respective fractional coordinates, and the unit
cell basis vectors. The local feature ẑl is captured using a Transformer-based
structure35, while the global feature ẑg is obtained by summing two com-
ponents: One part is extracted by applying a SE(3)-equivariant periodic
graph neural network (GNN)36, CSPNet shown in Fig. 1d, to the input
crystal to extract unified features, and the other part is derived by applying a
Graph Convolutional Networks (GCN)4 to the local features to extract

further information. TheCSPNet shown in Fig. 1d updates node features ai,
aj and their corresponding edge features rij, eij represents the adjacency
matrix. These two components are summed together, followed by a pooling
operation to get the final output ẑg . The use of SE(3)-equivariant graph
networks for information extraction allows the model to effectively capture
rotational and translational symmetries, making it ideal for handling crys-
talline structures (Fig. 2).

The hierarchical vector quantization (VQ)module introduces discrete
latent spaces and leverages a two-tiered approach, incorporating residual
quantization (RQ)37 techniques to efficiently compress the latent repre-
sentations while preserving critical information. The VQ module handles
both local and global features, quantizing them into discrete representation
space as zl and zg. Stochastic sampling of codes, shared codebooks, and
k-means clustering initialization enhance the performance and stability of
the VQ module. Figure 1b shows the quantization process for global and
local features, with zl;1, zl;2 representing different codebook positions of
codebook local. The decoder demonstrated in Fig. 1c reconstructs the ori-
ginal input from the quantized latent representations zl and zg, using a
transformer-based structure. Q, K, V, and LN means QKV-attention and
layernorm mechanisms originate from the Transformer structure. The
lattice parameters are predicted using a multilayer perceptron (MLP) after
reconstructing the atoms and fractional coordinates. Additionally, the
concatenation of zl and zq is passed through an MLP-based property net-
work to predict materials properties, such as formation energy, bandgap,
and so on, to ensure that the latent contains several property information.
The detail of the VQCrystal model is shown in the Method section.

The loss function of the VQCrystal model consists of several compo-
nents, primarily focusing on the reconstruction loss and property regression
loss. The reconstruction loss is used to penalize the difference between the
reconstructed crystal structures and the original inputs. Both the atom
features and fractional coordinates are reconstructed with respect to their
respective input features. The final loss is a weighted sum of the property
regression loss and reconstruction loss, which is detailed in the Method
section.

Despite incorporating Transformer layers, the overall complexity of
VQCrystal is dominated by the graph neural networks (GCN and CSPNet)
with a time complexity ofO(L ⋅ (∣E∣ ⋅ d2+ n ⋅ d2)), where L is the number of
layers, ∣E∣ is the number of edges, n is the number of atoms, and d is the
dimensionality of the features. For datasets like MP-2027, where n is much
smaller than d, the effective complexity is dominated by terms involving d2

rather than the self-attention terms involving n2, allowing VQCrystal to
efficiently handle sampling tasks. Full analysis of time complexity is shown
in Supplementary Note 1B.

Sampling strategy
The VQCrystal framework employs a sampling pipeline comprising two
critical stages: (1) codebook indices search and (2) post-optimization.
Within this framework, each crystal structure is uniquely represented by a
pair of codebook indices, (Iglobal, Ilocal), corresponding to global and local
structural features, respectively. The global index, Iglobal, is defined as an
array in RDglobal , while the local index, Ilocal, is characterized as an array in
RN ×Dlocal . In this notation,Dglobal andDlocal represent the number of global
and local quantizers, respectively, and N denotes the maximum number of
atoms in the crystal structure. The sampling process commences with the
random selection of a crystal from the database, whereupon its Ilocal is fixed,
leaving Iglobal as the sole variable for optimization. This strategic approach
significantly constrains the search space, enhancing computational effi-
ciency. Subsequently, a genetic algorithm (GA) is applied to optimize Iglobal,
employing a suite of evolutionary operators including mutation, crossover,
and selection. The objective of this optimization is to identify Iglobal values
that, when decoded, yield crystal structures with minimal total energy, as
estimated by the OpenLAM framework. Subsequently, a post-optimization
phase is initiated. This stage utilizes OpenLAM to perform structural
relaxation on the selected crystal candidates. The process culminates in the
retention of only those structures that satisfy two stringent criteria: an
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estimated formation energy Eform < 0 and a maximum atomic force
fmax < 0.05 eV/Å. The details and ablation of the sampling strategy are
described in the Method section and Supplementary Note 2, respectively.

Model performance on quantitative metrics
We evaluate the efficacy of our model on a diverse range of tasks to
demonstrate its capability in generating high-quality structures of different
crystals. Specifically, we focus on the training reconstruction indicators to
evaluate the representation learning task and focus on the validity and
diversity of the crystal generation task.

We conduct experiments on three datasets: MP-20, Perov-5, and
Carbon-24 following previous works36. The MP-20 dataset selects
45,231 stable inorganic materials from Material Projects27, including
experimentally-generatedmaterials with atmost 20 atoms in a unit cell. The

Perov-5 dataset28 contains 18,928 perovskite materials with similar struc-
tures, each having five atoms in a unit cell. The Carbon-24 dataset29,30

includes 10,153 carbon materials, with unit cells containing between 6 and
24 atoms. For all datasets, we follow a 60-20-20 train-validation-test split
following previous works36.

We compare our model with two types of baselines. The first type
includes deep learning-based crystal generation models: FTCP17, Cond-
DFC-VAE38,CDVAE, andourproposedVQCrystal. Thesemodels generate
new structures based on learned distributions.We also consider the second
type, including deep learning-based crystal structure prediction (CSP)
models: P-cG-SchNet39 andDiffCSP36. Because CSPmodels can be adapted
to do the crystal generation task by randomly sampling the given crystal
composition. This comprehensive comparison highlights the effectiveness
of our VQCrystal model in generating high-quality crystal structures.
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Fig. 1 | Details of VQCrystal model. a Overview of the VQCrystal model. The
model is divided into four main parts: local, global, quantization, and output. The
local part consists of a simple transformer encoder that extracts local features. The
global part captures global features using CSPNet (detailed in (d)) and a GCN block
applied to the local features. After pooling, these blocks generate the global feature.
The quantization part is elaborated in (b). The output part includes two decoders:
the output decoder (detailed in (c)) and the property decoder on the left, which
predicts the corresponding property from the extracted features. The red line means
the procedure is used in sampling. b Quantization process for global and local

features. Both the global and local features are passed through their respective
codebooks, where they are quantized by a lookup-based replacement approach. The
codebooks map the input features to their closest codebook entries. c The details of
the decoder component. The decoder consists of a classic Transformer block, which
includes LayerNorm (LN), multi-head attention with query-key-value (QKV)
attention mechanism, and a lattice net to predict a lattice of crystals. d The details of
the CSPNet component, which includes LayerNorm (LN) and intersection blocks to
enhance feature interaction and improve representation learning.
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Following common practice, we evaluate by matching the predicted
candidates with the ground-truth structure. The match rate is the propor-
tion of matched structures over the test set. The matching process uses the
StructureMatcher class in pymatgen40 with thresholds
stol = 0.5 angle_tol = 10, and ltol = 0.3. The RMS is calculated between the
ground truth and the best matching candidate, normalized by

ffiffi½p
3�V=N ,

where V is the volume of the lattice, and averaged over the matched
structures.

The results in Table 1 underscore the superior performance of our
proposedVQCrystalmodel compared to other deep generativemodels. For
the Perov-5 dataset, VQCrystal achieves a match rate of 95.60%, slightly
lower than thebest-performingbaselinemodel, FTCP41, at 99.34%, but still a
very high value, indicating an almost complete match. The RMS of
VQCrystal is 0.0438, which is well below 0.1Å, indicating that the differ-
ences are minimal and can be considered nearly identical in terms of actual
crystal structures, despite the slight increase in RMS when compared to
FTCP (0.0259). For the Carbon-24 dataset, VQCrystal attains a match rate
of 70.03%, surpassing both FTCP’s 62.28% and CDVAE’s 55.22%, with an
RMS of 0.2573, indicating comparable performance in terms of structure
accuracy. For the MP-20 dataset, VQCrystal achieves a match rate of
77.70%, outperforming both FTCP’s 69.89% and CDVAE’s 45.43%, while
the RMS of 0.088, though not as low as CDVAE’s or DiffCSP’s, is still below
0.1Å–a very low value where the differences can be considered as minor
internal variations within the crystal structure. These improvements high-
light VQCrystal’s ability to capture the periodicity and discrete character-
istics of crystal structures more effectively than other models. This can be

explained by its use of discrete VQ to encode crystal structures, which aligns
well with the inherent discrete nature of crystal lattices, providing a more
accurate and effective representation.

To further evaluate the performance of our VQCrystal model, we
conducted experiments on the crystal generation task. This task aims to
generate new crystal structures that are valid, diverse, and have high cov-
erage of the target space. We compare our model against several baseline
methods using metrics of validity and diversity.

For validity, we consider structural validity, compositional validity, and
force validity. The structural validity rate is calculated as the percentage of
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Fig. 2 | The sampling process of VQCrystal. Global latents are optimized through the genetic algorithm (GA) while local latents are fixed.

Table 1 | Results on stable structure reconstruction task

Model MP-20 Perov-5 Carbon-24

Match
rate↑

RMS↓ Match
rate↑

RMS↓ Match
rate↑

RMS↓

FTCP41 69.89 0.1593 99.34 0.0259 62.28 0.2563

Cond-
DFC-VAE38

- - 51.65 0.0217 - -

CDVAE 45.43 0.0356 97.52 0.156 55.22 0.1251

P-cG-
SchNet39

15.39 0.3762 48.22 0.4179 17.29 0.3846

DiffCSP36 51.49 0.0631 52.02 0.0760 17.40 0.2759

VQCrystal 77.70 0.088 95.60 0.0438 70.03 0.2573
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generated structures with all pairwise distances larger than 0.5Å. The
generated composition is considered valid if the total charge is neutral, as
determined by SMACT42. For structure and composition validity, we follow
the evaluation criteria established in previous generationworks, particularly
those outlined in the CDVAE paper18. The specific definitions and internal
parameters are referenced from these prior works to ensure consistency.
Force validity is evaluated using the OpenLAM model with DeePMD-kit
v343 as the DFT estimator. A structure is force valid if the maximum force
fmax is less than 0.05 eV/Å.

The diversity metric evaluates how well the generated structures
explore the space of possible crystal structures beyond those found in the
original dataset. We use two metrics for this: average minimum distance
(AMD) and Fréchet distance (FD)31. The AMD measures the average
minimum distance between any generated structure and the ground-truth
structures using CrystalNN structural fingerprints44 as input, defined as,

AMD ¼ 1
jSg j

X
Mi2Sg

min
Mj2St

dSðMi;MjÞ ð1Þ

The FD evaluates the distance between the distributions of generated
and ground-truth structures, defined as,

FD ¼ jjμg � μt jj2 þ TrðΣg þ Σt � 2
ffiffiffiffiffiffiffiffiffi
ΣgΣt

q
Þ ð2Þ

where μg and μt are the means, and Σg and Σt are the covariances of the
generated and ground-truth CrystalNN structural fingerprints44,
respectively.

The results in Table 2 show that VQCrystal consistently achieves high
validity rates across all datasets, with structural, compositional, and force
validitymetrics being significantly better thanmost baselines. Specifically, in
thePerov-5dataset,VQCrystal reaches 100.0% in structural validity, 97.48%
in compositional validity, and an impressive 99.17% in force validity, out-
performing othermodels by a considerablemargin. Because non-diffusion-
basedmodels likeFTCPhave very lowstructural andcompositional validity,
they do not calculate force validity. Although diffusion models are theore-
tically proven as mathematical frameworks for deep potential simulation,
they still do not perform as well as our explicit optimization approach, with
DiffCSP only achieving 12.26% force validity.

For the other datasets, similar trends are observed. On the MP-20 and
Carbon-24 datasets, VQCrystal demonstrates high force validity and other
validity metrics, achieving a force validity of 91.93% on the MP-20 dataset
and74.22%on theCarbon-24dataset, both significantlyhigher compared to
other models.

The diversity metrics, e.g., AMD and FD, further validate the effec-
tiveness of VQCrystal, indicating that it can generate a more diverse set of
crystal structures. Since diffusion models are known for their diversity, it is
pertinent to compare VQCrystal with diffusion-based methods like
CDVAE. For the AMD metric, which measures average maximum devia-
tion and indicates the spread of generated structures, VQCrystal achieves
0.247 on Perov-5, 0.248 on Carbon-24, and 0.160 on MP-20. These values
are higher than those achieved by CDVAE, which has an AMD of 0.038 on
Perov-5, 0.125 on Carbon-24, and 0.165 on MP-20. Similarly, for the FD
metric, whichmeasures feature distance and indicates the distinctiveness of
generated structures, VQCrystal attains 0.312 onPerov-5, 0.515 onCarbon-
24, and 0.152 onMP-20, compared toCDVAE’s 0.025 onPerov-5, 0.103 on
Carbon-24, and 0.132 on MP-20. These results highlight VQCrystal’s
superior ability to produce a diverse and distinctive set of crystal structures.
Overall, thesefindings underscore the capability of VQCrystal in generating
valid, diverse, andwell-covered crystal structures,making it a robust tool for
crystal structure prediction and generation tasks.

Interpretability
The sampling methodology of VQCrystal is valid only if certain pre-
requisites are met. First, the global latent variable must contain rich infor-
mation about the crystal to ensure meaningful variations. The local latent
variables must retain enough information to keep the sampling process
controllable and consistent with the original structure. Lastly, the global
latent space must be well-structured to help the genetic algorithm identify
superior candidates. This section delves into the latent space and sampling
process of VQCrystal to validate these prerequisites.

To substantiate the assertion that the global latents encapsulate com-
prehensive and abstract information, a crystal is randomly selected from the
Perov-5 dataset, and its local latents are fixed. Subsequently, 1000 different
compositions of global indices are sampled and decoded into 1000 crystal
samples in conjunction with the fixed local latents. OpenLAM is utilized to
estimate the total energy of these sampled crystals. The 1000 decoded global
latents, each of 128 dimensions, are projected onto two dimensions using
principal component analysis (PCA)45. The results are depicted in Fig. 3d,
where each point corresponds to a global latent, color-coded based on the
estimated energy of its respective sample. It is evident that the global latent
space is well-organized by total energy, with high-energy regions smoothly
transitioning to low-energy regions.

Further analysis aims to demonstrate that the global latent contains
space group information. The MP-20 dataset is selected due to its rich
diversity in space groups. About 10,000 crystals are chosen, and their global
latents are projected onto two dimensions using PCA. The data is then
visualized based on their space group information in Fig. 3a. The threemost
frequently occurring space groups are selected for detailed analysis (space
group: P62, Fmmm, Pm3m). A numerical analysis yields a Silhouette score46

of 0.478, with values above 0 generally suggesting that the data points are
reasonably well-clustered. In this case, the high Silhouette Score indicates
well-defined clusters, supporting that the global latent space captures space
group information. This distinction is one aspect of the complex data in the
global latent space, with more abstract details yet to be discovered.

To demonstrate that the local latent variables contain sufficient atomic
information, the Perov-5 dataset, consisting of perovskite materials with
elements at A/B/X positions, was used. To check for element type infor-
mation, the position needs to be fixed and the B position together with four
most common elements found at this position (Ba, Ru, Rb, Y)were selected.
PCA was applied to reduce the dimensionality of the local latent to two
components. The results were then plotted and shown in Fig. 3b. Addi-
tionally, to demonstrate that local latent variables capture positional
information, the most frequent elements found at both A and B positions

Table 2 | Results on the materials generation task

Data Method Validity (%) Diversity

Struc.↑ Comp. ↑ Force ↑ AMD↑ FD↑

MP-20 FTCP39 1.55 48.37 - - -

P-G-SchNet39 77.51 76.40 - - -

CDVAE 99.98 52.39 0.95 0.165 0.132

DiffCSP36 99.94 83.22 16.11 0.099 0.025

VQCrystal 100.0 84.58 91.93 0.160 0.152

Perov-5 FTCP39 0.24 54.24 - - -

Cond-
DFC-VAE38

73.60 82.95 - - -

P-G-SchNet39 79.63 99.13 - - -

CDVAE 100.0 69.79 0.02 0.038 0.025

DiffCSP36 100.0 98.69 12.26 0.051 0.002

VQCrystal 100.0 97.48 99.17 0.247 0.312

Carbon-24 FTCP39 0.08 - - - -

P-G-SchNet39 48.39 - - - -

CDVAE 100.0 - 0.00 0.125 0.103

DiffCSP36 100.0 - 0.01 0.0187 0.033

VQCrystal 99.97 - 74.22 0.248 0.515
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were selected. Due to the constraints of the ABX3 structure, where X is
typically a non-metal and A and B are metals, only elements at the A and B
positionswere visualized. Fixing the element types (Sb as it’s one of themost
frequent atoms appearing inABposition) and clustering based onpositions.
The results in both Fig. 3b, c showed clear clustering of positions and types
for these elements, reinforcing that the local latent variables effectively
capture both atomic and positional information. The Silhouette Score was
calculated to further quantify the clustering quality. The Silhouette Score of
0.2688 and 0.2518 indicates amoderate level of separation between clusters,
with values above 0 generally suggesting that the data points are reasonably
well-clustered.

The previous parts demonstrated that the global latent space is well-
organized by the crystal’s total energy (Fig. 3d), thereby facilitating genetic

algorithm searches. This part further validates the functionality of the
genetic algorithm by examining each species during the evolutionary
iterations. Figure 3f depicts the statistics of the total energy of the crystals
across different iterations. These values were collected from a random
genetic search process starting with a random initial crystal. Each point in
Fig. 3f represents a global latent in this evolutionary race, where the y-axis
corresponds to the fitness function value during evolution, which is also the
total energy of thedecodedcrystal as estimatedbyOpenLAM.Aboxplot for
each race is provided to clearly illustrate the statistical distribution. It is
evident that the overall total energy decreases as evolution progresses, with
the 75th percentile dropping from approximately−21 to about−36. As the
population iterates, the composition and lattice of the crystals gradually
improve. Ultimately, the face-centered, body-centered, and specific point

(a)

(c)

(e) (f)

(d)

(b)

Fig. 3 |Model interpretability analysis. a,dGlobal latent space, (b, c) Local latent space, and e, f Sample space. The x and y axes representDimension 1 andDimension 2 after
reducing vectors to two dimensions.

https://doi.org/10.1038/s41524-025-01613-6 Article

npj Computational Materials |          (2025) 11:184 6

www.nature.com/npjcompumats


positions of the best sample in the final race are well-recognized by the
VESTA software47.

Additionally, we projected the global latents onto two dimensions
using PCA to visualize the evolutionary trends of the population. For
clarity, Fig. 3e only visualizes the initial and final generations. The black
border represents the convex hull for the points of each generation,
calculated using the scikit-learn package. It is clearly seen that the
samples in a race gather and converge as evolution progresses. Combined
with the aforementioned conclusions, this indicates that the genetic
algorithm effectively captures the organized properties of the global
latent space and gradually optimizes the species by simulating the evo-
lutionary process.

Reliable crystal generation cases of 3D materials
For the purpose of demonstrating the model’s capacity to generalize and
reliably explore the search space of crystal structures, VQCrystal generates a
large number of crystal structures, totaling 20,789 crystals trained on the
MP-20 dataset. These crystals were first checked for duplicates within the
training set. The “StructureMatcher” class from the pymatgen library40 was
used to compare crystal structures and removeduplicates.After this process,
20,183 unique materials remained. These 20,183 materials were then
compared against the completeMPdatabase as of June 1, 2018, with 132082
materials to check for duplicates with known structures in the dataset,
excluding the training set. Among 2.16% were found to be duplicates of
structures in the MP database, corresponding to 437 materials. Supple-
mentary information records the chemical formulas of these crystals and
visualizes some representatives. Further analysis was performed by calcu-
lating RMS distances between the generated duplicates and their corre-
sponding structures in the database. The average RMS distance for these
duplicates was found to be 0.0509, with the smallest RMS distance reaching
as low as 0.0001.

These results indicate that the duplicated structures are nearly identical
to those in the database, validating the stability of the generated crystals. The
close structural similarity to stable crystals in theMPdatabase demonstrates
that the generated materials are highly reliable and consistent with known
stable structures.

To further demonstrate the reliability and practical applicability of the
model, VQCrystal is applied to specific design cases. Figure 4a illustrates the
workflow for inversely designing ofmaterials based on target properties.We
selected materials with a bandgap (Eg) between 0.5 and 2.5 eV, which is a
desirable range for photovoltaic applications, and a formation energy (Ef)
less than −0.5 eV/atom to ensure chemical stability. We used models
trained on the MP database to generate these materials. Firstly, the 20,789
crystals generated by VQCrystal trained on theMP-20 data are screened to
remove duplicates based on the complete Materials Project database as of
June 23, 202327, leaving 19,776 unique structures. Following this, the
structures are validated for compositional correctness using the SMACT
library42, which checks for valid elemental combinations and charge neu-
trality. The validation process includes ensuring the elements’ oxidation
states and electronegativity are appropriate for forming stable compounds.
This screening results in a 67.21% pass rate, reducing the number of valid
crystal structures to 13,292. Following this, the structures’ forces and
energies are calculated usingOpenLAM. Structures with an energy less than
0 and a maximum force (fmax) less than 0.05 eV/Å are considered stable.
This step has a pass rate of 92.4%, resulting in 12,282 stable structures.
Subsequently, structures with an excessive number of atoms, too many
different types of elements, or containing lanthanide series elements are
removed, leaving 2771 materials.

Then, we employed the MEGNet model32 and the ALIGNN model33,
bothofwhich are graphneural networks, to screen the targetproperties. The
MEGNet model was trained on the MP database as of June 1, 2018,
achieving a mean absolute error (MAE) of 0.028 eV/atom for formation

Fig. 4 | Details of workflow of the post-filtering of VQCrystal model. aWorkflow
for designing materials based on target properties. b, c show the distribution of
predicted formation energy and bandgap from the MEGNet model. d, e are scatter

plots of the formation energy and bandgap of the 90 designed materials calculated
using first-principles calculations.
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energy and a test MAE of 0.33 eV for PBE bandgap. The ALIGNN model
was trained on the JARVIS DFT dataset, with an MAE of 0.14 eV for the
OPT bandgap and 0.033 eV/atom for formation energy. For the 2,771
materials, we predicted the bandgap and formation energy using both the
MEGNet and ALIGNN regression models. Additionally, we used the
MEGNet bandgap classifier to predict whether the bandgap is greater than
0 eV. We filtered the materials where the classifier predicted a bandgap
greater than 0 eV andwhere all predicted properties fell within the specified
ranges (bandgap between 0.5 and 2.5 eV, formation energy less than
−0.5 eV/atom). This screening resulted in 92 materials. Figure 4b, c show
the distributions of predicted formation energy and bandgap for the 12,282
materials before the removal of excessive elements, predicted using the
MEGNet model. 90 out of 92 materials successfully passed the DFT
relaxation process using the Vienna ab initio simulation package (VASP)48.

Next, we calculated the bandgap and formation energy of these 90
materials using first-principles calculations to validate the predictions
Supplementary Note 5.

The calculated bandgaps and formation energies were then com-
pared with the target of bandgap (Eg) between 0.5 and 2.5 eV, and for-
mation energy (Ef) less than −0.5 eV/atom. The results showed strong
agreement in terms of formation energy, with 89 out of 90 materials
having a formation energy lower than −0.5 eV/atom, indicating an
almost 100% hit rate for stability prediction, which strongly suggests the
stability of the predicted crystals. Regarding the bandgap, 56 out of the 90
materials had a bandgap within the target range of 0.5 to 2.5 eV. Figure
4d, e shows the distribution of the designed 90 materials, while the red
points indicate materials which hit the target of both Ef and Eg. The band
structures are shown in supplementary materials. These results further
confirmed the reliability of the VQCrystal model in predicting material
properties, particularly for formation energy, and demonstrated the
effectiveness of using machine learning models like MEGNet and
ALIGNN for large-scale material discovery. Details of the generated
materials are shown in Supplementary Note 6.

Generation cases of 2D materials
Two-dimensional (2D) materials have gained significant attention due to
their unique physical and chemical properties, which offer promising
applications in areas such as energy, electronics, and catalysis. Compared to
3D materials, 2Dmaterials feature an ultra-thin structure and high surface
area, allowing for exceptional electrical, optical, andmechanical behaviors49.
Building upon the significance of 2D materials, we applied VQCrystal to
generate new structures from a comprehensive 2Dmaterials database called
C2DB34,50. Specifically, we trained a VQCrystal model using the C2DB
database,which contains a total of 3521 2Dmaterials. TheVQCrystalmodel
was trainedwith a 60-20-20 train-validation-test split. On the validation set,
the model achieved a match rate of 88.56%.

Afterward,we generatednearly 12,000 candidatematerials,whichwere
then filtered using the atomic simulation recipes (ASE)51 to determine
whether they were truly two-dimensional. This process left us with 3521
materials. Subsequently,we removedduplicates by comparing the generated
materials with the C2DB database, utilizing the “StructureMatcher” class
from the pymatgen library with the parameters ltol = 0.3, stol = 0.5, and
angletol = 10. After this deduplication step, 2638 candidate materials
remained. Following the deduplication, we applied similar filtering steps as
previously described, ensuring that the materials met criteria for elemental
composition, structural validity, and reasonable force values. In addition,
lanthanides, actinides, and structures containing an excessive number of
different elements were removed. After this filtering process, 846 candidate
materials remained. To assess the stability of these materials, MEGNet and
ALIGNN models were used to predict the formation energy of the 846
materials, following the same procedure as in the inverse design of theMP-
20 datasets. Materials with a predicted formation energy less than−0.5 eV/
atom in both models were selected, resulting in 184 materials. A random
selection of 26 materials from the filtered set underwent DFT relaxation,
with 23 successfully passing the process. Further calculation of their

formation energy. Out of the 23 materials, 19 exhibited a formation energy
lower than -0.5 eV/atom, with 17 of them, representing 73.91%, having a
formation energy lower than −1 eV/atom. This indicates a good level of
stability for the generated two-dimensional materials. Figure 5 presents a
selection of the generated two-dimensional materials, illustrating both their
formation energy and total energy. These visual representations emphasize
the effectiveness of the VQCrystal model in generating stable 2Dmaterials,
further supported by the energy analysis. Further information about the
generated materials is shown in Supplementary Note 7.

Discussions
In this study, we introduce VQCrystal, an innovative pipeline for crys-
talline materials discovery that integrates a hierarchical VQ-VAE
representation learning module, the open-source machine learning-
based structural relaxation method OpenLAM, and a genetic algorithm.
The effectiveness of incorporating discreteness in representation learn-
ing is demonstrated through benchmark performance on diverse data-
sets. Furthermore, metric analysis of the sampled novel crystals reveals
that the VQCrystal pipeline successfully discovers both valid and diverse
novel crystalline materials. Interpretation of the results indicates that
VQCrystal has developed a highly interpretable latent space at both
global and atomic levels. For inverse design tasks, we employed a genetic
algorithm to search for stable candidates, followed by a series of filtering
processes. In the case of 3D crystals, DFT validation confirmed that
62.22% of bandgaps and 99% of formation energies of the 56 filtered
materials matched the target ranges of bandgap between 0.5 and 2.5 eV
and formation energy below −0.5 eV/atom. For 2D crystals, DFT vali-
dation revealed that 73.91% of 23 filtered structures exhibited high sta-
bility, with formation energies below −1 eV/atom. Future work should
focus on extending the VQCrystal pipeline to address crystal structure
prediction (CSP) tasks, enabling the prediction of lattice parameters and
atomic positions for specific chemical compositions. This extension
would broaden the potential applications of VQCrystal, transforming it
into a more fine-grained conditional crystal generation pipeline.

Methods
VQCrystal encoder
The hierarchical encoder of the VQCrystal model consists of two parts:
the local feature encoder and the global feature encoder. The local
features are extracted using a series of transformer layers, while the
global features are obtained through a combination of graph
convolution-based GCN layers and CSPNet convolution layers. The
input to the encoder is a tensor F of shape (B, L, C) containing atom
features and fractional coordinates, where C represents
Catom+ Ccoords, and a tensor lattice of shape (B, D) containing lattice
parameters, where D = 6. The lattice tensor is expanded on the first
dimension as B, L,D to fit the dimensionwith tensor F. These inputs are
concatenated along the last dimension to form the input feature tensor
Finput, whose shape is (B, L, C+ D).

F input ¼ concatðF; latticeÞ ð3Þ

This concatenation results in a tensor of shape (B, L, Cinput), where
Cinput =C +D. The combined features are then passed through multiple
layers of transformer encoders35. Each transformer layer consists of a self-
attention mechanism, expressed as,

Self AttentionðQ;K;VÞ ¼ softmax
QKTffiffiffiffiffi

dk
p

 !
V ð4Þ

where Q, K, V are the query, key, and value matrices, respectively, derived
from the input feature tensor. After passing through multiple transformer
layers, the outputs are summed toproduce the local feature ẑl having a shape
of (B, Clatent).
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To obtain the global feature ẑg , two graph models, GCN and CSPNet
are applied on different inputs denoted as Finput and ẑl ,

ẑg ¼ GCNðẑlÞ þ CSPNetðF; latticeÞ ð5Þ

The local feature ẑl is first passed through a GCN originated from
CGCNN4. The updating of nodes and pooling in the GCN can be sum-
marized as follows,

l0i�1 ¼ GraphTransformerðli�1Þ ð6Þ

li ¼ li�1 þ
X
j

σ W � ½l0i�1; li�1½ j�; fnbr�
� � � ReLU W0 � ½l0i�1; li�1½ j�; fnbr�

� �
ð7Þ

GCNðẑlÞ ¼ Pooling
X
k

l½k�
 !

ð8Þ

where li represents the output features of the i-th layer, li−1 represents the
input features from the (i−1)th layer (with l1 ¼ ẑl), l

0
i�1 represents the

features from the graph transformer, j denotes the neighboring nodes, and
fnbr represents the features of the neighboring nodes. k represents the
number of atom nodes to pooling,W andW0 are the weightmatrices of the
fully connected layers. σ and ReLU are the sigmoid and ReLU activation
functions, respectively.

Note that theproposedgraph transformermodel isnot the transformer
block used to extract local features. It’s a part inside theGCNmodel to assist
node updates. The proposed graph transformer model integrates the
strengths of graph neural networks (GNNs) and transformer architectures
to process graph-structured data effectively. The model comprises of graph
attention mechanisms and transformer layers. The graph attention
mechanism computes attention scores for each node pair using the formula

S ¼ QK>ffiffiffiffiffiffiffiffi
dmodel

p , whereQ andK are the query and keymatrices. These scores are
then masked by the adjacency matrix A, S = S⊙ A, and normalized using
the softmax function Aattn ¼ softmaxðSÞ. The output is computed as O =
AattnV, whereV is the valuematrix. Each Graph Transformer Layer applies
this attentionmechanism, followed by a feedforward network with residual
connections and layer normalization. The transformer layers consist of
multi-head self-attention and feedforward networks to capture global
dependencies. This layered architecture allows themodel to learn both local
graph structures and global sequence patterns.

To further enrich the feature representation, we apply CSPNet origi-
nated from DiffCSP36, directly to the input Finput. CSPNet inherently
encodes periodicity, facilitating the modeling of the crystal structure. The
key innovation is the incorporation of periodic E(3) invariance, which
combines E(3) invariance (including translation, rotation, and reflection
symmetries) with the periodicity inherent in crystal structures. This ensures
that any transformation of the crystal coordinates does not alter the physical
laws, thereby maintaining the crystal symmetrical restrictions.

Finally, the combination of GCN and CSPNet results in a compre-
hensive final global feature,

ẑg ¼ GCNðẑlÞ þ CSPNetðFinputÞ ð9Þ

Hierarchical vector quantization
The hierarchical vector quantization (VQ)module of the VQCrystal model
leverages a two-tiered approach, incorporating residual quantization (RQ)
techniques to efficiently compress the latent representations while preser-
ving critical information. This section details the VQmechanism based on
previous works2,37.

The VQ module is designed to handle two types of features, i.e., the
local feature ẑl of shape (B, L, Clatent) and the global feature ẑg of shape (B,
Clatent). The local feature ẑl is a high-dimensional representation capturing

Fig. 5 | Structures of VQCrystal-generated 2Dmaterials. a BiBHO3 with Ef =−1.56 eV/atom; b CaReO2 with Ef =−1.10 eV/atom; cHf2H2SO2 with Ef =−1.63 eV/atom;
d HfClO with Ef =−1.26 eV/atom; e NbHNO with Ef =−2.05 eV/atom; f MnPtO2 with Ef =−1.22 eV/atom.
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fine-grained details, while the global feature ẑg encapsulates broader con-
textual information.

Then, the local feature andglobal feature is quantizedusing the residual
VQ scheme,

ResidualVQðz;C;DÞ ¼ ðk1; � � � ; kDÞ 2 ½K�D; ð10Þ

kd ¼ Qðrd�1;CÞ; ð11Þ

rd ¼ rd�1 � eðkdÞ; ð12Þ
where RQ(z; C,D) represents the RQ of vector z using codebook size C and
depth D37. Here, kd is the code index at depth d, Q(rd−1; C) is the quanti-
zation function that maps the residual rd−1 to the nearest code in the
codebook C, rd is the residual vector at depth d, and e(kd) is the code
embedding corresponding to the code index kd.

In addition, we define zðdÞ ¼Pd
i¼1 eðkiÞ as the partial sum of up to d

code embeddings, and zq = z(D) is the quantized vector of z. zl ¼
Pd

i¼1 eðkliÞ
and zg ¼

Pd
i¼1 eðkgi Þ is the final output of local and global features. The

recursive quantization of RQ approximates the vector z in a coarse-to-fine
manner.Note that z(1) is the closest code embedding e(k1) in the codebook to
z. Then, the remaining codes are subsequently chosen to reduce the
quantization error at each depth.Hence, the partial sumup to z(d) provides a
finer approximation as d increases.

To enhance the performance and stability of the VQ module, several
techniques are employed. Stochastic sampling of codes is used during
quantization, where codes are stochastically sampled using a temperature
parameter. A single shared codebook is utilized for all quantizers, simpli-
fying the model and making the codebook size determination easier. The
codebooks are initialized using k-means clustering to ensure that the initial
code embeddings are well-distributed across the latent space.

Decoder and property prediction head
The decoder module of the VQCrystal model is designed to reconstruct the
original input features from the quantized latent representations. The
decoder architecture consists of several parts, each tailored to decode dif-
ferent aspects of the latent features, ensuring that both local and global
information is accurately recovered.

The primary decoder is responsible for reconstructing the node fea-
tures and positional information from the combined quantized local and
global latent vectors. The input to the decoder is a combination of the
quantized local feature zl and the upsampled global feature zg. This com-
bined latent representation is then passed through multiple layers of linear
transformations and transformer encoder layers to produce the final
reconstructed output. The reconstruction process begins with upsampling
the global feature zg to match the spatial dimensions of the local feature zl,

zcombined ¼ zl þ upsampleðzgÞ ð13Þ

The combined latent representation zcombined of shape (B, L, Clatent) is
processed through a series of Transformer Encoder layers. Each Transfor-
mer layer consists of multi-head self-attention and a feedforward neural
network. The output of the transformer encoder, denoted as xrecon, has the
shape (B, L, Catom + Ccoords), where Catom represents the reconstructed
atomic features and Ccoords represents the reconstructed fractional coordi-
nates.

xrecon ¼ TransformerEncoderreconstructionðzcombinedÞ ð14Þ

Additionally, specialized decoders are used for reconstructing the lat-
tice parameters andproperties such as formation energy. The lattice decoder
operates on intermediate reconstructions xrecon of atom features and frac-
tional coordinates from earlier steps, using dedicated linear and Transfor-
mer layers to accurately match the target lattice parameters. The lattice

decoder’s operation can be expressed as,

L̂ ¼ TransformerEncoderlatticeðxreconÞ ð15Þ

where L̂ of shape (B,Clattice) represents the reconstructed lattice parameters.
In contrast, the property decoder predicts properties directly based on

the combined quantized local and global latent vectors zl and zg, without
relying on intermediate reconstructions. The property prediction head is
designed to predict specific properties, suchas formation energy, using these
quantized representations. The input to the property prediction head is the
concatenated quantized local feature zl and global feature zg denoted as
zcombined.

This combined latent representation is passed through a series of linear
transformations and activation functions, together with a transformer, to
extract the necessary information to predict the desired properties,

P̂ ¼ f propertyðzcombinedÞ ð16Þ

where P̂ represents the predicted properties, and fproperty denotes the
function comprising the prediction head’s transformations and activations.

This approach leverages the flexibility of the VQCrystal model’s
hierarchical decoding strategy to effectively process and predict various
aspects of the input data. The design for the property prediction head
effectively integrates and processes both local and global information,
enhancing the model’s ability to forecast properties like formation energy,
making VQCrystal a powerful tool for various applications in materials
science and beyond.

Loss function
The loss functionof theVQCrystalmodel consists of twomain components:
the reconstruction loss and the property regression loss. The total loss is a
weighted combination of these components. The reconstruction loss mea-
sures the difference between the input and the decoded output for atom
features, fractional coordinates, and lattice parameters. It is computed as the
sum of three individual losses: atom features Latom (The loss is computed
using a cross-entropy classification loss), fractional coordinatesLcoords (The
loss is computedusingmean squared error (MSE) loss on thepositions), and
lattice parametersLlattice (The loss is computedusingMSE loss on the lattice
parameters). Formally, the reconstruction loss can be written as:

Lrecon ¼ Latom þ Lcoords þ Llattice ð17Þ

where:

Latom ¼ CrossEntropyLossðxatom; x̂atomÞ ð18Þ

Lcoords ¼ MSELossðxcoords; x̂coordsÞ ð19Þ

Llattice ¼ MSELossðxlattice; x̂latticeÞ ð20Þ
Here, xatom, xcoords, xlattice are the input atom features, fractional

coordinates, and lattice parameters, respectively, while x̂atom; x̂coords; x̂lattice
are their corresponding reconstructed outputs. The property regression loss
is used to measure the difference between the predicted properties and the
ground-truth properties, such as formation energy. This is computed using
MSE loss:

Lproperty ¼ MSELossðP̂; PtargetÞ ð21Þ

where P̂ is the predicted property (e.g., formation energy) and Ptarget is the
corresponding target property. The total loss is a weighted combination of
the reconstruction loss and the property regression loss:

Ltotal ¼ Lrecon þ λpropertyLproperty ð22Þ
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where λproperty is a hyperparameter that controls the relative weight of the
property regression loss in the total loss. The codebook in the VQmodule is
updated using exponential moving average (EMA) rather than traditional
methods. This allows for smoother updates and avoids the commitment loss
that is common in traditional vector quantization methods. Therefore, the
commitment loss term is not included in the total loss, making it:

Lcommitment ¼ 0 ð23Þ

Thus, the total loss function is optimized by minimizing the recon-
struction loss and property regression loss, while the codebook update is
performed via EMA without any commitment loss.

Overview of sampling pipeline. VQCrystal is a vector-quantized
autoencoder designed to map the distribution of natural crystals to a
fixed-size discrete latent space. Consequently, sampling with VQCrystal
involves selecting a typical combination of codebook indices that can be
decoded into stable crystals. These indices can be represented as a pair
(Iglobal, Ilocal), corresponding to the codebook indices of global and local
features, respectively. Iglobal is an array in RDglobal , with all elements
selected from {1, 2,…, Vglobal}. Conversely, Ilocal is an array inRN ×Dlocal ,
with all elements selected from {1, 2, …, Vlocal}. Here, Dglobal, Dlocal,
Vglobal, Vlocal, and N denote the number of global or local quantizers, the
size of the global or local codebook, and the maximum number of atoms
in the crystal, respectively.

The challenge in sampling arises because not all regions of the latent
spacemap to reliable samples. Therefore, developing strategies to search for
reliable regions of the latent space and optimizing the sampled crystals is
crucial. In our work, a genetic algorithm is adapted to selectively sample
from the latent space, and we utilize OpenLAM to further optimize the
generated crystals.

Additionally, VQCrystal employs a data-based sampling strategy
where Ilocal is fixed to the Ilocal of a selected base crystal from the database,
with Iglobal being the only variable sampled. This approach effectively
reduces the potential search space fromVN ×Dlocal

local ×V
Dglobal

global toV
Dglobal

global , thereby
shortening the expected sampling time and increasing the success rate.
Sampling only Iglobal is sufficient to generate diverse variants of the base
crystal because the auxiliary tasks designed for the global latent space during
training, such as crystal reconstruction and property prediction, ensure that
the global latent space encodes rich and comprehensive features.

Searching strategy
Genetic algorithms (GAs) are a class of adaptive, heuristic search and
optimization techniques inspired by the principles of natural selection and
genetic evolution. In the context of problem-solving, a GA operates on a
population of potential solutions, each represented as a string of symbols or
a genome. These solutions are evaluated using a fitness function. The
algorithm iteratively applies a set of genetic operators, i.e., selection, cross-
over, and mutation, to evolve the population toward better solutions over
successive generations.

In our study, we utilize OpenLAM to estimate a solution’s formation
energy, which serves as the fitness metric. The goal of the GA is to identify
solutions with low formation energy. Initially, 64 solutions are randomly
sampled to form the initial population, and the number of iterations is set to
10. During each iteration, all 64 solutions in the population are evaluated
using thefitness function. The top 12 solutions, based onfitness, are selected
as parents to generate 63 new solutions. This generation process employs a
uniformcrossover strategy at eachdimensionwith a probability of 0.5, and a
random mutation with a probability of 0.4. Meanwhile, the best solution
from the original population is preserved for the next generation. Unlike
standard GAs, which aim to find the single best solution, our approach
retains all generated crystals with negative formation energy as successful
samples.

Post-optimizing strategy
Although genetic algorithms (GAs) can already sample potentially stable
crystals, a post-optimizationprocedure is introduced for the following reasons:
• Additional constraints: Beyond having a negative formation energy, a

stable crystal must also satisfy other constraints, such as exhibiting low
forces.

• Estimation errors: The formation energy estimated by neural networks
contains inherent errors, as these neural networks approximate
density-functional theory (DFT) results. Consequently, the outcomes
of GAs need further optimization to ensure accuracy.

• Structural refinement: Most crystals sampled by GAs can achieve
greater stability with minor modifications to their unit cell structures.

We employed OpenLAM as our post-optimization method. In our
experimental setup, each generated crystal undergoes optimization by
OpenLAM for a maximum of 100 steps, with a force convergence criterion
set at 0.04 eV/Å. Crystals that converge in both energy and force are deemed
successfully optimized samples.

Data availability
The Perov-5, Carbon-24, and MP-20 datasets are queried from cdvae at
https://github.com/txie-93/cdvae. The Materials Project dataset is queried
from its website in June, 2023. (Note a query with the same criteria now
would yield a different number of crystals from the recorded number in the
study due to the updates and the addition of crystals of the Materials Pro-
ject.). The C2DB50 database is required from the database of jarvis-tools52.

Code availability
The source code of VQCrystal is now avaliable at https://github.com/
Fatemoisted/VQCrystal, including training/inference code, pre-trained
models, reproducibility checkpoints, and the license file.
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